
Novel Models and Architectures for Distributed Semantic Data Management

Kuldeep B.R. Reddy
Indian Institute of Technology Madras

Chennai, India
brkreddy@cse.iitm.ac.in

Abstract—Semantic data management refers to a range of
techniques for the manipulation and usage of data based on
its meaning and its rapid growth gives rise to the problems
of building novel models and architectures for its distributed
management allowing efficient query processing and reasoning.
The first part of the work proposes an actor model for
distributed semantic data management based on the concept of
liquid architectures proposing an actor programming frame-
work and execution environment to store, query and reason
over structured RDF data. The motivation being to provide a
low latency, high throughput distributed platform for semantic
data. The second part of the work proposes a pay-as-you-go
model and architecture for providing OWL-based semantics
as a service including ontology construction, alignment and
noise removal from text documents according to the query
workload using hadoop map-reduce framework. The third part
of the work proposes a query model, including four initial
approaches, to generate interactive suggestions as an aid to
the user for better formulation of SPARQL queries.

Keywords-distributed semantic data management; actor-
based systems; ontology learning; ontology noise removal;
ontology alignment; hadoop map-reduce; interactive sparql
querying

I. INTRODUCTION

The goal of this paper is to present ideas for research
projects on distributed semantic data management and its
querying. The paper sketches initial approaches towards
designing novel models and architectures for it.

Section II proposes an actor model for distributed seman-
tic data managment based on the concept of liquid architec-
tures. The actor model abstraction, including a programming
model and run-time system, has been used to deploy web
services on the cloud and this paper proposes to extend it to
store semantic data which would allow decentralized query
processing and reasoning. The motivation behind it is to
develop a low latency, high throughput distributed platform
specifically for semantic data. Sections A,B,C,D explain the
actor model, proposed architecture, related work and future
work respectively.

Section III proposes a pay-as-you-go model to provide
semantics as a service which produces the research problems
of query specific ontology construction from text, noise
removal and alignment over hadoop map-reduce framework.
Sections A,B,C,D explain the owl-based semantics as a
service, related work, pay-as-you-go framework and archi-
tecture and future work.

Section IV introduces the problem of a query model
to generate interactive SPARQL query suggestions over
distributed semantic data to allow the user to formulate better
queries and presents initial three approaches towards it. Sec-
tions A,B,C,D explain the initial four approaches including
Ontology-based suggestions, Query-log based suggestions,
cache based query reformulation suggestions and exploration
based suggestion.

II. LIQUIDRDF : AN ACTOR MODEL FOR DISTRIBUTED
SEMANTIC DATA MANAGEMENT

This part of the work proposes an Actor Model for
Distributed Semantic Data Management. The foundation
of the proposed model is based on the Actor Model of
Computation. The motivation for the proposed model is to
allow the development of low latency and high throughput
platform and allow decentralized SPARQL query processing
and reasoning. Actor based Distributed Systems are built
on the concept that everyone are actors which are able to
abstract away the individual hosts and do not share any
memory, instead communicating only through messages.
The work proposes an architecture of the model based actor
programming framework and run-time system where each
actor is a liquid RDF store providing a SPARQL endpoint,
which for instance can be programmed in rdfstore-js, which
is a JavaScript implementation of RDF stores, according to
the concept of liquid architectures and a run-time system
based on the one proposed in [8]. The following subsections
sketch the actor model, programming model and the run-
time system to store and query distributed semantic data.

A. Proposed Actor Model

The Actor model is based on the concept that everything
is an Actor [3]. An Actor as a computational entity with
a behavior such that in response to each message received
can concurrently: Send a finite number of messages to other
Actors, Create a finite number of new Actors and Designate
the behavior to be used for the next message received.
Communications with other Actors occur asynchronously.
Actors abstract away the individual host. A number of actor
languages such as STAGE [4], have been proposed to build
actor based distributed systems.

