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Abstract—Tabular data are common in science and 

engineering. Datasets found in practice are often not very well 

specified, and are therefore hard to understand and use.  

Semantic standards are available to express the meaning and 

context of the data. However, present standards have their 

limitations in expressing heterogeneous datasets with several 

types of measurements. Such datasets are abundant in science 

and engineering. We propose the RDF Record Table 

vocabulary for semantically modelling tabular data. It 

complements the existing RDF Data Cube standard. RDF 

Record Table has a nested structure of records that contain 

self-describing observations. A first implementation of the 

model shows that it facilitates finding and integrating data 

from multiple spreadsheets.  This support helps scientists to get 

the most out of available quantitative data with a minimum of 

effort. 
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I.  INTRODUCTION  

In science and engineering, datasets can be very 
complex, in particular, if they combine different 
experiments and observations. We propose a format that has 
observations and records, rather than traditional tables, as its 
basic building blocks.   

Tabular data are common in science and engineering. 
Tools to handle such data, such as spreadsheets, are 
extremely popular because of their flexibility and ease of 
use. However, this flexibility often leads to data being 
ambiguous or even incomprehensible, and their provenance 
being unknown [1][2]. The possibility to immediately 
proceed to the analysis and visualization of the data, often 
has a negative effect on the quality of the actual registration 
in terms of complete and systematic recording. This makes 
finding, understanding and reusing the data very difficult 
[3]. As the amount of available data is exploding, it is 
essential to be able to efficiently locate and reuse existing 
datasets.  

The traditional way to present tabular data is in tables on 
paper or on a screen. Rows and columns of cells make up 
their structure. In such a table, an individual recording 
shows up as a single value in one of the table cells. The 
associated header cell along the same column or row 
explains the meaning of this value, for example ‘m (kg)’ for 
mass measured in kilograms. In datasets found in practice, 
this header information is often ambiguous and incomplete.  

In fact, much of the information about the actual 
observation is frequently left out. This may even be done on 
purpose, in order to clean the data for presentation or 
processing. Tables also become more compact, if all records 
contain the same quantities, the same unit of measure and 
have the same interpretation.  In this way, the ‘bare’ 
numerical or string value in the table cells is separated from 
the metadata, and directly visible for comparison and 
available for numerical computation. Researchers are 
trained in reading such tables and can interpret them 
immediately.  

However, to further exploit datasets in science and 
engineering, we are not bound to the traditional two-
dimensional table format. We can use richer representations 
to express more contextual information. Many methods 
have been developed over the last decades to express tabular 
datasets in a more flexible and rich manner.  The W3C RDF 
(Resource Description Framework) standard provides a 
more general, graph-based language to do so [4]. RDF Data 
Cube is a prominent example of such an RDF-based 
standard [5].  

Representing datasets semantically has major 
advantages. Firstly, the meaning of the measurements is 
independent of for example the precise text in a spreadsheet, 
so that data can be found and understood regardless of 
typos, abbreviations, local terminology and even different 
languages. Secondly, the use of semantic concepts makes 
tables machine readable, meaning that they can be (semi-) 
automatically processed, from simple unit conversion up to 
complex computations. Finally, allowable numerical values 
and units can be defined, making it possible to check or 
clean the data. Moreover, semantic tables can be used as 
templates for future observations and experiments.  

Which requirements should a semantic standard meet to 
facilitate and stimulate structured annotation of tabular data? 
First, it should be able to annotate the individual data 
elements. For example, it should be possible to state that 
‘the mass of this sample is 2.95 grams’, ‘the city considered 
is Amsterdam’, or ‘this event has occurred 5 minutes and 
6.3 seconds later’. Good scientific recordings contain 
extensive information about each observation, for example 
on which object it has been measured, by which method and 
by whom. The annotation (metadata) of the individual data 
elements explains them and describes their provenance and 
relations. A standard has to build on existing (domain) 
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ontologies in order to facilitate shared understanding of the 
individual observations.  

