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Abstract—Given multiple widespread stationary data sources
such as ground-based sensors, an unmanned aircraft can fly over
the sensors and retrieve their data via a wireless link. When
sensors have limited energy resources, they can reduce the energy
used in data transmission if the ferry aircraft is allowed to extend
its flight time. Complex vehicle and communication dynamics and
imperfect knowledge of the environment confound planning since
accurate system models are difficult to acquire and maintain, so
we present a reinforcement learning approach that allows the
ferry aircraft to optimise data collection trajectories and sensor
energy use in situ, obviating the need for system identification. We
address a key problem of reinforcement learning—the high cost
of acquiring sufficient experience—by introducing a metalearner
that transfers knowledge between tasks, thereby reducing the
number of flights required and the frequency of significantly
suboptimal flights. The metalearner monitors the quality of its
own output in order to ensure that its recommendations are
used only when they are likely to be beneficial. We find that
allowing the ferry aircraft to double its range can reduce sensor
radio transmission energy by 60% or better, depending on the
accuracy of the aircraft’s information about sensor locations.

Keywords-Sensor networks; data ferries; energy optimisation;
reinforcement learning; metalearning

I. INTRODUCTION

We consider the problem of collecting data from widespread
energy-limited stationary data sources such as ground-based
sensors. Our approach uses a fixed-wing unmanned aircraft
(UA) to fly over the sensors and gather the data via a wireless
link [1]. We assume that the UA has a known range limit
and can be recharged/refuelled at a base station, and that the
sensors may continuously generate data over long periods,
so that the UA needs to ferry the data to a collection site
over repeated flights. The goal is to trade energy used by the
UA against energy saved by the sensor nodes. The system is
difficult to model, so the challenge is to develop a model-free
approach that can quickly learn to minimise the sensors’ radio
transmission energy subject to the UA’s range constraints.

The problem may be subdivided into the following pieces:
Aircraft trajectory optimisation seeks to discover a flight path
over the sensor nodes (a so-called tour) that minimises some
mission cost. We decompose this piece as follows:

● Tour Design decides in what order to visit sensor nodes
of known location, or establishes a search pattern when
the locations are unknown.

● Trajectory Optimisation finds a sequence of waypoints
the UA should follow in order to visit the sensor nodes.

● Vehicle Control translates the waypoints into control
surface and engine commands.

Radio energy optimisation consists of the following:

● Radio Design chooses radio hardware and protocols to
support high-efficiency communication.

● Power Management varies the transmission power of
nodes’ radios during interaction with the ferry aircraft.

This paper focuses on the Aircraft Trajectory Optimisation
and Radio Power Management layers. We assume that the
tour is given and that the nodes’ locations are known only
approximately as when, for example, the sensors have been
deployed from an aircraft. Vehicle control to track a set of
waypoints requires an autopilot, whose behaviour is a complex
function of the waypoints, weather, aircraft dynamics, and the
control models within the autopilot. Similarly, communication
system performance is a complex function of the radio pro-
tocols, antenna patterns, noise, and interference. We assume
autopilot and communication systems are black boxes whose
specific functionality is unknown to the upper layers. Only
aggregate performance of the ferry system is reported to the
learner.

In [2], we examined model-free minimisation of UA tra-
jectory length. Here we extend the technique: since network
lifetime or maintenance costs may depend on the energy
reserves of the sensor nodes, we seek to minimise their
transmission energy cost per bit.

Data ferries can be highly effective for reducing radio
energy requirements. Jun et al. [3] compare ferry-assisted
networks with hopping networks in simulation and finds that
a ferry can reduce node energy consumption by up to 95%
(further gains would have been possible with a broader config-
uration space). Tekdas et al. [4] reach a similar conclusion on
a real toy network in which wheeled robots represent ferries.
Anastasi et al. [5] consider the total energy requirement per
message including overhead associated with turning a node’s
radio on in order to search for a fixed-trajectory ferry. Ma
and Yang [6] optimise the lifetime of nodes by choosing
between multi-hop node-to-node routing and changing the
ferry’s route and speed. Optimal solutions under the trade-
off between energy use and latency have been examined for
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a fixed ferry trajectory [7], and adaptively with a known
radio model and simple flight dynamics [8]. In [9], a node
learns whether to transmit to the ferry or wait depending on
the anticipated trajectory; range affects transmission power.
Anastasi et al. [10] review techniques for energy minimisation
for both ferried and general sensor networks.

Past work on ferried networks has made various assump-
tions about ferry and communication system dynamics, which
we broadly categorise as follows. In Visit models, the ferry
exchanges all data upon visiting a node [11]–[14]. Communi-
cation radius models exchange all data instantaneously below
a certain range [4], [6], [15]–[18]. A learning variant to this
model is found in [19]: planning assumes a communication
radius, but the ferry also exchanges data opportunistically,
possibly allowing improvements to the trajectory. Variable rate
models base rate on communication range [20], [21]. Stachura
et al. [22] assume probabilistic packet loss based on distance,
achieving the same effect. Mobile nodes are treated in [23],
which uses a model of a UA equipped with a beamforming
antenna to plan trajectories that maximise the signal-to-noise
ratio (SNR) to each node.

