
The BSNOS Platform: A Body Sensor Networks
Targeted Operating System and Toolset

Joshua Ellul
Department of Computing
Imperial College London

London, UK
Email: jellul@imperial.ac.uk

Benny Lo
Deparment of Computing
Imperial College London

London, UK
Email: benny.lo@imperial.ac.uk

Guang-Zhong Yang
Deparment of Computing
Imperial College London

London, UK
Email: g.z.yang@imperial.ac.uk

Abstract—Body sensor networks face different challenges
than those faced in traditional wireless sensor networks.
Challenges faced include fewer, more accurate sensor nodes
and an increased requirement of context awareness, however,
body sensor networks are relieved from high scalability. Pro-
gramming sensor networks, in general, can be a daunting task
due to the limited computation, memory and energy resources
available. Operating systems for wireless sensor networks have
been proposed which focus on the challenges they face. We
believe that an operating system and toolset which focuses
primarily on the challenges and properties of body sensor
networks could help ease the burden of programming body
sensor network applications. In this paper, we present an
operating system which is focused on facilitating body sensor
network application development.

Keywords-body sensor networks; operating systems;

I. INTRODUCTION

Body sensor networks have emerged as a promising
platform to enable scientists to further understand how the
human body operates with a means of remotely monitor-
ing different environmental conditions accurately. Operating
systems for wireless sensor networks have been the primary
tool in developing body sensor node applications in the
past. Developers require expertise in C and embedded pro-
gramming to be able to create applications. Even seasoned
programmers find the task of programming such applications
daunting and time consuming. Domain scientists rely on and
wait for such applications to be developed before they can
extract any useful information from the environment they
wish to investigate.

The challenges faced in body sensor networks vary to
that of traditional wireless sensor networks. Body sensor
networks usually consist of smaller networks of short range
communication, whilst traditional wireless sensor network
research has been heavily focused on routing and MAC
protocols to facilitate scalability and longer range commu-
nication.

In this paper, we present the BSNOS platform, an op-
erating system and platform designed to especially meet
the requirements of body sensor network applications. The
operating system exposes a Java programming environment

enabling novice programmers to develop applications with
ease. Also, in that it is an operating system, we believe that
it should be usable without requiring any low level devel-
opment. Thus, we have included in the operating system a
default application which allows domain experts to monitor
environments and configure the sampling and transmission
rates of collected data.

The primary contribution of this paper is that we have
designed the first operating system targetted especially for
body sensor networks, which utilizes run-time compilation
of bytecode to provide an efficient Java execution platform
for resource constrained devices.

The remainder of this paper is structured as follows.
Section II provides an overview of related work. Section III
describes the motivation behind why this work is necessary.
We provide an overview of the system design in Section
IV, followed by implementation details in Section V. We
evaluate our work in Section VI and then conclude in Section
VII.

II. RELATED WORK

Operating systems commonly used for sensor network
development include TinyOS [1] and Contiki [2]. TinyOS
exposes an event driven execution model programmed using
a component model. TinyOS applications are programmed
using the nesC language developed specifically for TinyOS.
Contiki also provides an event-driven programming model,
however, programs are coded in C. It is very hard for non-
embedded developers to write programs for these operating
systems due to the level of embedded and event-driven
programming experience required.

More recent initiatives to enable Java for sensor nodes
aims to facilitate an easier programming paradigm for sensor
nodes [3] [4] [5] [6]. The Squawk virtual machine [4] allows
for Java code to be executed on Sun SPOT devices. Sun
SPOT devices have substantially more resources than that of
more popular sensor nodes (especially those used for body
sensing). The Squawk virtual machine has a program mem-
ory footprint of 270kB which is larger than that available
for most body sensor nodes available.

381

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Darjeeling [6] and TakaTuka [5] are two virtual machines
which provide a Java interpreter for resource constrained
devices. Interpreters are infamous for their high execution
overheads, and as can be seen in [6], the overhead is quite
large. To overcome such interpretation overheads, run-time
compilation of bytecode [3] was proposed for sensor nodes,
which provides substantially faster execution of bytecode
compared to interpreted versions.

