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Abstract—Collaborative sensor relocation has potential to 

improve Mobile Sensor Network (MSN) performance while 

prolonging its life span by conserving sensor battery energy.  

However, lack of centralized control, variety of performance 

criteria, numerous uncertainties, and a possibility of sensor 

trapping in sub-optimal positions make collaborative sensor 

relocation an exceedingly challenging problem.  Assuming that 

the sensing and communication operations are optimized much 

faster than sensors relocate, this paper proposes a sensor 

relocation strategy based on iterations of a Distributed 

Subgradient Projection Algorithm (DSPA).  While maintaining 

inherently distributed nature of the computations, DSPA-based 

sensor relocation is capable of aligning sensor mobility with the 

overall MSN goals.  This approach also accounts for a possibility 

of abrupt topology changes as sensors relocate. 

Keywords—mobile sensor network, controlled mobility, 

distributed subgradient algorithm. 

I. INTRODUCTION 

Mobile Sensor Networks (MSN) are envisioned to offer a 

novel set of applications in detecting, monitoring and tracking 

people, targets or events in pervasive computing environments 

[1].  Locations of sensors in a MSN affect both their ability to 

acquire information on the intended target(s) and event(s) as 

well as their ability to communicate this information to the 

intended recipient(s).  The information acquisition needs, 

which require proximity to the target(s), often compete with 

the communication needs, which require proximity to the 

recipient(s) of the sensor information.  Inherent traits of MSN 

such as lack of centralized control, variety of performance 

criteria, operational uncertainties, and possibilities of MSN 

topology change and sensor trapping in suboptimal locations 

make MSN optimization an exceedingly challenging problem.   

Our previous publications [2]-[4] proposed aligning sensor 

mobility with the overall MSN goals by assuming that (a) 

sensing and communication are optimized much faster than 

sensors relocation and (b) sensor relocations are governed by 

cost/benefit analysis where “cost” of sensor battery energy 

expenditure for sensor relocation is weighted against projected 

performance gains due to new sensor locations.  This approach 

is vastly superior to sensor mobility control based on 

phenomenologically defined potential fields and the 

corresponding virtual forces [5].  This is because dissipation of 

the non-renewable sensor battery energy, asymmetric virtual 

forces due to asymmetric wireless channels, and abrupt 

changes in the optimal MSN topology with sensor relocation 

are inconsistent with the existence of global potential field.   

Practicality of the framework proposed in [2]-[3] depends 

on overcoming numerous challenges with (inherently) 

distributed nature of MSN being the most critical.  An 

intelligent sensor may have direct knowledge of its current life 

expectancy determined by its battery energy level and 

depletion rate affected by the surrounding terrain as well as 

sensor information acquisition and transmission capabilities.  

However, a sensor typically has no direct knowledge of the 

effect of its relocation on the rest of the MSN. 

This paper suggests that the class of Distributed 

Subgradient Projection Algorithms (DSPA) [6]-[7] has 

potential for addressing major challenges of controlled sensor 

mobility in MSN. Subgradient-based iterations allows for 

dynamic network topology optimization. Projection of the 

algorithm iterations onto the set of feasible sensor locations 

ensures sensor information acquisition and communication 

needs. Most importantly communication overhead reducing 

techniques allow for addressing the inherently distributed 

nature of MSN.  While more conventional pricing-based 

algorithms effectively reduce the communication overhead in 

some particular situations, recently emerged consensus-based 

algorithms have low communication overhead in a more 

general setting.   

Consensus-based algorithms differ in their approach to 

achieving consensus.  In the first type [6] each agent maintains 

and iterates its own sequence, and consensus is achieved by 

communicating this sequence to the neighboring nodes, who 

incorporate neighbors’ sequences into their own sequences 

through averaging.  In the second type [7] all agents update a 

single sequence and consensus is achieved by passing the 

sequence instances to each other.  In this paper, we 

concentrate on the first type since updating and passing 

instances of a single sequence by agents to each other exposes 

algorithm to the risk of manipulation by malicious agents 

while averaging with judiciously chosen weights can mitigate 

this risk. Comparison and suitability of a particular consensus-

based algorithm for controlling sensor mobility is left for a 

future study. 