Secondly, a semantic standard for tabular data should 
make explicit the grouping together of scientific 
observations that collectively form a ‘snapshot’ of the 
world. The observations are combined since they are 
generated in one experiment, using the same experimental 
protocol or by a single apparatus.  A collection of snapshots, 
or records, is used to detect patterns, similarities or 
correlations. This grouping is essential for correct 
interpretation of the data. Within one experiment, the 
structure of the records is often quite similar. However, 
when comprehensive recording of all possibly relevant 
effects is required, datasets can be less homogeneous and 
well-formed. This, in particular, holds for datasets that 
combine observations from different origins. Moreover, 
exact science typically deals with quantities having diverse 
scales, units and other specifications; values may be missing 
or occasionally additional measurements are available. 
Consider for example research that combines input from a 
number of labs around the world. Some of them have 
recorded the environmental temperature in degrees 
Fahrenheit and others in degrees Celsius. One lab has not 
measured temperature at all. Semantic standards should 
allow these variations and at the same time provide enough 
structure.   

In this paper, we intend to find a format that is 
sufficiently rich and flexible to handle complex datasets in 
science and engineering.  In Section II, we first briefly 
describe existing approaches, in particular the RDF Data 
Cube vocabulary. This is a recommended W3C standard for 
multidimensional tables. To be able to handle more 
heterogeneous datasets, we propose RDF Record Table in 
Section III, as a supplement to RDF Data Cube. RDF 
Record Table uses self-contained observations and recursive 
records. In Section IV, we describe which steps can be taken 
to cope with the verbosity that is a consequence of the very 
explicit character of RDF Record Table datasets. This is 
followed by a description of a first implementation in 
Microsoft Excel in Section V. Finally, we conclude in 
Section VI, also listing a number of open issues. 

II. RELATED WORK 

Many methods take the relational database approach 
when they convert tables or databases into an RDF-based 
representation [6]-[8]. They assume that a table consists of a 
header row defining variables and other rows that contain 
strings or numbers representing the value of the variable in 
the same column. In general, they do not support more 
complex structures. All columns are translated into RDF 
properties of a single object. At this point, no other metadata 
is available than what is given in the header and data cells.  

A richer format is defined by the RDF Data Cube 
vocabulary [5], a recommended W3C standard. This 
vocabulary has been developed in the context of statistical 
data in social sciences and policy studies, but is also being 
applied in other areas. Information about the meaning of the 
data and its provenance is expressed by linking to concepts 
from other ontologies, most typically the SDMX vocabulary 

[9].  Data Cube organizes observations as multidimensional 
datasets. Each observation is a point in n-dimensional space, 
defined by the associated values of the dimensions.  Typical 
dimensions in RDF Data Cube are ‘time’, ‘area’ and 
‘gender’. Each observation contains one or more measures, 
for example ‘life expectancy = 83.5 years’. Observations can 
have attributes that provide additional information about 
them, for example the unit of measure used.  A separate 
section of an RDF Data Cube defines its structure; this 
section can be used as a template for future observations. 
Another section gives information for external reference to 
the entire dataset.   

In its normalized form, each observation in a data cube 
contains all its dimensional values. One way to reduce 
redundancy is by moving shared attributes to the structure 
definition section.  Further reduction can be obtained by 
introducing ‘slices’. A slice is a lower-dimensional 
representation, which also serves as a proposed interpretation 
of the dataset. Moreover, one can refer to a slice as an 
independent entity.  Table I shows the example table that 
RDF Data Cube definition uses to explain the vocabulary 
[5]. This reference shows the full model of Table I.  

 
TABLE I. LIFE-EXPECTANCY DATA IN DIFFERENT REGIONS OVER 

TIME 

 
 2004-2006 2005-2007 2006-2008 

 Male Female Male Female Male Female 

Newport 76.7 80.7 77.1 80.9 77.0 81.5 

Cardiff 78.7 83.3 78.6 83.7 78.7 83.4 

Monmouthshire 76.6 81.3 76.5 81.5 76.6 81.7 

Merthyr Tydfil 75.5 79.1 75.5 79.4 74.9 79.6 

 
The RDF Data Cube vocabulary is very well suited for 

modelling well-formed, complete datasets such as are 
produced by statistics offices.  Software tools are available 
to provide useful views of the data.  However, these 
advantages are the result of some restrictions on the data. 
We submit that these restrictions make the RDF Data Cube 
less suitable for heterogeneous, multi-scale data such as 
exist in science and engineering. The requirement to choose 
a-priori between dimensions and measures is problematic in 
those fields. Rather than assuming some causal order 
between quantities, we can only state that they have been 
observed together. For example, for Table I, RDF Data 
Cube assumes ‘sex’ (male or female) to be a dimension and 
‘life expectancy’ (values in the table) to be a measure. This 
assumption is not needed and limits data analysis; it is 
sufficient to say that ‘sex’ and ‘life expectancy’ have been 
measured simultaneously.  