Models are necessarily approximate, but inaccuracies can
lead to poor performance in the field. The difficulty of
generating and updating sufficiently accurate models under
possibly changing conditions motivates our question: can a
sensor network system simultaneously learn to optimise both
the aircraft’s flight path and the sensors’ radio policies, in
a reasonable time, directly on a radio field? The goal is
to provide a UA with approximate information about the
geometry of a sensor network, and to have it improve its per-
formance rapidly and autonomously. We focus on minimising
the number of flight tours required to get a good solution,
since computational costs are comparatively minor.

Our contributions are as follows:
● We demonstrate the feasibility of a reinforcement learning

approach for rapid discovery of energy-saving network
policies that trade UA flight time for sensor energy. The
policies are learned without a system model and despite
potentially inaccurate sensor node locations, unknown
radio antenna patterns, and ignorance of the internals of
the autopilot.

● We introduce a reinforcement metalearner that learns to
speed up and stabilise the performance of the learner, and
transfers acquired knowledge about the policy optimisa-
tion process to unseen problems.

● A poorly trained metalearner may degrade the learner’s
performance, and should not be allowed to influence
learning. We introduce a method of monitoring the per-
formance of the metalearner without allowing it to affect
network behaviour before it has been trained sufficiently.

● We show our two independent optimisers—waypoint lo-
cation and transmission power policy—can operate simul-
taneously on the same sampling flights.

Our learning framework quickly produces trajectories that
exploit the limits of ferry endurance. For example, when the
allowable flight length is twice that of a handcoded reference

trajectory and accurate sensor location information is available,
the system learns to reduce sensor communication energy
by roughly 60% after a few dozen flights, and when the
sensor location information is approximate, the learners do
even better. More important than this specific result is the
development of a general technique that allows data-ferry
networks to efficiently optimise their performance in situ.

Section II describes our radio model. Section III describes
how our simulated autopilot control policies interpret way-
points. Section IV reviews the learning algorithm we use and
describes how we apply it to our sensor energy optimisation
problem. In Section V, we develop our metalearner. Section VI
presents our results. Section VII concludes.

II. RADIO ENVIRONMENT

Our goal is to evaluate the use of model-free optimisation
in a complex, unknown radio environment. We introduce a
radio model that incorporates several complicating factors that
are rarely considered: variable-rate transmission, point noise
sources, and directional antennas. This model extends that
introduced in our previous work [2] only by giving the nodes
dipole antennas.

The signal to noise ratio at node a from node b is given by

SNRab =
P (a, b)

N +∑i P (a,ni)
(1)

P (a, b) is the power received by node a from node b, N
is background noise from electronics and environment, and
ni are noise sources. The power between a and b is usually
computed as

P (a, b) =
P0,ad

ε
0

∣Xa −Xb∣ε
(2)

for reference transmit power P0,a, reference distance d0 = 1,
distance between transmitter and receiver ∣Xa−Xb∣, and propa-
gation decay ε. However, antenna shape and radio interactions
with nearby objects make most antennas directional, so the ori-
entations of the antennas affect power. We model the aircraft’s
antenna as a short dipole with gain 1.5 = 1.76 dBi oriented
on the dorsal-ventral axis of the aircraft, yielding a toroidal
antenna pattern. We model the nodes’ fields similarly with
random fixed orientations, so we adjust the power computation
in (2) to:

P ′(a, b) = sin2(ξab) sin2(ξba)P (a, b) (3)

where ξxy is the angle between antenna x’s pole and the di-
rection to y. This depends on the vector between the UA’s and
node’s positions (∈ R3), the aircraft’s orientation (∈ R3), and
the transmitter’s orientation, although the latter is assumed not
to change. Here we consider only constant-altitude trajectories.

In order to evaluate (3), we require the UA’s position and
orientation. A full dynamical simulation of the aircraft is
unnecessarily complex for our purposes, so we assume that
course and heading φ are the same (yaw = 0), pitch = 0, and
roll ψ = π

2
tanh2 9φ, which varies between 0 for a straight

course and ±54○ for our maximum turning rate of 9φ ≃ 0.347
rad/s (i.e. the UA flies a complete circle in 20s).
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We use the Shannon-Hartley law [24] to compute the data
transmission rate between transmitter a and receiver b:

Rab = β log2(1 + SNRab) (4)

This assumes that data rate varies continuously. The hardware
may use discrete rates that are chosen according to current
SNR conditions, but [21] indicates that the difference in
trajectories and performance outcomes between continuously
variable and the discrete rates of 802.11g may be negligible
for this type of problem.

This model ignores many characteristics of a real radio
environment such as occlusion, reflection, higher-order di-
rectionality, and multipath propagation. Moreover, we do not
simulate obvious protocol modifications that would allow other
sensor nodes to cease transmission and thereby reduce interfer-
ence with the active node. However, in part due to the latter
omission, the model produces fields that have irregularities
similar to those that occur in real radio environments, and thus
it meets our aim of having a complex simulation environment
within which we can test whether the aircraft can learn in situ.

III. AUTOPILOTS

The aircraft is directed to follow some trajectory through
an autopilot control policy.

A. Reference autopilot control policy

The Reference autopilot is borrowed from [21] and does
not learn. It assumes that the aircraft has an estimate of the
locations of the sensor nodes (although these can be difficult
to discover [25]). While communicating only with the target
node the aircraft flies at constant speed v towards the tangent
of a circle of minimum turning radius about the node’s nominal
location, circles it at the maximum turning rate ω until D bytes
are received, and then proceeds to the next node. The result
is the Reference trajectory.