III. MOTIVATION

Body sensor networks provide a different environment and
paradigm to that of traditional wireless sensor networks [7].
The size of the environment (the body) to be monitored
is much smaller and is geometrically the same to any
other (body) deployments, unlike the environments which
traditional sensor networks are deployed in (which vary
from one deployment to another). This results in smaller
sized networks with nodes placed in, usually, known places.
A body sensor network rarely grows (or shrinks) in size.
Also, once a node is placed, it is very unlikely to move.
Transmission ranges of sensor nodes do not require long
distances. Additionally, nodes are usually one hop away
from every node in the same body sensor network. These
properties of body sensor networks relieve body sensor
nodes from complex MAC and routing protocols which
is a primary requirement for traditional wireless sensor
networks.

Although body sensor networks will consist of a smaller
numbers of nodes, relieving the nodes from scalability
issues, this also means that nodes will not be able to rely on
neighbouring nodes for redundancy. Thus, body sensor net-
works require more accurate and robust sensing algorithms.
More so, typical body sensor networks do not usually have
the luxury of long sleep periods since events must be caught
immediately due to the repercussions of missing a vital
event, which in turn affects the lifetime of the sensor node.
However, most body sensor network deployments do not
require long lifetimes since they are usually used temporarily
to analyse or detect specific conditions or applications.

Due to the geometrical, environmental and requirement
similarities between different body sensor network deploy-
ments and applications, a substantial amount of application
logic is common amongst body sensor network applications.
Such logic includes context awareness both of the internal
environment (the body) and the external environment, log-
ging of data (either distributed or centrally), uploading of
data to a pc or server either real-time or post-collection, and
sending alerts when an interesting event has occurred.

Programming sensor network applications is a challenging
task which most often requires experienced embedded de-
velopers to develop such applications and also may involve
adopting new programming languages and models. This
is primarily due to the operating systems, languages and

tools which are currently used including C based operating
systems [1][2].

The motivation behind our work is to provide an operating
system which facilitates ease of development of body sensor
network applications for novice programmers and domain
experts. We plan to achieve this by focusing on the intrinsic
properties of body sensor network applications. Whilst at the
same time, sacrificing features required for traditional wire-
less sensor networks which are not inherent in body sensor
networks in aim of delegating such relieved resources for
ease of programmability and body sensor network specific
functionality. By exposing an easy to use standard API we
envisage that algorithms can seamlessly be shared, switched
and compared. Thus, enabling an open development research
platform for body sensor network applications.

IV. DESIGN

One of the main motivations behind our work is to provide
an easy to use programming environment for developing
body sensor network applications for novice programmers.
Most available tools for sensor network applications rely
on C (or flavours thereof such as nesC) as a programming
language. However, we have decided to opt for a Java
programming environment to facilitate an easy to use pro-
gramming environment. As mentioned in Section II, several
initiatives have been made to port Java to sensor nodes,
most of which use an interpreter to execute bytecode. As
shown in [6], interpretation of bytecode suffers from great
execution overheads. We have, therefore decided to utilise
a run-time compiler similar to [3] in aim of offering a Java
programming environment without incurring substantial exe-
cution overhead. An overview of the toolchain and operating
system is shown in Figure 1. We will follow by describing
each component of the toolchain and operating system.

1) Scripting: We would like to target not only program-
mers but also domain experts who more than likely do not
have a large amount of experience programming. Thus, we
have included in our architecture a means of being able
to control how a body sensor network application would
work on a higher level. For those with slight knowledge of
programming we have provided a scripting tool which can be
used to create simple applications by configuring the main
execution thread using a Java like syntax without having
to deal with the intrinsic properties of Java. The scripting
source is passed into the Java Source Generator which
creates equivalent Java source of the specified application,
which can then be passed through the toolchain as normal
Java source. The reason for doing this is that we can facilitate
such abstractions without incurring any extra overhead on
the sensor node itself.