One striking consequence of the hypercube approach is 
that multiple measures in a single observation are difficult to 
handle. This is, however, a common experimental setting in 
science and engineering. For example, imagine that in the 
above example in addition to ‘life expectancy’, also the 
quantities ‘weight’, ‘waste size’ and ‘length’ have been 
observed. RDF Data Cube has two alternative ways to 
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handle such a dataset, which cannot be used simultaneously. 
In the multiple measures approach one observation can 
contain more than one measured quantity. However, all 
quantities must have the same attributes, for example, the 
same type and unit of measure. This rules out this approach 
for most exact science applications. The second approach 
restricts observations to having a single measured value. It 
allows a dataset to carry multiple measures by adding an 
extra dimension, a measure dimension. This turns a 
measured value into a kind of semi-dimension. We submit 
that this construction complicates the model unnecessarily 
and may influence the interpretation of the data.  

Another characteristic of RDF DataCube is that it makes 
extensive use of properties (rather than classes) as its main 
organizing mechanism. The design introduces many 
different types of properties. It is questionable whether these 
different properties are needed to express the meaning of the 
data. They make the design of a model rather complex.  

RDF Data Cube is intended for describing ‘well-formed’ 
datasets.  As a result, several constraints are placed on the 
data, for example that each observation must have a value 
for every measure. For example, if for one measurement in 
the example it is not known whether this person is a man or 
a woman, this data point cannot be included in the model.  
Another assumption is that the multidimensional structure is 
a regular (hyper)cube, not permitting rows with varying 
length for a single dimension.  If we know the standard 
deviation of the life expectancy value for Cardiff and a few 
other regions, we cannot add this to the above in Table I. 
Another complication would arise if some life expectancy 
values were expressed in years-with-decimal (as in the 
table), and others in years-and-months.  

Whereas RDF Data Cube and other standards define the 
structure and context of tabular data, they are not intended 
for expressing provenance of data on the web. For that 
purpose, additional vocabularies have been developed. The 
W3C-standard PROV is becoming increasingly popular for 
this purpose [10]. It describes the origins of any type of 
data, helping the user to evaluate how appropriate and 
trustworthy the data is for a particular use. PROV basically 
says that a prov:Agent performs a prov:Activity, in 

which he uses or generates a prov:Entity. Tables, 
records, slices and individual measurements can all be seen 
as subclasses of prov:Entity. The previously defined 
Dublin Core Terms [13] vocabulary complements the 
PROV model with detailed concepts about publications and 
authorship.  

 

III. RDF RECORD TABLE 

Experience with researchers over the past ten years has 
confronted us with many different datasets. Many of them 
are contained in spreadsheets and data analysis tools such as 
Matlab [11] and SPSS [12]. Our work on introducing 
electronic lab notebooks in the multidisciplinary domain of 
food science has revealed many issues in data recording in 
the lab. Annotation of the data is often scarce and 
ambiguous due to the focus of researchers on the research 
itself rather than its bookkeeping.  In addition, large 

amounts of data are produced by automated measurement 
equipment in the lab. These devices tend to produce more 
systematic metadata, but linking data from different sources 
is as yet difficult and labor intensive. Initially, we proposed 
templates to stimulate systematic annotation of research 
data, but experience has shown that this restricts the creative 
and essentially unstructured character of scientific research. 
Moreover, researchers are typically reluctant to spend a lot 
of time on data bookkeeping. Inspired by other initiatives to 
annotate datasets using RDF, we have devised an approach 
that can work in the tools commonly used by researchers 
and at the same time support rich annotation. This approach 
has developed into a model for tabular data called RDF 
Record Table.   