A major difficulty with controlling sensor relocation is the 

possibility of sensor trapping in suboptimal locations (e.g. in 

non-flat terrain) due to typical non-convexity of the 

performance criterion [8].  A possible approach to overcoming 
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this difficulty is allowing occasional random sensor 

relocations to escape the potential traps in the spirit of 

simulated annealing optimization algorithm [9]-[10].  One of 

the advantages of the proposed approach in this paper is in its 

ability to incorporate such random moves in a distributed way. 

The rest of this paper is organized as follows.  Section II 

quantifies the effect of sensors positions on MSN 

performance; while the effect of sensors relocation in 

discussed in section III.    Section IV describes sensor 

relocation algorithms based on maximization of the 

corresponding performance gain.  Section V discusses initial 

simulation results showing benefits of cooperative sensor 

relocation for the case of a MSN tracking a single target on a 

flat terrain.  Finally, section VI briefly summarizes the 

proposed approach to controlled sensor mobility and outlines 

directions for future research. 

II. MSN PERFORMANCE 

We consider a Mobile Sensor Network (MSN) comprised 

of sensors/nodes },..,1{ Ss S , which acquire and 

communicate information to a single destination formally 

identified as node 0s .  The MSN topology is ),( LN  

with set of nodes N  and set of links L .  Here, we assume 

that our goal is to maximize the MSN life span, given the 

constraints on sensors ability to acquire and communicate 

sensor information at some low fixed rate and sensor battery 

energy availability.  Subsection A describes requirements on 

MSN ability to acquire and communicate information to the 

destination.  Subsection B quantifies effect of sensor locations 

on MSN performance.   

A. Sensing and Communication Requirements 

Requirements on sensor ability to acquire and 

communicate information can be incorporated into 

performance optimization either through penalty for the 

corresponding energy expenditure or directly in terms of 

feasible sensor locations.  In a wireless interference-limited 

network, capacity lc  of a link ),( jil  from node i  to node 

j  depends on the transmission power, channel condition, and 

node locations through the Signal-to-Interference Ratio: 

][
,),,(),( jinjikn njnkjijijij ppSIR ,             (1) 

where path gain ),( jiijij xx  depends on the locations of 

the link ),( ji ’s end-points ix  and jx , and the noise power 

)( jjj x  at the receiver located at jx .   

 Specific form of channel capacity )( ijijij SIRcc  as a 

function of ijSIR  depends on the modulation and coding 

schemes.  We assume a threshold-based channel model: 

cSIRc ll )(  if lSIR  and cSIRc ll )(  otherwise, 

where 0,c  are some constants.  We also assume that the 

interference from simultaneous transmissions by different 

sensors is negligible as compared to the noise at the receiver:  

         )(),(
,),,(),( jjinjikn jnnk xxxp ,                 (2) 

Thus, Signal-to-Interference Ratio on the link ),( ji  is a 

function of the transmission power on this link:  

                 )(),( jjiijij xxxpSIR .                             (3) 

For a threshold-based channel model the minimal transmission 

power for node s on an active link Ljsl ),(  is: 

             ),()(),( jsjsjjssj xxxxxp


.                       (4) 

The minimal total transmission power required for sensor s  to 

send information at low rate to nodes Lisi ),(:  is 

                

Lisi

jsjsjs xxxp
),(:

),()(


                        (5) 

where the set of nodes  active links L  determines the network 

topology.  In the case of free-space propagation:  

                           jiijij xx                                    (6) 

where ij  and  are positive constants, and ji xx  is the 

Euclidian distance between sensors i  and j  with coordinates 

ix  and jx  respectively. 