B. Learning autopilot control policy

The learning autopilot places a GPS waypoint at the as-
sumed location of each sensor node (we will assume that node
identities and approximate locations are known during tour
initialisation, although the assignment could instead occur on
the fly as nodes are discovered). The aircraft collects data from
any node opportunistically while flying towards the tangent of
a minimum-turning-radius circle about the waypoint, and then
if necessary circles the waypoint exchanging data only with
the assigned node until it has collected sufficient data. The
true node location and the waypoint location may differ; final
waypoint positions are learned as described next.

IV. LEARNING

Policy gradient reinforcement learning (PGRL) [26] consists
of a family of techniques for model-free optimisation of
control policies. Key elements are a policy gradient estimator,
a reward function, and a policy representation. We introduce
these by describing and applying the well-known “episodic
REINFORCE” estimator to our waypoint-placement problem,

and then introduce the more sophisticated radio transmission
power policy.

A. Policy Gradient Reinforcement Learning (PGRL)

A policy π(s, u; θ) = Pr(u∣s; θ) defines the probability of
choosing action u given state s under the policy parametrised
by θ ∈ Rn. The expected reward averaged over all states and
actions under a policy π(s, u; θ) is denoted J(π(s, u; θ)) or
abbreviated as J(θ). PGRL techniques are ways of estimating
the gradient of the expected reward: ĝθ = ∇̂θJ(θ).

Our task can be broken down into distinct “trials”, each
consisting of a complete execution of π(θ) over some bounded
time (e.g., the aircraft flying a complete tour τ ) and receiving
reward r at the end. During a trial, the policy defines a
probability distribution over the action chosen at any point.
Assume that the controller makes some finite number H of
decisions uk at times tk, k ∈ 1 . . .H during a trial; discretising
time in this manner makes it possible to compute the prob-
ability of a trajectory under a policy as the product of the
probabilities of each (independent) decision at each time tk.
So Pr(τ ∣θ) =∏H

k=1Pr(uk ∣sk; θ).
To optimise θ, we estimate the gradient using stochastic

optimisation’s “likelihood-ratio trick” [27] or reinforcement
learning’s “episodic REINFORCE” (eR) [26], [28] with non-
discounted reward. Each element ∇θi of the gradient is esti-
mated as:

ĝθi = ⟨(
H

∑
k=1
∇θi logPr(uk ∣sk; θ) − µ∑∇)(

H

∑
k=1

γtkrk − bi)⟩

(5)
where µ∑∇ is the mean over trials of the ∑∇θi terms, bi is
a “reward baseline” for element θi, computed as the inter-
trial weighted mean of rewards, using the per-trial weight
(∑H

k=0∇θi logPr(uk ∣sk; θ))
2

[26], and ⟨⋅⟩ is the average over
some number N of trajectories. The term µ∑∇ is the mean
over trials of the ∑∇θi terms; this term does not appear in
[26] but is included here in order to reduce the variance of
the “characteristic eligibility”; we found it to further improve
the gradient estimation process. We postpone discussion of the
temporal discount factor γ to §V-C; for now consider γ = 1.

Once a policy gradient estimate ĝθ = ∇̂θJ for episode e is
obtained, we take a step of some length α in that direction,

θe+1 = θe + α
ĝθ
∣ĝθ ∣

(6)

thus creating a new policy. The gradient estimation and update
may be repeated until a design requirement is met, until
convergence to a local maximum, or forever to track a time-
varying environment. The theoretical guarantee of convergence
to a locally optimal policy is only available if α decreases
over time. That guarantee is useful, but does not directly
apply to learners operating in a changing environment and
is unnecessary for our tasks.

B. Reward

The reward function (or its additive inverse, the cost func-
tion) expresses the desiderata of solutions as a scalar quantity.
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We seek the policy that leads to the lowest total transmission
power subject to a maximum desired tour length dmax, which
indicates that we are nearing the endurance limit of the aircraft.
We use the following:

r = −
⎛
⎝
max(0, d − dmax)% + ∑

j∈nodes
ϕj

H

∑
k=1

Pjk∆t
⎞
⎠

(7)

d is the current trajectory path length, dmax is the soft maxi-
mum range of the aircraft, % controls the severity of the soft
maximum distance penalty, Pjk is the transmission power of
node j at timestep k of length ∆t, and ϕj is a weighting for
the value of energy for node j. Note that d is not penalised
until the aircraft exceeds dmax.

The aircraft’s autopilot may be programmed to return to
base by some hard length constraint dhardmax > dmax, and a cost
for underrunning data-collection objectives could be included
in (7). This produces similar results in our simulations but
complicates our explanation.

C. Waypoint placement

We consider a sequence of nodes that need to be visited in
some order {a, b1, . . . , bn, c} that was determined by a higher-
level planner [13], [17]. The aircraft must fly a trajectory that
starts at a and ends at c and allows exchange of Dj bytes
of data with each of the n sensor nodes b1 to bn. Thus we
seek the path a → c that minimises (7). That sufficient data
are collected from each node is guaranteed by the autopilot
policies (§III).