The RDF Record Table vocabulary is intended for 
recording original and processed data in science and 
engineering. It models datasets in terms of observations and 
records (see Fig. 1, using rec: as a prefix for the RDF 
Record Table namespace). An observation is a statement 
about an entity or the property of an entity, such as ‘the 
temperature of this object measured by a pt-sensor is 36.5C’ 
or ‘this milk sample is from batch 20140612YTU’.  A 
record combines observations to form a snapshot, thus 
conveying the assumption that in some way the observations 
are related - in time, location, subject, conditions, or in 
another way.  

To express composite structures, in RDF Record Table 
any record can recursively contain sub-records, which again 
are of the type RDF Record Table. For example, an 
experiment may observe multiple samples at one fixed 
temperature. For each sample its viscosity, composition and 
mass are measured over time. This means that the entire 
dataset consists of a RecordTable that at its highest level 
contains (i) the observed temperature and (ii) a sub-record 
for each sample. Each sub-record in turn contains the 
sample identifier and sub-records that describe viscosity, 
composition and mass for that sample measured at a point in 
time. In the most explicit form, all sub-records are expanded 
into non-nested records. In this example, the top level 
RecordTable only contains sub-records, each of them stating 
the observed temperature, time point, sample id and the 
other measured properties.  

rec:RecordTable rec:Observationrec:hasObservation

rec:containsRecord

 
Figure 1.  Basic RDF Record Table schema 

 

 

In Turtle format RDF Record Table is defined as follows.  
 

rec:RecordTable 

      a  rdfs:Class ; 

      rdfs:subClassOf prov:Entity . 

 

rec:hasObserved 

      a   owl:ObjectProperty ; 

      rdfs:domain rec:RecordTable ; 

      rdfs:range rec:Observation . 
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rec:containsRecord 

      a  owl:ObjectProperty ; 

      rdfs:domain rec:RecordTable ; 

      rdfs:range rec:RecordTable . 

 

rec:Observation 

      a  owl:Class ; 

      rdfs:subClassOf prov:Entity . 

 
In practice, we see that two types of observations 

frequently occur, i.e., identified entities and properties 
measured on a scale. Examples of identified entities are 
‘sample XY876b’, ‘Newport’ and ‘Peter’. Quantities such as 
‘length’, ‘mass’, and ‘temperature’ are examples of 
properties measured on a scale. These two types extend the 
basic schema by subclassing rec:Observation, as shown 
in Fig. 2.  

In traditional tables, identified entities are typically 
represented by a unique, human readable identifier as a 
value, and a type indication in the associated header cell.  
RDF Record Table uses externally available domain 
ontologies to express all that is needed to know about such 
an entity by pointing to the relevant instance.  In Table I, 
besides ‘life expectancy’ also ‘periods’,  such as 2004-2006,  
can be considered as identified entities since they are not 
supposed to be read as numerical values.  

For the other type of observation, a property measured 
on a scale, RDF Record Table uses ontologies that define 
quantitative or qualitative values defined on a scale, 
possibly with units of measure. In Table I, ‘sex’ and ‘life 
expectancy’ are typical measured properties, one on a 
nominal scale and the other on a rational scale, with unit 
‘Year’. In our work we use OM (Ontology of units of 
Measure and related concepts) [14] for expressing 
quantitative measurements. OM contains a large number of 
quantities and units of measure suited to scientific and 
engineering datasets. It also provides the necessary 
properties for linking the quantities, domain concepts and 
units.  However, other ontologies such as QUDT [15] and 
SDMX [9] can be used equally well. The measured 
quantities can be properties of the observed entities, but do 
not need to be related to anything specific. For example, in 
Table I, the life expectancy measured is that of the 
associated geographical region. On the other hand, ‘time’ is 
usually not connected to a specific entity (except for 
example to a ‘time zone’).  

 

rec:RecordTable rec:Observation

prov:Entity

om:Quantityowl:Thing

rec:hasObservation

rec:containsRecord

 
 
 
Figure 2.  RDF Record Table expressing domain and provenance 

information 

 
 
 

 
 
Finally, by making rec:RecordTable and 

rec:Observation subclasses of prov:Entity we ensure 
that all provenance information can be expressed for 
individual measurements and for records.   