B. MSN Utility 

Following [8] we assume that sensor Ss  utility of 

preserving battery energy until moment T  can be quantified 

by utility function )( *

ss TTu  where 
*

sT  is the corresponding 

target. Monotonously increasing functions 0),( zzus  have 

an S-shape and steeply increases around 1z .  A convenient 

approximation for functions )(zus  is  

              ]1[)(
)1( saz

ss eAzu ,                            (7) 

where parameters 0, ss Aa  affect importance of conserving 

sensor battery energy as compared to other considerations, e.g. 

high information rates. At moment t , sensor s  remaining 

battery energy level is )(tEE ss  and the battery energy 

draining rate is )(tpp ss . Then, the projected battery 

energy depletion time is sss pEtT , and thus the 

corresponding utility is  

                ])([)( **

sssssss TpEtuTTu .                    (8) 

Given sensor locations ),( Sx sxs  and sensor 

battery energy levels ),( SE sEs , we quantify MSN 

performance by the aggregate utility:  

                   
s

ss EtwtW ),(),( xEx                             (9) 

where  

            
*

)(
),(

s

ss
sss

T

pEt
uEtw

x
x


                      (10) 
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For simplicity we further assume that power draining rates 

)(xss pp


 are only due to communication and thus are 

given by (5).  We also assume that requirements on sensor 

ability to acquire information are formalized directly in terms 

of sensor locations, e.g., with respect to the tracked target(s) or 

with respect to their ability to cover the area of interest. 

III. RELOCATION GAIN 

Subsection A quantifies cost/benefits of sensor relocations, 

where cost is associated with the energy expenditure on sensor 

relocations; and, potential benefits are associated with better 

information gathering (or transmission) due to the new sensor 

positions. Subsection B introduces subgradients of MSN 

utility and describes the effect of sensor relocations on the 

MSN performance. It also discusses communication overhead 

required for estimation of these subgradients.   

A. MSN Utility Gain 

Sensor Ss  relocation from point sx  to point 

ss xx  during time interval ),[ tt  results in the 

following gain in this sensor utility: 

     ),(),(),( ssssssss EtwEEtwxv xxx       (11) 

where function (.)sw  is given by (10), sE  is the energy 

expenditure on communication and sensor relocation, 

),( Sx ixx iisis is the vector of sensor positions 

after sensor s  relocation, and is  is the Kroneker symbol (i.e. 

1is  if si  and 0is  otherwise). 

Assuming a small , the communication energy can be 

approximated by )(xsp


, where communication power 

)(xsp


 is given by (5).  Estimation of relocation energy sE  is 

more complicated since this energy depends not only on the 

initial and final positions of sensor s  , but also on the entire 

relocation process.  Here, we assume that given sensor s  

initial ( sx ) and final positions ( ss xx ) respectively, the 

relocation process will take place in such a way that minimizes 

the relocation energy. Therefore, making sE  a function of the 

initial and final locations only (i.e. ),( ssss xxEE ).  In 

practice, this minimization is possible for sufficiently small 

step size  when one may assume that the sensor motion 

occurs on a straight line connecting points sx  and ss xx .   

Our assumptions above lead to the following 

approximation: 

          ),()(),( ssssss xxpxE Exx                  (12) 

Small sensor relocation from points ),( Sx sxs  to point 

),( Sxx sxx ss  results in the following gain in 

the aggregate utility (9): 

                     
s

ss xvV ),(),( xxx                            (13) 

A natural sensor relocation algorithm maximizes this gain (13) 

over x  subject to feasibility of the new sensor locations: 

                  ),(maxarg
:

*
xxx

xxx
V

X
                        (14) 

B. Subgradients of MSN Utility 

Assuming a fixed network topology ),( LN , gradient 

0),()(
ss xssxss xvg xx  characterizes the gain in 

sensor s  utility (10) resulting from small sensor s  relocation 

from point sx  to point ss xx : 