The information workbench provides the front end user
interface which allows the client to pose queries and develop

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

applications. The information workbench, proposed in [5],
is realized as a Web Application with AJAX-based front
end and a pure Java back-end. At its core is a semantic data
store which stores RDF data in triple stores that are accessed
through Sesame [6] APIs. The FedX model, proposed in
[7], implements the semantic store as a federation-based
model of SPARQL endpoints. The proposed work makes
use of the liquid architectures principles, as proposed in
[8] to model each RDF store providing a SPARQL end-
point as an actor allowing the development of semantic
web applications on the distributed semantic data as well
providing a decentralized query processing capabilities.

B. Proposed Architecture

In the proposed programming framework, each actor is a
liquid RDF store, which can be programmed in rdfstore-js,
that is a JavaScript implementation of RDF stores. A run-
time framework is proposed which is based on the actor
programming language execution environment which takes
care of naming system for the actors. as well as enabling
communication amongst them. The problem of changes in
distributed storage, processes and the traffic load as a result
of it is part of future work.

1) Programming Framework: Actors In the proposed
model, each actor is a liquid RDF store providing a SPARQL
end-point. The proposed architecture treats each actor both
as a semantic service provider and consumer. Each actor has
a service description describing the contents of the liquid
RDF store written in the form of SPARQL graph patterns.
Actors communicate with each other in the RDF data format.
The work also plans to add a feature to actors which would
allow them to take control of a set of actors and coordinate
them to attain specific goals.

Actor Script To begin with, the work plans to use rdfstore-
js [9], which is a JavaScript implementation of RDF store
with support for SPARQL queries, to program the liquid
RDF stores in the proposed architecture.

2) Run-Time Framework: Theater A theater represents
the execution environment of the actors. Each system has a
theater running on it, which has multiple threads or processes
of frames. The runtime should be able to compile each actor
as an independent entity but executed on a separate frame
on a separate thread or process.

Manager The manager is the module which runs on all the
systems and locates the actors and allows communication of
messages between them.

Migration & Load Balancing This module will take care
of actor allocations on different frames and their migration
across the systems.

C. Related Work

An architecture of a worldwide computing framework was
proposed in [10], which consists of a actor programming
language, a distributed run-time system and a middleware

architecture for load balancing. The proposed model in this
work can be considered as an adaptation of this framework
for the semantic web that would allow leveraging the over-
arching standards of the web and the semantic web via RDF,
SPARQL, and JavaScript to devise a viable platform for
application development. There has been related work on
storing RDF data on existing distributed platforms as in RDF
on hadoop [23], p2p systems [21] and agent based systems
[22]. This work on the other hand proposes a distributed sys-
tems designed specifically for semantic data and comparing
it with schemes to store on existing distributed platforms is
part of future work.

D. Future Work

1. Devising SPARQL query optimization strategies on
the proposed architecture for decentralized SPARQL query
processing in the proposed model where each actor evaluates
a part of the SPARQL query and transmits the partially
bound SPARQL query to other actors. Possible approaches
towards optimization can be based on the reputation-based
message routing model.
2. Devising RDFS reasoning strategies on the proposed
architecture to enable inferring new information and pre-
senting additional results for the SPARQL queries including
optimizations for forward chaining and backward chaining
approaches.
3. Application Development on the proposed architecture.

III. PAY-AS-YOU-GO FRAMEWORK AND ARCHITECTURE
FOR OWL-BASED SEMANTICS AS A SERVICE

This part of the work proposes a Pay-As-You-Go frame-
work and architecture for providing OWL-based Semantics
as a Service in the cloud. The model is related to the Data
as a Service model which is based on the concept that
the data is treated as a product and can be provided as a
service, whereas in this model the meaning of the data based
on OWL ontologies is treated as a product and provided
as a service. Schemes to interpret words have traditionally
been based on ontologies and the proposed work addresses
the problem of OWL ontology management on the cloud
in a pay-as-you-go fashion and offering the interpretation
of words based on them as a service. The documents are
stored in the cloud and the ontologies are built from them
in a pay-as-you-go manner. The ontologies are gradually
refined and aligned as needed by the query workload. The
following subsections sketch the proposed service, pay-as-
you-go model and architecture and the associated associated
research problems.

A. OWL-based Semantics as a Service

Cloud computing has emerged as a paradigm which deliv-
ers hosted services over the internet [11]. Cloud computing
relies on sharing of resources to achieve economies of scale.
These services have traditionally been classified into three

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

categories : Infrastructure as a Service, Platform as a Service,
Software as a Service.