Trajectory policies for the autopilot are implemented
as sequences of constant-altitude waypoints. So for m
waypoints, the waypoint policy’s parameter vector θ =
[x1 y1 x2 y2 . . . xm ym]T . In order to be used by (5) the
controller adds noise such that Pr(τ ∣θ) can be computed. In
a real system, actuator noise or autopilot error E can be used
for this purpose if ∇θ logPr(u +E ∣ θ) can be computed, but
in our simulations we simply add Gaussian noise directly to
the waypoint locations at the beginning of each tour:

u ∼ N (θ,Σ) (8)

∇θ logPr(u∣s; θ) =
1

2
(Σ−1 +Σ−1T ) (u − θ) (9)

D. Radio transmission power

The data-ferrying approach allows sensors to communicate
with distal base stations without the need for high-powered
radios, but the energy that nodes spend in communicating with
the ferry is still non-negligible [3], [4]. Recall the data rate
from Section II:

Rab = β log2(1 + SNRab) (10)

The derivative of rate
power

∇P
β

P
log2 (1 +

P

N
) = β

N P log(2) (1 + P
N
)
−
β log(1 + P

N
)

P 2 log(2)
(11)

is negative whenever

P

P +N
< log (P +N

N
) (12)

which is true except at P = 0. So while reducing power
results in a lower energy cost per bit, lower transmission rates
require longer trajectories. Given an externally defined trade-
off between ferry trajectory length and node energy savings,
when should a sensor transmit, and at what power?

The difficulty of predicting the SNR between transmitter
and aircraft again suggests reinforcement learning. We assume
that at each timestep a sensor can transmit with power P ∈
[0, Pmax], that it occasionally sends short probe packets at
P = Pmax, and that the aircraft’s radio can use this to measure
the current maximum SNR and provide instructions to the
node. These packets are too brief to transmit sensor data or
use much power, so we do not model them explicitly. Here,
too, the learning approach will silently optimise around such
quirks of real hardware.

The power policy is a learned function that controls the
power a node uses to transmit given a reported SNR, given
in dB. Our desired behaviour is to transmit at a target
power Ptarget ≤ Pmax whenever the probed SNR exceeds
some threshold RT . So, the policy has action u = P , state
s = SNRprobed, and is parametrised by θ = [Ptarget,RT ].
Reinforcement learning requires exploration noise, so at each
timestep the policy π draws the actual transmission power P
from a Gaussian (truncated on [0, Pmax]) whose mean is taken
from a sigmoid of height Ptarget:

π(s, u; θ) = Pr(u∣s; θ) (13)

∼ N (
Ptarget

1 + eφ(RT−s)
, σ) , truncated on [0, Pmax]

When s = RT , the mean transmit power is 50% of Ptarget,
going to 100% as s increases above RT and vice versa,
thus implementing the desired behaviour with exploration.
φ controls the sigmoid’s width, and σ controls Gaussian
exploration. For example, when Ptarget = Pmax and RT and σ
are small, the policy mimics the full-power Reference policy.

The policy’s derivatives are:

∇θ logπ(s, u; θ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u− Ptarget

1+eφ (RT −s)

σ2 (1+eφ (RT −s))

−
Ptarget φ eφ (RT −s) (u− Ptarget

1+eφ (RT −s)
)

σ2 (1+eφ (RT −s))
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(14)

Unlike the waypoint-placement policy, this one is closed-loop:
sensing packets detect SNR, which informs the choice of
action u (transmission power) at each timestep. Thus we use
the full loop-closing capabilities of the episodic REINFORCE
algorithm of §IV-A. This policy and the waypoint-placement
one run in parallel, using the same flights to estimate their
reward gradients.

As a concession to practicality, the power policy incorpo-
rates a failsafe mechanism: when the aircraft’s soft maximum
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Fig. 1. Energy reward landscape for an example single node, with fixed
waypoint position. As transmission power P and threshold SNR RT change,
energy savings may lead to greater reward up to a certain point. But the high
cost of exceeding the aircraft’s range constraint creates a steep “cliff” in the
reward landscape.

range has been exceeded, radio power is set to 100%, ensuring
that the UA does not become stuck in nearly infinite loops.

V. METALEARNING

Waypoint location optimisation is fairly straightforward [2].
However, our energy reward function (7) is highly nonlinear
with respect to the power policy parameters in the vicinity of
the optimal solution. Figure 1 shows a portion of the reward
landscape for trajectories looping a typical node. When RT is
small and P is near 1, the gradient is not difficult to estimate—
exploration noise will generally average over the ridges and
valleys. However, in the vicinity of the optimal solution (the
crest of the hill), there is a steep cliff: if RT becomes too
high or P becomes too low and the aircraft must remain
near the sensor for a long time in order to collect all the
data, which activates the aggressive length-overrun term of
the reward function.

Conventional PGRL repeatedly estimates the reward gradi-
ent near the current policy and takes a hillclimbing step. Near
the optimum, hillclimbing updates can result in the learner
taking a step off the cliff, or “cliff-jumping”. Furthermore, the
cliff contains local regions in which a problematic reverse-
sloped ledge structure is apparent—it is possible for a local
gradient estimate to suggest a step further off the cliff. Con-
fidence regions can mitigate this problem, but they generally
fail to re-use information acquired during past steps (but see
[29] for a counterexample). The problematic structure in the
reward landscape motivated the development of a technique
to encode knowledge of the process of optimising on reward
landscapes like ours.