2) Parameter Configuration: For domain experts without
any knowledge of programming, we have provided a tool
to configure body sensor network applications’ sensing and
transmission rates, which should allow domain scientists

382

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Figure 1. An overview of the toolchain and operating system.

to extract initial data before moving on to more complex
applications. BSNOS is initially loaded with the Default Ap-
plication. The Default Application will sample the connected
sensors according to the parameters set using the parameter
configuration tool. The data will then be sent to a base station
at a period also defined by the parameter configuration tool.

3) Java for Sensor Nodes: Java source is passed into
the Java compiler and converter which generates an altered
version of Java bytecode which is more suitable for resource
constrained devices. The details of this compilation and
conversion process is similar to that described in [3]. The
generated bytecode differs to that of standard Java bytecode
in that String literals relating to class and function names
are completely removed. Also, Java bytecode is based on
a 32 bit stack width, which for majority of sensor network
applications is not required. Thus, the converter also changes
the bytecode to use a 16 bit stack width. The bytecode
generated can then be disseminated to sensor nodes over a
serial connection or over-the-air. The benefits of transmitting
bytecode instead of native code is that bytecode is smaller
in size, and thus, less energy is required to transmit code
updates.

4) Applications to Hardware: At the lowest level of the
BSNOS stack lies the underlying hardware including the
microcontroller, radio and sensors. Driver code installed
on the microcontroller will expose the different peripherals
and hardware features which are required to be used. The
operating system can then expose the hardware via the
drivers to provide common lower level services required by
applications.

5) The BSNOS Kernel: Figure 2 provides a view of the
different operating system and facilitating tool components.
The BSNOS Kernel encapsulates services which are es-
sential to provide an easy to use Java programming and
operating system environment. The main kernel components
are outlined below:

Java Run-time Environment: The run-time compiler

generates native code which mimics the Java operand stack
used by the original bytecode. Due to this a Java run-time
environment is required. The run-time environment exposes
basic Java functionality such as array manipulation, object
creation, exception handling amongst other features.

Garbage Collector: Java relieves programmers from the
task of memory management. However, after objects or
arrays are no longer required, their memory is still being
occupied, and thus a check is required to release such
memory that is no longer being used. This is the job of
the Garbage Collector.

Run-time Compiler: By providing a Java programming
environment, the learning curve for novice programmers
to develop applications for body sensor networks will be
decreased. However, since the early days of Java, it’s slow
speed was notable as was summed up in [8] with their
statement ”Java isn’t just slow, it’s really slow, surpris-
ingly slow.” This was primarily due to the fact that Java’s
execution platform was completely based on interpreters.
In aim of providing an efficient execution platform for
Java based applications, we have opted to use a run-time
compiler similar to [3] which compiles the bytecode it
receives to native code which the underlying microcontroller
can execute without incurring any interpretation overheads.

Software Manager: Body sensor networks like other
wireless sensor networks and traditional computing systems
require updates from time to time due to various reasons
including bug fixes, new features or complete new appli-
cations. The Software Manager enables efficient remote
updating by providing dynamic loading and unloading of
code at the granularity of classes or functions.

Scheduler: At the core of the kernel lies the Scheduler.
The Scheduler is responsible for scheduling execution of
threads and events. Figure 3 depicts how events and threads
are scheduled. Interrupts (IRQ) raised on microcontrollers
have higher priority than the main thread of execution. Sim-
ilarly, we have designed events in BSNOS to have a higher

383

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Figure 2. The operating system and facilitating tool components.

Figure 3. The scheduler execution policy is demonstrated above. Prefer-
ence is given to microcontroller interrupts (IRQ) which in turn then invoke
system events by the Event Scheduler (ES). The Thread Scheduler (TS) is
invoked when no interrupts are pending, which in turn executes threads in
a round-robin fashion.

priority than other threads since the primary aim of body
sensor network applications is to monitor the external events.
Thus, when an interrupt is raised the BSNOS kernel buffers
any related events and then invokes the Event Scheduler (ES)
which will then dispatch any events which are waiting to be
scheduled.

The Thread Scheduler (TS) is responsible for schedul-
ing thread execution. We have implemented a round-robin
scheduler which provides equal execution slots to each
thread in aim of providing a lightweight threading API.
However, in future we will investigate whether more so-
phisticated scheduling techniques should be adopted.