)15(),()( 0* sss xsssxsx

s

s

ss

s
ss xxp

p

E

pT

u
g Ex




Expression (15) accounts for change in sensor s  

communication power )(xsp


 and the energy expenditure of 

the relocation. Gradient )()( xx sxsi wg
i

 characterizes the 

gain in sensor s  utility (10) resulting from small sensor si  

relocation from point ix  to point ii xx : 

                ),(
2* issi

T

x

s

s

s

s
si xxp

p

E

T

u
g

i


                           (16) 

The change in sensor is  utility is due to change in sensor 

s  communication power ),( issi xxp


. 

Sensor Ss  relocation only affects neighboring 

sensors },),(:{ SS iLsiis , that directly send 

information to s .  Sensor Ss , on the other hand, is only 

affected by relocation of neighboring sensors 

},),(:{ SS iLsiis , that receive information directly 

from s .  For brevity, we further assume that all links are un-

directional, i.e., LisLsi ),(),( ; and thus, sensor s  

relocation directly affects only sensors ss

def

si SSS : 

0)(xisg  if si S . 

 Pricing-based cooperative sensor relocation algorithm, 

described in Subsection B, assumes that each sensor s  can 

estimate the subgradient  

                          

si

iss gg
S

xx )()(                                   (17) 

which quantifies the effect of this sensor relocation on the rest 

of the MSN.  However, except for some particular situations, 

estimation of the subgradient (17) by sensor s  is associated 

with high communication overhead.  Subsection C 

demonstrates how this communication overhead can be 

reduced with consensus-based algorithm, which requires 

sensor Ss  to estimate )(xsig  rather than )(xisg  

for si S  .  This is a much easier task since an intelligent 
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sensor s  can estimate )(xsig  by (a) measuring its remaining 

battery energy level sE  and communication powers )(xsip  

to the neighbors si S , (b) estimating its relocation energy 

),( sss xxE , and (c) estimating the positions of the 

neighboring nodes ),( si ix S .  

IV. COOPERATIVE SENSOR RELOCATION 

Subsection A proposes cooperative sensor relocation 

following iterations of subgradient projection algorithm for 

solving the optimization problem (13)-(14).  Subsection B 

proposes consensus-based cooperative sensor relocation, 

which mitigates high communication overhead. This is 

achieved by following iterations of the decentralized 

subgradient projection algorithm.  Subsection C suggests that 

combining decentralized subgradient projection algorithm 

with simulated annealing may result in avoiding traps on non-

flat terrains.  

A. Relocation by Performance Gain Maximization  

In the case when sensor Ss  is aware of the effect of its 

relocation on the entire MSN (as measured by (17)), the 

following relocation algorithm greedily maximizes the MSN 

performance gain.  At step k , given sensor positions 

),( )()(
Sx sx k

s

k
 and remaining sensor battery energy 

levels ),( )()(
SE sE k

s

k
, cross-layer network 

optimization produces the optimal network topology 

),( )()( kk LN .  At the next step 1k , each sensor 

Ss  is relocated following the subgradient (17): 

                  )]([ )()()()1( k

s

kk

sX

k

s gxPx x                    (18) 

where scalar 
)(k
 is the step size, and XP  denotes the 

Euclidean projection onto the set of feasible sensor locations 

X .  Then, given new sensor locations 

),( )1()1(
Sx sx k

s

k
 and remaining sensor battery energy 

levels ),( )1()1(
SE sE k

s

k
: 

)(),( )()()1()()()1( k

s

k

s

k

s

k

ss

k

s

k

s pxxxEE x


E ,    (19) 

cross-layer network optimization produces new optimal 

network topology ),( )1()1( kk LN .. 