Consider the intuition: when a trial leads to an overly long
trajectory, it is generally helpful to increase power or allow
transmission at lower SNR. Conversely, for a trajectory that

does not use the aircraft’s full range node energy can be
reduced by using lower power. The PGRL gradient estimation
finds policy updates that, on average, tend to obey these
heuristics, but the microstructure and the abrupt cliff near the
global optimum frequently lead to poor updates. Our goal in
developing a metalearner is to give the UA the ability to use
experience with past problems to improve learning speed and
robustness on new problems and automatically capture such
heuristics. We investigate the following questions:

● Can a metapolicy that encodes knowledge about optimis-
ing policies in this domain be learned through experience?

● Can such a metapolicy transfer knowledge between prob-
lems?

● Can we monitor the quality of the metapolicy’s recom-
mendations in order to prevent a poor metapolicy from
adversely affecting the optimisation process?

● Can the metapolicy be used to speed or stabilise the
learning of energy-saving policies for sensor networks?

A. Metapolicy

Our energy “metapolicy” examines each trajectory and
produces a guess as to the best update, ∆θ, to the base power
policy’s parameters θ = [Ptarget,RT ]. For each element θi of
θ, we use a simple neural network, a so-called single-layer
perceptron (see [30]) with one input—the fraction of allowed
aircraft range used—and two outputs—suggested changes to
the base policy’s two parameters:

sµ = d

dmax
(15)

uµ = ∆θi (16)
πµ(sµ, uµ;Θi) = Pr(uµ∣sµ;Θ) (17)

= N (tanh (Θ1,isµ +Θ2,i) , σµ)

∇Θi logπ(sµ, uµ;Θ) = [ sµZ
Z
] (18)

where Z = (19)

σ−2µ (uµ − tanh (sµΘ1,i +Θ2,i)) (1 − tanh(sµΘ1,i +Θ2,i)2)

If the perceptual space is enriched with other inputs or requires
a richer representation, other models can be used. Note,
however, that more complex models with more parameters
increases the number of runs necessary for learning a good
metapolicy.

B. Metareward

The metalearner’s objective is to learn a metapolicy that
takes as input a policy operating on a trajectory, and outputs
an “action” consisting of an improvement of the base policy’s
parameters. So as our metareward rµ we choose the reward
improvement between trials:

rµ = ri − ri−1 (20)

where ri is the base reward received on trajectory i.
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C. Time-discounted credit

The metalearner receives µ-reward (20) after every µ-action,
and each µ-action also—to a lesser extent—affects future µ-
states and thus potential µ-rewards, so it would be appropriate
to use a time-discounted eligibility (γ < 1 in (5)). But further
improvements are to be gained by using a more sophisticated
gradient estimator, which we introduce here:

1) G(PO)MDP: (Here we drop the µ-prefix, as this section
describes a well-known general technique.) In reinforcement
learning, when an action u is taken at time tu and a reward r
is received at future time tr, the action is assigned credit for
the reward based on an estimate of how important the action
was in producing the reward. In eR (§IV-A), greater weight
may be given to rewards received early in the episode than on
those received later, modulated by the term γtk , 0 < γ ≤ 1 in
(5). G(PO)MDP [31] uses the separation in time between tu
and tr to assign credit in proportion to γtr−tu , tu < tr. We
use G(PO)MDP as described in [26]. The gradient estimator
is related to (5):

ĝθi = ⟨
H

∑
p=0
(

p

∑
k=0
∇θi logPr(uk ∣sk; θ)) (γtkrk − bi)⟩ (21)

We use the optimal baseline bi shown in [26].
2) Sliding trajectory windows: As presented above, (21)

learns from rewards received early in the trajectory but not
later, since γt drives the value of later rewards to 0. Therefore
we break a trajectory into sequences of ⟨sµ, aµ, rµ⟩, with
one sequence starting at each timestep, and present those as
separate trajectories to (21). Sequence length n is chosen such
that γn ≥ 0.05 > γn+1: the terms beyond this increase compu-
tational burden without significantly improving accuracy.

D. PGRL+µ: Combining gradient and metapolicy updates

Changes to the base policy’s θ can come from the base
PGRL estimator (§IV-D) after every epoch, or from the
metapolicy (17) via uµ after every trial. When the base PGRL
estimator produces an estimate, we use it to adjust θ. But
we can also pretend that it came from πµ, and use it as uµ
for the computation of ∇θ logπ(sµ, uµ;Θ). Thus both the
PGRL and the πµ updates and metarewards can be used to
form the µ-trajectory for (21).1 Although tuning can improve
performance, for expository simplicity we set the magnitudes
of all updates to be the same.

E. Autodetect metalearner: Monitoring metapolicy quality

Early in training, the metalearner can give poor advice,
leading to high-cost policies. If ample non-mission training
time is allocated, then such runs do not pose a problem. In our
single-node example, roughly 50 runs of 100 trials each were
required before the metapolicy reliably improved upon PGRL.
Our hope is that any knowledge encoded by the metalearner
can be transferred between tasks and that therefore metapolicy

1While the base gradient update provides a legitimate value for uµ and
hence ∇θ logπ(sµ, uµ;Θ), it means that the forward roll-out is off-policy.
This is theoretically interesting, but in practice, for our application, not
problematic.

training time for any actual scenario may be low, but here we
show how the metalearner can be trained, tuned, and tested
without significantly interfering with the performance of a live
network.