To illustrate the use of the RDF Record Table format, 
we show how the cells with values 76.7 and 83.3 in Table I 
are modelled. We see that the first level of nesting defines 
four records (:o1, :o2, :o3, :o4), one for each region. We use 
the ontology for geographic areas (as identified entities) that 
was also used in the RDF Data Cube example [5]. The next 
level specifies the three time periods, again using instances 
that were also used in the data cube example. At the third 
level of sub-records, we register two properties measured on 
a scale, viz. ‘sex’ and ‘life expectancy’. For indicating the 
variable ‘sex’, we use an sdmx-code, as in that data cube; to 
illustrate the use of OM [14], we use the concept 
om:Duration from that ontology to describe ‘life 
expectancy’. The value of a quantity in OM is of the type 
om:Measure, which is a combination of a numerical value 
and a unit.  
 
:dataset1  a  rec:RecordTable ; 

  rec:containsRecord :o1 , :o2 , :o3 , :o4 .  

 

:o1  a   rec:RecordTable ; 

   rec:hasObserved ex-geo:newport_00pr ; 

   rec:containsRecord :o11 , :o12 , :o13 . 

 

:o11  a   rec:RecordTable ; 

   rec:hasObserved     

<http://reference.data.gov.uk/id/gregorian-

interval/2004-01-01T00:00:00/P3Y> ; 

   rec:containsRecord :o111 , :o112 . 

 

:o111  a  rec:RecordTable ; 

   rec:hasObserved sdmx-code:sex-M ,

 :lifeExpectancy_76_7YR . 

 
:lifeExpectancy_76_7YR a om:Duration ; 

   om:value :_76_7YR . 

 

:_76_7YR  a  om:Measure ;  

   om:numerical_value “76.7”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale om:year 

. 

 

... 

 
:o2  a   rec:RecordTable ; 

   rec:hasObserved ex-geo:cardiff_00pt  ; 

   rec:containsRecord :o21 , :o22 , :o23 . 

 
:o21  a   rec:RecordTable ; 

   rec:hasObserved     

<http://reference.data.gov.uk/id/gregorian-

interval/2004-01-01T00:00:00/P3Y> ; 

   rec:containsRecord :o211 , :o212 . 

 

... 

 
:o212  a  rec:RecordTable ; 

rec:hasObserved sdmx-code:sex-F ,   

:lifeExpectancy_83_3YR . 
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:lifeExpectancy_83_3YR a om:Duration ; 

   om:value :_ 83_3YR . 

 

:_83_3YR  a  om:Measure ;  

   om:numerical_value “83.3”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale om:year 

.  
 

We now discuss a number of differences between RDF 
Record Table and RDF Data Cube. The most salient 
difference between RDF Data Cube and OQR Record Table 
is the fact that RDF Data Cube sees complex datasets as n-
dimensional hypercubes, whereas RDF Record Tables are 
defined recursively via nesting. The second major 
distinction between the two approaches is that RDF Data 
Cube distinguishes between dimensions and measures, 
whereas OQR Record Table does not make a priori 
assumptions about the roles of individual observations.  We 
consider making such decisions to be the task of the data 
analyst. Moreover, RDF Record Table has no centralized 
section describing the structure of the table. If it is necessary 
to prescribe an observation protocol or template, it suffices 
to list the identified entities and properties measured as the 
items to register in each record.  Finally, where the RDF 
Data Cube definition makes intensive use of properties, 
RDF Record Table only has a few simple properties and 
further builds on concepts from dedicated, external 
ontologies.   

RDF Data Cube does not allow missing variable-values 
or an occasional extra measurement. In contrast, in RDF 
Record Table any record can contain an arbitrary set of 
measurements, with different types and sub-records. 
Missing values or varying units of measure or other 
attributes within a single dataset are no problem. We do not 
demand completeness or regularity of the data, in the sense 
that a record can contain any set of entities and properties. 
This better reflects the reality of datasets in science and 
engineering, in particular, when datasets from different 
sources are combined.  It can be argued that such datasets 
can be modelled in RDF DataCube simply by violating the 
integrity constraints.  This is, however, a bad approach to 
using a standard, and can lead to interoperability problems 
between tools developed for the standard. 