Parameter Registry: Sensor networks application users
often require to change parameters which alter the way
applications would operate. It is to the best of the authors
knowledge that other sensor network operating systems
have however not provided any API to cater for such a
common feature, leaving it up to the application developer
to provide a mechanism for storing, altering and retrieving
of parameters. The Parameter Registry is a storage area in

the operating system whereby parameters can be stored,
retrieved and updated by different applications using a
standard API.

Context Manager: Context is an element that is predom-
inant in body sensor networks. We would like to encapsulate
context aware logic that is common to body sensor networks
in the operating system. The Context Manager provides a
built in mechanism to support applications in their contextual
needs. The human body provides an environment which
(usually) consists of the same structure amongst different
subjects. Thus, we have created an API to facilitate devel-
opers in defining the position of sensor placement.

V. IMPLEMENTATION

The BSNOS kernel is written in C and compiled using
Texas Instruments’ Code Composer Studio v 4.0.1 for the
MSP430F1611 microcontroller. As an initial target node,
we have decided to port the operating system for the BSN
platform [9]. A detailed view of BSNOS, hardware and
facilitating tools is depicted in Figure 2. We have imple-
mented drivers for Atmel’s AT45DB321D 4MB DataFlash
and Texas Instruments’ CC2420 Radio which communicate
with the microcontroller over SPI. The I2C protocol is used
to communicate with Honeywell’s HMC5843 3-Axis Mag-
netometer and InvenSense’s ITG-3200 3-Axis Gyroscope.
ADC channels are used to sample the analog readings for
Analog Device’s ADXL330 3-Axis Accelerometer and a
unique ID is provided to the operating system using Dallas
Semiconductor’s DS2411 chip which is communicated with
using the proprietary 1-Wire protocol.

The ROM footprint for each module is listed in Table I,
totalling to just over 12 KB.

We have implemented a lightweight API which provides
an easy to use interface. A sample of the BSNOS API is

384

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

Table I
MODULE FOOTPRINT

Module ROM
Run-time System 2 KB
Java Run-time 500 B
Run-time Compiler 8 KB
Threading 400 B
Class Loader 400 B
Drivers 1 KB

listed in Table II. To demonstrate the API, a sample program
is listed in Figure 4.

VI. EVALUATION

Evaluation of run-time compilation code compared with
interpreted code and native code generated from C source
code has been evaluated in [3]. The aim of BSNOS is to
provide an easy to use platform which is focused primarily
on higher data rates due to the nature of common body
sensor network applications. We have conducted evaluation
as regards to the maximum throughput that can be achieved
using default configurations of BSNOS and TinyOS. Figure
5 depicts the maximum transmission rates of messages
of size 1, 50 and 100 bytes for BSNOS and TinyOS.
As can be seen from the graph BSNOS achieves a sub-
stantial increase in maximum throughput when compared
with TinyOS. Obviously, however, this is due to the radio
driver implementation and the minimal MAC layer that was
used. Were a similiar radio implementation to be used with
TinyOS, than a similiar throughput would be achieved.

VII. CONCLUSION

In this paper we have presented, BSNOS, a new
lightweight operating system designed specifically for body

Table II
SAMPLE API

Module Function
Accelerometer void performAccelSample()

float getAccelX()
float getAccelY()
float getAccelZ()

Context BodySegment getBodySegment()
Flash void writeByte(byte b)

byte readNextByte()
void dumpFlashToSerial()

Gyroscope void performGyroSample()
float getGyroY()

Parameters short getShortParameter(Parameter p)
Radio void msgAppendFloat(float f)

void msgAppendShort(short s)
void msgAppendInt(int i)
void sendMsgToNode(short nodeid)

Serial void serialSendByte(byte b)
byte serialReceiveByte()

Threading void sleepMS(short ms)
Unique ID long getUniqueID()

Figure 4. Sample source for a sample and send application which samples
the accelerometer and sends the data to the base station.

sensor networks. We have implemented BSNOS on the BSN
node as the first target platform. The aims of the operating
system is to allow novice developers to focus on the specific
application rather than the intrinsic properties of embed-
ded programming. We aimed to achieve this by exposing
functionality common in body sensor network applications
such as parameter configuration and context. We envisage
that by providing a standard API and a Java programming
environment, developers would be able to seamlessly share
and compare different implementations and algorithms. The
contributions of this paper are as follows:

• We have presented the first operating system targeted

1 Byte Message 50 Byte Message 100 Byte Message
0

200

400

600

800

1000

F
re

qu
en

cy
 (

H
z)

Max Transmission Throughput

BSNOS
TinyOS

Figure 5. Maximum transmission throughput for BSNOS and TinyOS
using default configurations.