 The main assumption that sensors Ss  are aware of the 

gradients (17) can be justified for the case of symmetric 

propagation matrix: jijijiij ;,; S , where 

),(),( jiijijji xxpxxp


.  In this case, if each sensor Si  

estimates the “pricing” for its battery energy 

)()( 2*

iiiii pTEu


 and propagates this price to its 

neighbors, then each sensor Ss  can directly estimate the 

effect of its relocation on the rest of the MSN as follows:   

                    )()()( xx sijiis gg .                              (20) 

B. Relocation by Building Consensus 

Assume that each sensor Ss  is aware of the impact of 

its own and neighbors si S  relocation on its performance as 

measured by )(xsig . We consider cooperative sensor 

relocation by iterations of Distributed Subgradient Projection 

Algorithm (DSPA) for solving optimization problem (13)-

(14). DSPA achieves cooperation by building consensus on 

optimal sensor locations through information exchange 

between each sensor and its neighbors.  In effect, DSPA offers 

a consistent approach to overall performance optimization 

while minimizing the communication overhead.  Again for 

brevity, we only describe DSPA-based cooperative sensor 

relocation and refer to [6] for elaborate details of DSPA.  

The algorithm proceeds in steps.  At step k , each sensor 

Ss  updates its own position 
)(k

sx  and vector of estimates 

of the positions of its neighboring sensors ksi ,S , (i.e., 

sensors directly communicating with sensor s  at step k , 

),~(~
,

)()(

ks

k

si

k

s ix Sx ) as follows: 

           )]~([ )()1()()1( k

sss

kk

sX

k

s gxPx x                       (21) 

            )]~([~ )()1()()1( k

ss

kk

sX

k

s P xgzx                       (22) 

where X  is the set of feasible sensor location, 0)1(k
 is 

the step size, and XP  denotes the Euclidian projection onto 

the set of feasible sensor locations X .   

 The vector 
)(k

sz  is the weighted average of 
)(~ k

sx  which is 

computed by sensor s  as follows: 

                        

1,

)()1(

,

)( ~

ksj

k

j

k

js

k

s a
S

xz                                 (23) 

Scalars 
)1(

,

k

jsa  are the non-negative weights that sensor s  

assigns to sensor j ’s iteration at step 1k .  Equation (23) 

represents a “consensus”-based step that ensures under 

conditions specified in [6], sensor Ss  estimates of other 

sensor positions converge to their actual positions (i.e. 

i

k

si xx )(~
 as k ). 

C. Escaping Traps with Random Moves 

Using local information for controlled sensor relocation on 

non-flat terrain is prone to sensor trapping in suboptimal 

positions due to typical non-convexity of the performance 

criterion [8].    A combination of controlled sensor mobility 

with simulated annealing to avoid sensor trapping has been 

proposed in [9] and further discussed in [10].  This subsection 

discusses a possibility of combining DSPA-based sensor 

relocation and simulated annealing algorithms.   
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Conventional simulated annealing algorithm [9] suggests 

sensor relocations from points ),( Sx sxs  to points 

),( Sxx sxx ss  with probability  

             )],(exp[)(Pr 1
xxx VZob                    (24) 

where function ),( xxV  is given by (13), Z  is the 

normalization constant, and  is the inverse “temperature”.  

In the case of “high temperature”: 0 , sensors perform 

random walk, while in the case of “low temperature”: 

, sensors perform optimization (13)-(14).  The main 

advantage of simulated annealing algorithm is that it allows 

for obtaining guidelines on the “cooling schedule” in order to 

ensure convergence to the global solution of optimization 

problem (13)-(14).  Therefore, with a proper cooling schedule 

sensors can avoid traps. 

 The problem with random relocations following (24) is 

that this algorithm is centralized.  In the spirit of a distributed 

subgradient algorithm, it is natural to relocate sensor s   from 

point sx  to point ss xx  with probability 

          )],(exp[)(Pr 1

ssss xvZxob x                    (25) 

where function ),( ss xv x  is given by (11), sZ  is the 

normalization constant, and  is the inverse “temperature”.  