After each epoch, PGRL adjusts θ by some amount ∆∇θ,
and the following trial yields a µ-reward (20). If instead it
had been the metalearner that had recommended the same
update ∆µθ = ∆∇θ, the same reward (on average) would
have been observed. Moreover, when the two recommend
“opposite” changes to θ, it is more often the case than not
that the reward earned by the metalearner would at least have
had the opposite sign to that actually seen. Thus it is possible
to make an educated guess as to whether the metapolicy’s
output would have led to an improvement in the base policy,
without actually making the suggested change.

We define the update disagreement δ as the unsigned angle
between ∆∇θ and ∆µθ. We estimate metapolicy quality by
tracking the average disagreement between base policy and
metapolicy updates. For each policy update, we score the
comparison between the metapolicy to PGRL as follows:

∇ good: δ ≤ π
2

1
rµ > τ δ ≥ 3π

2
-1

∇ bad: δ ≤ π
2

-1
rµ < −τ δ ≥ 3π

2
1

Our estimate of metapolicy quality is the mean of the trial-
by-trial scores during a run, which is roughly equivalent to
the negative of the slope of a linear regression of metareward
vs. disagreement, but offers better numerical properties: the
result is bounded, which eliminates the effect of outliers
due to unusual exploration noise; it discards the ambiguous
cases in which the PGRL and δ differ by around π

2
; and

it produces a valid result when the metapolicy and policy
[dis]agree perfectly. τ was roughly hand-tuned to yield a
positive metareward quality at, on average, the same time
as the standard PGRL+µ metalearner started to outperform
PGRL, yielding τ = 1000. We perform exponential smoothing
(base 0.9) across runs on the result in order to use more
available information.

VI. RESULTS

We generate random data-ferrying problems each of which
consists of a random position and orientation for each sensor.
At each timestep the aircraft flies some distance towards the
next waypoint, measures the current SNRs via probe packets,
and requests some data from a node at the power indicated by
the power policy. A trial is a single complete flight over the
radio field. An epoch is a small number of trials, after which
we estimate the policy gradients and update the policies. A run
is an attempt to optimise radio power and waypoint position
policies for a given problem, and here consists of 100 trials.
For each problem we generate a new random radio field and
re-initialise the policies, but not the metapolicies. Although
it is possible to learn as soon as we have enough trials to
produce a gradient estimate, for simplicity we instead hold
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Fig. 2. Learning to minimise energy use for the single-node case. Left:
sample trajectory plotted in space, superimposed over reference rate contours
that show what the aircraft would see in flat level flight (not what it actually
sees as it steers and banks). The aircraft starts at ⋆; the waypoint is at
. Circle
size is proportional to data rate. Right: energy use for the three algorithms
for the current experiment, averaged over the last few runs, which measures
the performance gains possible from a well-trained metalearner.

the metapolicy’s parameters Θ constant during each run. An
experiment is a set of 100 runs during which the metalearners
have the opportunity to adapt. For each experiment we re-
initialise the metapolicy parameters. To generate the graphs,
we average over 50 experiments.

We will compare the metalearners to two non-learning
approaches and to PGRL:

Reference is the non-learning autopilot defined in §III-A.
Half-power learns waypoint placement as described in

§IV-C, but instead of learning the power policy, sets P = Pmax
2

.
This is guaranteed to increase trajectory length by a factor ≤ 2.

PGRL uses the Learning autopilot and the conventional
PGRL approach described in §IV-D, without the metalearner.

Parameters: The aircraft flies at speed v = 1 at altitude
z = 3. The maximum turning rate of ω = 20○/s yields a turning
radius r = v

ω
≈ 2.9. Radios use Pmax = 150 and bandwidth

β = 1, and the background noise N = 2. Each sensor’s data
requirement req = 20. These parameters do not qualitatively
affect the results, and can be replaced by appropriate values
for any given hardware. For waypoint placement the learning
rate α = 0.5 and the exploration parameter σ = 1. The
power policy uses α = 0.3, σ = 0.2, φ = 1, ϕj = 1∀j.
Policy gradient estimates for waypoint placement and energy
are computed and applied every 4 trials (one epoch) for
reasons described in [2]. Metapolicy gradient estimates are
computed and applied after each run as described in §V-C.
The metalearner’s temporal reward discount γ = 0.25.

A. Learning from base gradient, Metalearning

Figure 2 shows the energy use of our learners on a single
node over the course of 100 trials. The behaviour of the
metalearners’ early learning is illustrated by performance plots
over runs 1–20. We contrast this with the performance of well-
trained networks over runs 80–100. All performance graphs
show log2 of the ratio of performance compared to Reference.
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Fig. 3. Further learning details for the 1-node case. Left: trajectory length.
Right: aggregate cost vs. trials relative to Reference (averaged over the last
few runs of all experiments).