For example, in Table I we can add ‘the measured 
average weight of the inhabitants of this region’ to an 
existing observation using the OM quantity om:Mass. We 
can also switch to ‘life expectancy’ measured in months 
rather than years for this single observation. This is shown 
here:  

 
:o431  a  rec:RecordTable ; 

rec:hasObserved sdmx-code:sex-M , 

:lifeExpectancy_74_9MONTH ,  

   averageWeight_71kg ;  

 

:lifeExpectancy_74_9MONTH a om:Duration ; 

   om:value :_ 74_9MONTH . 

 

:_74_9MONTH  a  om:Measure ;  

   om:numerical_value “74.9”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale 

om:month . 

 

:averageWeight_71kg a om:Mass ; 

   om:value :_71kg. 

 

:_71kg  a  om:Measure ;  

om:numerical_value “71”^^xsd:string ; 

om:unit_of_measure_or_measurement_scale   

om:kilogram . 

 

We conclude that RDF Record Table can be viewed as a 
generalized RDF Data Cube, making fewer assumptions 
about the regularity and completeness of the data. It can act 
as a precursor in the data cleaning, analysis and integration 
process. If a dataset that was originally drafted as an RDF 
Record Table meets certain requirements, it is in principle 
possible to automatically transform it into an RDF Data 
Cube. Any dataset expressed in RDF Data Cube, on the 
other hand, can be modeled as RDF Record Table. 

IV. REDUCING REDUNDANCY IN RDF RECORD TABLE 

In RDF Record Tables, the individual observations are 
in principle self-contained, allowing an extremely flexible 
approach. However, making all metadata available for each 
observation in practice leads to very large data files. In a 
single experiment, records are often very similar and much 
information is redundant. This means that many details can 
be referred to rather than repeated. In the traditional table, 
metadata is typically condensed in the header row, assuming 
that the reader knows that it holds for all rows. In an RDF-
based graph model, we can be more flexible. We can use 
any completely specified value as a template for other 
observations. It is then possible, using for example 
SPARQL [16], to generate the full, extensive description 
from the reduced version when needed. This is in particular 
effective if the expansion to the fully explicit (normalized) 
form can be done locally, i.e., only for the interesting parts 
of a table.  

Fig. 3 shows how RDF Record Table supports 
compression of datasets by giving metadata information by 
referring to a similar measurement. Each 
rec:Observation can hold a literal value (the string or 
number ending up in a table cell)  and emulate another 
observation, which has identical attributes other than the 
value. These referencing observations are collected in 
records, just like normal observations.  

rec:Observation

rec:emulates

rec:hasLiteralValue xsd:string

 
Figure 3. Describing an observation by reference. 

 

In Turtle format, the definition is as follows. 

 
rec:emulates 

      a   owl:ObjectProperty ; 

      rdfs:domain rec:Observation ; 

      rdfs:range rec:Observation . 

 

rec:hasLiteralValue 

      a    owl:DatatypeProperty ; 
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      rdfs:domain rec:Observation ; 

      rdfs:range xsd:string . 

 

For example, the observation from Table I that in 

Monmouthshire the life expectancy of women in the period 

2006-2008 was 81.7 years, is originally expressed in  

 
:o332  a  rec:RecordTable ; 

rec:hasObserved sdmx-code:sex-F ,     

:lifeExpectancy_81_7YR . 

 

as  

 
 

:lifeExpectancy_81_7YR a om:Duration ; 

   om:value:_81_7YR . 

 

:_81_7YR  a  om:Measure ;  

   om:numerical_value “81.7”^^xsd:string ; 

   om:unit_of_measure_or_measurement_scale om:year 

. 
 

Using the fact that all details for :lifeExpectancy_81_7YR 

are the same as for :lifeExpectancy_76_7YR from 

observation :0111, except for the actual value, we can 

summarize this as  
 

 

:lifeExpectancy_81_7YR a rec:Observation ; 

   rec:emulates :lifeExpectancy_76_7YR ; 

   rec:hasLiteralValue “81.7”^^xsd:string. 

 

 

For this example, this may not seem an impressive 
compression. However, if more metadata is included, such 
as descriptions, the devices used, methods applied and other 
background information, the reduction of the size will be 
substantial. This, in particular, holds for datasets with large 
numbers of similar measurements. Finally, further reduction 
of datasets is possible by applying general compression 
algorithms [17].  