In a simulated annealing version of algorithm (21)-(23) sensor 

s  relocates from point sx  to point ss xx  with probability 

(25) while updating estimates of locations of its neighboring 

sensors following (22)-(23). 

 In the case of “low temperature”: , sensors will 

perform optimization (21)-(23).  The similarity with 

conventional simulated annealing suggests the possibility of 

existence of a cooling schedule that allows sensors to avoid 

traps with a distributed version of simulated annealing. 

V. EXAMPLE: TRACKING A SINGLE TARGET 

Consider a MSN designed to track a single target G  and 

communicate the desired information at a low rate to a fixed 

destination D .  For brevity, here we only discuss simulation 

results for a scenario with 6S  sensors on a flat terrain 

where signal attenuation depends only on the distance (6).  To 

simplify further, we assume that energy required for relocation 

is proportional to the travelled distance.  It can be shown that 

under some natural conditions and for sufficiently high initial 

sensor battery energy levels, the optimal MSN topology is 

linear with only one sensor tracking the target and the rest of 

the sensors relaying this information to the destination, 

formally identified as sensor 0s .   

Figure 1 shows this linear topology with six sensor, where 

information flows from the target to the destination: 

)0()1(...)6( sssG , while the control 

information flows in the opposite direction: 

)0()1(...)6( sss . 

 

 
Figure 1.  Linear topology with six sensors 

 

We also assume that sensors have the maximal communication 

and sensing range indicated by the corresponding circles in 

Figure 1.  Sensor relocation algorithm accounts for existence 

of these maximal ranges by projecting the iterations of the 

relocation algorithm onto properly designed set of feasible 

sensor positions.   

 In a case of stationary sensors, Figure 2 shows that sensor 

battery energy draining rate is completely determined by the 

initial sensor positions with respect to the stationary 

destination and the target (which may or may not be 

stationary).   

 

 
Figure 2.  Residual sensor energy: stationary sensors 

 

Figure 2 demonstrates imbalances in sensor battery energy 

draining rates due to initial sensor positions.  Since in our 

model sensors use minimal communication power required for 

MSN operation, the network becomes non-operational in 

approximately 90 minutes. This is the time when sensor 3s  

spends all of its energy.    

In the case of non-cooperative sensor relocation, shown in 

Figure 3, the MSN becomes non-operational in approximately 

140 minutes when sensors 1s , 3s  and 6s  deplete 

their battery energy.  
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Figure 3.  Residual sensor energy: selfish relocation 

 

The inverse S-shape of the residual sensor energy evolution, 

shown in Figure 3, is indicative of selfish sensor relocation 

when each sensor attempts to prolong its own life-span.  In 

this case, each sensor is attempting to minimize its 

transmission power by positioning itself at the “middle point” 

of the neighboring sensors without any consideration for 

conserving the neighbors’ battery energy.  This “selfish” 

sensor positioning is responsible for lack of coordination 

shown in Figure 3.    

In a case of cooperative sensor relocation, shown in 

Figure 4, all sensors deplete their battery simultaneously 

prolonging MSN life span to approximately 300 minutes.  This 

is achieved through cooperation, when sensors with longer life 

expectancy are “willing” to relocate longer distances in order 

to save energy for sensors with shorter life expectancy.    

 
Figure 4.  Residual sensor energy: cooperative relocation 

 

VI. CONCLUSION AND FUTURE RESEARCH 

This paper has proposed an approach to controlled 

cooperative sensor relocation in a Mobile Sensor Network 

(MSN) by following iterations of a Distributed Subgradient 

Projection Algorithm (DSPA) for aggregate performance 

optimization.  The main advantage of this approach is in its 

ability to accommodate locally available information on 

battery energy availability, sensing, communication and 

relocation “costs” with respect to the energy expenditure in an 

inherently decentralized environment.  Initial simulation 

results indicate viability of this approach for prolonging the 

MSN life-span.   