Here, the cloud provider provides OWL-based Semantics
as a Service to the client. Semantics refers to the study of
interpretation of words and the idea behind the service is
that the meaning of words can be provided as a service
over the cloud. Schemes to interpret words have traditionally
been based on ontologies. An ontology formally represents
knowledge as a set of concepts within a domain, and the
relationships between pairs of concepts. The work presents
the problem of OWL ontology management on the cloud
including the building and maintaining of OWL ontologies
in a pay-as-you-go fashion and offering the interpretation
of words based on them as a service. The proposed service
also looks to provide the user with an option to construct
an ontology using the ontologies already present in the web
using map-reduce.

Related Work Ontology as a Service was proposed in [12],
which is based on sub-ontology extraction and merging,
whereby multiple sub-ontologies are extracted from various
source ontologies, and then these extracted sub-ontologies
are merged to form a complete ontology to be used by the
user. The proposed work on the other hand proposes a pay-
as-you-go framework where the ontologies are constructed
and merged from the text documents as per the queries of the
user. In addition, the proposed work looks to remove noise
in the ontologies and provides a SPARQL query engine in
the cloud and therefore represents a more comprehensive
solution to the problem.

B. Pay-as-you-go framework

Pay-As-You-Go framework has traditionally been used for
data management [13]. The idea behind the approach has
been to provide some services immediately and gradually
form tighter integrations as needed. The factors that lead to
the concept have been very large volumes of the information
that would require significant cost in order to integrate
them upfront. This framework combines the process of
integration with the query processing and iteratively forms
the connections and refines them as per the query workload.

The proposed work utilizes this concepual framework for
managing OWL ontologies in the cloud. The documents are
stored in the cloud and the ontologies are built from them
in a pay-as-you-go manner. The ontologies are gradually
refined and aligned as needed by the query workload. The
benefit of this approach is that the entire ontology need not
be built upfront thus saving costs and the query processing
time is also reduced as only the parts of the ontology which
are frequently accessed are learned as a result the query is
processed over a much smaller part of the ontology.

Figure 1 illustrates the pay-as-you-go framework for
OWL ontology management in the cloud. The user inter-
face accepts the query as input from the user. The parser
module parses the query converting its constituent terms

Figure 1. Pay-As-You-Go Framework for OWL ontology management in
the cloud

into keywords. The ontology construction module takes the
keywords as input and uses it to set a context for which
the ontology is built from the documents. It also refers the
existing ontologies to avoid constructing the part which has
already been built earlier. The built ontology is aligned and
merged with the existing ontologies using the alignment
module, the noise removal module is invoked here to detect
and remove the inconsistencies and unsatisfiable concepts.
The RDF converter module converts the extracted ontology
to the RDF and merges it with existing RDF graph stores it
across the nodes. The RDF graphs are repartitioned accord-
ing to the query workload if necessary. The SPARQL query
executor module executes the SPARQL over the converted
RDF graph and returns the answers back to the user.

C. Pay-as-you-go architecture

Figure 2. Pay-As-You-Go Architecture of the proposed system

Figure 2 illustrates the pay-as-you-go architecture of the
proposed system. Each node illustrates a semantic web ser-
vice which is implemented using a pay-as-you-go framework
in the cloud as described earlier. Each web service releases

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

a service description using OWL-S [14] specification. The
OWL-S ontology has three main parts: the service profile,
the process model and the grounding. The service profile
is used to describe what the service does. The process
model describes how a client can interact with the service.
The service grounding specifies the details that a client
needs to interact with the service. A Broker has emerged
as an important component in web services infrastructure
by facilitating the discovery and mediation amongst the web
services for the client. The proposed architecture implements
the broker in the cloud incorporating the idea that the OWL-
S service descriptions of the web services are refined over
time in a pay-as-you-go manner as per the query workload.