In our scenarios, Half-power (or “P=0.5”) consistently
reduces sensor energy requirements to about 2−0.65 ≃ 65%
of Reference in exchange for a 10% length increase, although
this varies with data requirement—for high requirements (e.g.,
req > 100) Half-power reduces energy use by only 20% with
a 60% increase in trajectory length. Despite the fixed power
policy, energy use decreases slightly over time as waypoint
positions are optimised.

Figure 3 shows how the learners’ behaviours change during
each run as the waypoint and energy policies are refined. After
20 or so trials, PGRL performs very well (Figure 3, Cost), but
as it nears the optimal solution it falls into a cycle of discover-
ing and rediscovering the cliff when random exploration steps
take trajectory length over dmax, resulting in frequent high-
cost trajectories. It still outperforms Reference and untrained
(runs 1–20) PGRL+µ, but Half-power is superior. In contrast,
the trained (runs 80–100) metalearners outperform PGRL both
early in each problem (the first few trials) during which the
metapolicies rapidly push the policies towards lower energy
use, and later, where they almost completely eliminate cliff-
jumping.

The higher-level time-varying behaviour shown by the met-
alearners can be seen in the difference between runs 1–20 and
80–100, and more explicitly in Figure 4. As the metalearners
observe the learners solving new problems, they refine their
µ−policies, yielding performance that improves from run to
run. Figures 2 and 3 show snapshots of per-trial performance
averaged over runs 1–20 and 80–100, and the improvement
of average per-trial performance over runs can be seen in
Figure 4.

PGRL+µ usually outperforms the non-meta approaches by
a significant margin after about 30 runs, allowing discovery of
policies that use only 40% of the sensor energy of Reference
and 65% that of Half-power, while seldom exceeding the
aircraft’s soft range limit. Perhaps surprisingly, even with such
a simple representation we found that handcoding a metapolicy
that outperforms the learned one was not easy. However,
Figure 4 shows that early in metapolicy training, especially
for the first 20 runs, PGRL+µ performs poorly, producing
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Fig. 4. Metalearning on 1 node. Top left: Trained (trials 80–100) performance
of the algorithms over runs, during which the metalearners improve with
experience. Right: The estimate of the quality of the metalearner’s output
through time, both for PGRL+µ, which does not use the information, and for
Autodetect, which does. Middle: representations of the metapolicies’ average
actions uµ = ∆θ vs. the observation of the previous trajectory, “dist ratio”
sµ = d

dmax
, shown early in µ−training (run 8) and late (run 100). Bottom:

Average performance of the algorithms relative to Reference at key points
during learning and metatraining. Shown are the values measured across the
runs indicated on the horizontal axis for left: just the first 20 trials and right:
(same legend) the last 21 trials in each run. Error bars show problem-to-
problem standard deviation 1σ of solution quality compared to Reference.

trajectories that are on average no better than Reference and
are frequently far worse.

This problem is alleviated by Autodetect: in early runs,
before its metapolicy has been well-trained, the quality mea-
sure often prevents the metapolicy from being used. As can
be seen from the πµ quality graph in Figure 4, the quality
measure is on average above 0 (the threshold for use of the
metapolicy’s output), but in individual experiments it drops
below 0 at the appropriate times and thus disables the use
of the metapolicy. The Cost vs. µ−experience and bar graphs
show the consequence: Autodetect’s performance tracks that
of PGRL early in training, and as the metalearner’s experience
with different problems in the domain grows, it surpasses
PGRL and performs as well as PGRL+µ.
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Fig. 5. Compensating for poorly chosen learning rates: PGRL vs. Autodetect
with αw = 0.97trial and energy policy learning rate αe = 1 — a value only
twice one that performs well. (10-experiment average)

The bar graphs in Figure 4 break down performance over
the two learning timescales in order to show how quickly
learning progresses without (runs 1–10) and with (runs 80–
100) a well-trained metalearner. Performance over trials 1–
20 shows initial learning speed, while performance over trials
80–100 shows what may be expected as the network matures.
This further emphasises Autodetect’s ability to nearly match
the performance of the better of PGRL or PGRL+µ.

Another interesting feature of the Autodetect learner, visible
in Figure 4’s πµ quality graph, is that the measured metapolicy
quality progresses differently from that of PGRL+µ: the
quality estimate stays higher initially, but begins to track that
of PGRL+µ around run 40. The two metapolicies’ parameters
evolve differently due to the differences in training: while
PGRL+µ always sees meta-actions from both the metapolicy
and PGRL, Autodetect sees only the latter until it has proven
itself, thus obtaining fewer training examples drawn from a
different distribution. Raising Autodetect’s threshold makes it
less likely that the metapolicy gives bad advice to the learner,
but reduces µ−learning speed. The effect that this has on our
metapolicy quality estimate through time is intriguing, but we
leave investigation as future work.

Much of the training time shown in Figure 4 may be
required only once in a “lifetime” due to the transferability of
the trained metapolicies. Once their metapolicies are trained,
the metalearners facilitate the discovery of a good policy
extremely rapidly—after only a few trials. They aggressively
push policy changes that they have found in the past result in
higher performance: quickly reducing energy use until nearing
the UA’s range limit and then backing off without requiring
further exploration of the cliff’s high-cost trajectories.