 Future research should evaluate pros and cons of different 

versions of distributed subgradient algorithms with respect to 

controlled sensor relocation, and provide guidelines for 

selection of the algorithm step size and free parameters 

involved in the “consensus” step.    These selections affect the 

trade-off between the algorithm convergence rate and 

communication overhead.  The ability to avoid traps on non-

flat terrains is critical for practical implementation of 

controlled sensor relocation.  This paper has suggested the 

possibility of achieving this by combining a distributed 

subgradient projection and simulated annealing algorithms.  

More studies need to be done to realize this possibility, 

including developing distributed cooling scheduling. 

 Finally, note that the important issue of initial network 

formation has not been discussed.  Distributed subgradient 

optimization algorithms assume agent connectivity.  However, 

at the initial stage mobile sensors may be organized in several 

disconnected clusters.  In that case, controlled sensor mobility 

should simultaneously pursue two goals: collaboration within 

clusters and establishing connectivity between clusters.  This 

problem, which can be broadly framed as controlled mobility 

in Disruption Tolerant Networks (DTN), would require new 

ideas and approaches. 

REFERENCES 

[1] I.F. Akyildiz, W Su, Y. Sankarasubramanian, and E. Cayirci, “Wireless 
sensor networks: a survey,” Computer Networks, Elsevier, No. 32, 2002, 
pp. 393-422. 

[2] V. Marbukh and K. Sayrafian-Pour, “A Framework for Joint Cross-
Layer and Node Location Optimization in Mobile Sensor Networks,” 
Proc. Adhoc-Now’09, Nice, France, 2008. 

[3] V. Marbukh and K. Sayrafian-Pour, “Mobile sensor network self-
organization for system utility maximization: work in progress”.  Proc. 
The Fifth International Conference on Wireless and Mobile 
Communications (ICWMC’09), Cannes 2009.  

[4] H. Mahboubi, A. Momeni, A. G. Aghdama, K. Sayrafian-Pour, and V. 
Marbukh, “Minimum cost routing with controlled node mobility for 
target tracking in mobile sensor networks” 2010 American Control 
Conference (ACC2010), USA, 2010. 

[5] A. Howard, M.J. Mataric, and G.S. Sukhatme, “ Mobile sensor network 
deployment using potential fields: a distributed, scalable solution to the 
area coverage problem,” Proc. 6th Intern. Symp. On Distributed 
Autonomic Robotic Systems (DARS’02), Fukuoka, Japan, 2002. 

[6] S. Sundhar Ram, A. Nedic, and V.V. Veeravalli, “Distributed stochastic 
subgradient projection algorithms for convex optimization,” to appear in 
Journal of Optimization Theory and Applications, 2010. 

[7] S. Sundhar Ram, A. Nedic, and V.V. Veeravalli, “Incremental stochastic 
subgradient algorithms for convex optimization,” SIAM Journal on 
Optimization, 20 (2), 2009, 691-717. 

[8] Y. Koren and J. Borenstein, “Potential Field Methods and Their Inherent 
Limitations for Mobile Robot Navigation,” Proceedings of the IEEE 
Conference on Robotics and Automation, Sacramento, California, April 
7-12, 1991, pp. 1398-1404. 

[9] R. Rao and J. Kesidis, “Purposeful mobility for relaying and surveilance 
in mobile sensor network,” IEEE Transactions on Mobile Computing, 
No. 3, Vol. 3, 2004, pp. 225-232. 

[10] V. Marbukh, K. Sayrafian-Pour, H. Mahboubi, A. Momeni, and Amir G. 
Aghdam, “Towards evolutionary-pricing framework for mobile sensor 
network self-organization,” in Proceedings of 2010 IEEE World 
Congress on Computational Intelligence, Barcelona, Spain, 2010. 

96

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-144-1