385

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

for body sensor network applications.
• We have proposed a parameter registry for sensor

node operating systems which releases the developer
of implementing such functionality.

• We have implemented first steps towards integrating
body sensor network context awareness into an OS.

• We have designed the first operating system which
utilizes run-time compilation of bytecode to provide
an efficient means of executing Java applications for
resource constrained embedded devices.

We plan to continue development on the operating system
with the following future work:

• We envisage that domain experts would be able to write
body sensor network applications using a GUI block
programming environment. Thus, we will investigate
into integrating such tools.

• We have currently implemented a round-robin thread
scheduling policy, however would like to investigate
into more sophisticated policies and the associated
tradeoffs and benefits.

• The current implementation of the Context Manager
exposes functionality to easily define and share con-
text amongst code and applications. We would like to
further investigate whether we can integrate commonly
used algorithms into the operating system or as system
libraries that can be dynamically loaded.

ACKNOWLEDGMENT

We would like to thank James Patterson for the endless
discussions regarding many aspects of the BSN node and
support in testing the framework. This work was supported
by the ESPRIT project funded by EPSRC.

REFERENCES

[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,
“TinyOS: An operating system for sensor networks,”
in in Ambient Intelligence, 2004. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.129.7716

[2] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a lightweight
and flexible operating system for tiny networked sensors,”
Local Computer Networks, Annual IEEE Conference on, vol. 0,
pp. 455–462, 2004.

[3] J. Ellul and K. Martinez, “Run-time compilation of bytecode
in sensor networks,” in Sensor Technologies and Applications
(SENSORCOMM), 2010 Fourth International Conference on,
2010, pp. 133 –138.

[4] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White,
“Java on the bare metal of wireless sensor devices: the squawk
java virtual machine,” in Proceedings of the 2nd international
conference on Virtual execution environments, ser. VEE ’06.
New York, NY, USA: ACM, 2006, pp. 78–88. [Online].
Available: http://doi.acm.org/10.1145/1134760.1134773

[5] F. Aslam, L. Fennell, C. Schindelhauer, P. Thiemann,
G. Ernst, E. Haussmann, S. Rührup, and Z. Uzmi, “Optimized
Java Binary and Virtual Machine for Tiny Motes,” in
Distributed Computing in Sensor Systems, R. Rajaraman,
T. Moscibroda, A. Dunkels, and A. Scaglione, Eds., vol.
6131. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 15–30. [Online]. Available: http://dx.doi.org/10.1007/978-
3-642-13651-1 2

[6] N. Brouwers, P. Corke, and K. Langendoen, “Darjeeling,
a java compatible virtual machine for microcontrollers,”
in Proceedings of the ACM/IFIP/USENIX Middleware ’08
Conference Companion, ser. Companion ’08. New York,
NY, USA: ACM, 2008, pp. 18–23. [Online]. Available:
http://doi.acm.org/10.1145/1462735.1462740

[7] G.-Z. Yang, Body Sensor Networks. Springer-Verlag New
York, Inc., 2006.

[8] P. Tyma, “Why are we using java again?” Commun. ACM,
vol. 41, no. 6, pp. 38–42, 1998.

[9] B. Lo, S. Thiemjarus, R. King, and G. Yang, “Body sensor
network - a wireless sensor platform for pervasive healthcare
monitoring,” in Proceedings of the 3rd International Confer-
ence on Pervasive Computing (Pervasive 2005), 2005, pp. 77–
80.

386

SENSORCOMM 2011 : The Fifth International Conference on Sensor Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-144-1