B. Sensitivity to learning rates

The base PGRL learner can achieve stable results if the
learning step sizes such as α in (6) are chosen carefully. If
learning rates are small, learning is slow, but a larger values
exacerbate the learner’s tendency to cliff-jump. Therefore it is
typical in reinforcement learning to have α decrease over the
course of a run—for example α = α0x

e, x < 1 for the update
after epoch e. Ideally α → 0 as the policy nears the optimal.
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For our task, this both provides a convergence guarantee for
the hillclimber and reduces cliff-jumping, but it requires hand-
tuning of x and α0. Furthermore it eliminates the system’s
ability to adapt to a slowly changing environment; e.g., foliage
growth or physically shifted sensors.

A poor choice of αe interferes with the learners’ ability
to remain near the optimum. Here we have set αe = 1. We
set the waypoint-placement learning rate αw = 0.97trial in
order to allow both policies to converge more quickly, which
is unnecessary in our other tests but helpful here. Figure 5
shows results: while αe = 0.3 (as shown in §VI-A) produces
reasonable results, αe = 1 results in the exploration of many
high-cost trajectories. PGRL performs extremely poorly, but
PGRL+µ learns to anticipate the large jumps that result from
the poor choice of αe, resulting in costs worse than with a
carefully chosen αe but still significantly better than PGRL.
The ability of the metalearner to stabilise learners with less
hand-tuning may be a great asset in real-world systems.

C. Knowledge transfer with metapolicy initialisation

While the learned energy and waypoint policies are highly
problem-specific, the metapolicy is more broadly applicable.
This is shown in §VI-A by the gains on new problems after
training on previous ones. But can a metapolicy trained for
our single-node scenario be used to accelerate policy learning
for problems drawn from a broader domain? The question of
metapolicy transferability motivates us to modify our problem
space as follows:
● For each problem, we place 5 sensor nodes randomly on

a 40 × 40 field. This yields a great variety of radio field
shapes since the nodes interfere with each other.

● For each problem, the data requirement for each node is
drawn randomly from [10 . . .30].

● We have corrupted the aircraft’s information about the
nodes’ locations with Gaussian noise with σ = 3.

Figure 6 shows training results: for “Transfer” the metapol-
icy is set to the final Autodetect value learned during the
generation of Figures 2–4:

Θ = [ 1.70 −1.16
−1.61 1.34

] (22)

Figure 6 shows the results in the extended domain: the
earlier metapolicy achieves better than a 60% reduction in
sensor radio transmission energy over Reference, and again
offering speed and stability improvements over non-meta
PGRL. The ability of single-node metapolicies to generalise to
a broader problem configuration space is encouraging, but it is
not perfect. For example, if we allow node data requirements to
be drawn randomly in [1 . . .10] the metapolicy is not cautious
enough in its recommendations for policy updates due to the
short contact times. Over multiple runs the metapolicy does
continue to adapt based on policy learning from the new
problems, but due to space constraints we do not study multi-
node metapolicy learning here.

We show progress to 200 trials for this scenario. Figure 6
shows that for Transfer this is overkill, but PGRL has not yet

converged. Performance gains in this scenario, even with a
repurposed metapolicy, are slightly greater than in our first ex-
ample, with Transfer achieving a 62% savings and even Half-
power effecting a 45% savings. This difference is primarily
due to the sensor position misinformation: Reference does not
understand the error and so its performance degrades sharply
as the information is compromised, whereas the learners—
even Half-power—modify their trajectories to work around the
misinformation.

VII. CONCLUSION AND FUTURE WORK

We have demonstrated the feasibility of a reinforcement
learning approach for autonomous discovery of energy-saving
behaviours for sensor networks. With a soft trajectory length
limit of twice a handcoded reference and a single sensor, the
UA tended to fly 75% further than under Reference while
sensors reduced communication energy by 60%. When the
UA’s knowledge of sensor positions is degraded by even a
modest amount, the advantage of the learning approaches
increases rapidly.

The UA does not model the environment, but learns directly
from experience, saving the costs of locating the sensors and
building system models, and eliminating the effects of mod-
elling errors. We use a trajectory encoding that is well-suited
to the task of interfacing between learning algorithms and
proprietary autopilots. Additionally, we concurrently optimise
both power and waypoint-placement policies.

Our reinforcement metalearner uses experience with the
process of learning data-ferrying policies in order to accelerate
and stabilise a conventional PGRL system, and transfers
acquired knowledge about the policy-optimisation process to
a range of unseen problems. This furnishes a new mechanism
for approaching the global optimum of an unseen data-ferrying
scenario extremely quickly while sampling few high-cost
trajectories.

Much work remains to be done. For example, the meta-
learner reduces the necessity of hand-tuning the system by
compensating for poor choice of parameters. A poorly chosen
exploration rate frequently produces trajectories that greatly
exceed the aircraft’s range limit. Preliminary results show that
as the metalearner gains experience with the base optimiser
it learns to compensate, modulating the problematic policy
updates and keeping trajectory costs lower, but a full investi-
gation into the range and limits of this capability, both in the
data-ferrying domain and for general model-free optimisation,
remains to be done. Also, we have examined only learning
in the vicinity of a few nodes. While preliminary results on
the transfer of this metaknowledge to multi-node problems
is promising, efficiently scaling the metalearning mechanism
to sensor networks of many nodes is important future work.
Finally, a more detailed characterisation of when and to
what extent the metaknowledge is transferable will be key to
understanding the broader applicability of the technique.
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