V. IMPLEMENTATION EXAMPLE 

A good model of tabular data is useless if the data can’t 
easily be input.  Given the popularity of the classic table 
format in tools such as spreadsheets, it should be possible to 
use these for data entry and then construct semantic datasets 
from there. In order to make this process as easy as possible, 
it should fit into existing work procedures and tools and 
minimize additional effort by the user. Since Microsoft 
Excel is extremely popular, we have implemented the RDF 
Record Table model as an add-in for this tool, called 
Rosanne [14]. Rosanne supports engineers and scientists in 
creating semantic tables (as yet simple tables, i.e., 
rectangular with one header row or column). Similar 
functionality for the RDF Data Cube has been implemented 
in TabLinker [18]; however this is a standalone tool which 
cannot be accessed from within Excel. Rosanne allows users 
to enter their data in a simple table format. Rosanne then 
uses OM (Ontology of units of Measure and related 
concepts) [14] to assist users in adding relevant quantities 
and units of measure to the table. In addition, other domain-

specific ontologies are available for annotating identified 
entities in the table, such as samples, objects, locations, etc.  

The user is not confronted with the Record Table model 
nor do they have to have any knowledge of ontologies. The 
user selects the concepts they want from dropdown lists 
showing the user-friendly labels from the ontologies.  The 
URIs (Uniform Resource Identifiers) for the ontology 
concepts are stored in the Record Table model by the add-
in. The add-in can also automatically annotate existing data 
with units and quantities from OM, based on heuristics [19]. 
This does not always produce accurate results, but saves 
time for the user by creating an initial annotation which can 
be corrected where necessary. Finally, Rosanne allows users 
to search for annotated tables and integrate them.   

Fig. 4 shows an example from food science. In this 
experiment, the researcher wishes to combine rheological 
measurements on protein samples with sample composition 
data. Without semantic support, this task would require her 
to find the relevant files somehow, then to copy and paste 
different data by hand, with plenty of scope for error. With 
Rosanne, she can find the files easily via the search 
function. The table has been annotated using OM and a 
domain ontology. She then selects ‘Protein’ as the identifier, 
and ‘Storage Modulus’ and ‘Composition’ as the variables 
of interest. Rosanne creates a query to find the relevant data, 
and generates the integrated table.   

 

 

Figure 4. Rosanne using RDF Record Table. 

 

VI. CONCLUSION AND FUTURE WORK 

Looking to the future, semantic datasets are a step 
towards advanced quantitative e-science.  The data can be 
documented and linked to the scientific process, assisting 
the researcher and ultimately leading to full transparency 
and reusability of quantitative scientific knowledge. 

In practice, this means that data entry tools can be 
developed which use ontologies to support the user in 
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adding contextual information. Describing the content and 
structure of tabular data semantically makes it possible to 
easily find data even in disparate sources, to understand and 
clean the data and to combine it semi-automatically. This 
way, much richer datasets will be published in the future, so 
that others can fully understand them and build further on 
them.   

We have proposed RDF Record Table as a way to 
organize observational data semantically. The model 
complements the RDF Data Cube vocabulary. RDF Data 
Cube offers the benefits of semantic modelling to domains 
such as statistics, with regular, standardized datasets.  RDF 
Record Table offers more flexibility in storing 
heterogeneous data, and therefore extends those same 
benefits to the more complex world of science and 
engineering. A first implementation of the RDF Record 
Table model in Microsoft Excel, called Rosanne, 
demonstrates the benefits of semantic tables. This includes 
semi-automatic integration of datasets. This functionality is 
presently being evaluated by a number of R&D 
organizations of multinationals in food production, 
cooperating in TI Food and Nutrition [20]. In another area, 
we are using RDF Record Table for statistical analysis with 
the popular language R.  

For full implementation of this model, several issues 
must still be solved. We mentioned the automatic (local) 
expansion and compression of datasets, mapping to and 
from RDF Data Cube, and the translation to and from two-
dimensional representations. In addition to these, the 
recovery of legacy data needs attention. There is a wealth of 
data stored in existing spreadsheets, which have, in general, 
an informal structure and no annotations.  Current results for 
fully automatic annotation are still of insufficient quality 
[19], so more research is needed to find how to unlock this 
legacy data. We plan to submit RDF Record Table to the 
CSV on the Web Working Group [21] for consideration and 
inspiration in their work to provide better interoperability 
for tabular data. 
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