D. Future Work

1. Query-based learning of OWL ontology from doc-
uments in the cloud.
The proposed work aims to build a module to learn OWL
ontology from the text documents for the given query in
the cloud. The idea is to build the OWL ontology in
stages as the queries fed as input to the system using
the map-reduce framework. The benefit of this approach
is that only the relevant parts of the OWL ontology are
constructed thus saving the query processing costs. Similar
approach to contruct relevant parts of the ontology to the
given query was proposed in [15], which involves the user
and case-based reasoning. The goal of this module is to
devise an approach which constructs the relevant ontology
automatically by identifying the topic from the keywords in
the queries without involving the user using the map-reduce
framework in hadoop and also recognizes that a part of the
OWL ontology required for the new query has already been
constructed earlier and therefore builds only the required
parts.

2. Query-based noise removal in OWL ontology in the
cloud.
The proposed work aims to detects and removes noise while
the ontology using the information present in the query in the
cloud. Noise considered in the work are the inconsistencies
and the unsatisfiable concepts present in the ontologies. The
existing approaches to detect and remove them have been
presented in [16]. The goal of this part of the work is
to devise a scheme which treats the additional structural
information present in the query as valuable and uses it
during the noise removal process to resolve inconsistencies
and detect erroneous concepts in the OWL ontology using
the map-reduce framework in hadoop.

3. Query-based OWL ontology alignment in the cloud.
The proposed work aims to map and align the ontologies in
the cloud taking the help of the additional structural informa-
tion present in the query. The current approach presented in
[17] is based on particle swarm optimization. An ontology
alignment is defined as a set of correspondences between
ontological entities, i.e. classes, properties, and individuals,

of two ontologies. The goal of this module is to devise
an approach which looks to utilize the additional structural
knowledge present in the query during the alignment process
using the map-reduce framework in hadoop.

4. SPARQL query engine for OWL ontology in the
cloud.
The proposed work aims to build a SPARQL query engine
for querying OWL ontology using the map-reduce frame-
work in hadoop. One of the approaches to query OWL
ontology using SPARQL on a stand-alone machine works
by computing closure of the entire OWL ontology then
converting it to RDF graph and then processing SPARQL
queries on the resulting RDF graph. The goal of this module
is to devise an approach to identify only a portion of the
OWL ontology related to the query, compute its closure
and convert it to the RDF graph on the cloud and merge
it with the existing RDF graphs and process the query
on it. The proposed approach will reduce the execution
time considerably as the query is executed on a smaller
OWL ontology. The RDF graphs can be partitioned using
the METIS graph partitioning algorithm and stored accross
different nodes and they can be modified as per the query
workload.

5. Pay-as-you-go cloud-based OWL-S broker for se-
mantic web services.
The proposed work aims to build a cloud-based OWL-
S semantic web services broker. The model here is that
the service descriptions of the web services in the OWL-S
format are continously being refined and updated as per the
query workload. An architecture of the broker was presented
in [18], the proposed work aims to extend the broker
implementation to the cloud while making changes to the
broker protocol of advertisement and mediation which would
allow taking into account the pay-as-you-go refinements of
OWL-S service descriptions.

IV. QUERY MODEL FOR INTERACTIVE SPARQL QUERY
SUGGESTIONS OVER DISTRIBUTED SEMANTIC DATA

This part of the paper presents an overview of the research
project dealing with generating suggestions to the SPARQL
queries given by the user which are executed over distributed
semantic data. We present four approaches for it. In the first
approach, we recognize that a triple pattern is erroneous in
the query by comparing it with the RDFS/OWL ontology.
The suggestions to correct the errors in the triple patterns
are presented to the user. In our second approach, we make
use of the SPARQL query log to produce suggestions. In our
third approach, we propose to suggest modifications to the
SPARQL query being executed to the user in order to speed
up its execution. In the fourth approach, we explore the
distrubuted semantic data surrounding the entities discovered
during the query execution process looking for paths which
are equivalent to the a predicate in the query and present
them as suggestions to the user.

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

A. Ontology-based suggestions

In the first approach, we make use of RDFS/OWL ontol-
ogy to generate suggestion to correct possible errors in the
query triple patterns. The approach works by taking each
predicate at level i in the SPARQL BGP and comparing
its domain and range with the domains and ranges of its
preceding and subsequent predicate at levels i-1 and i+1.
If their intersection results is empty set, we recognize this
predicate as the one which requires correction. We then
look to replace the predicate with the predicates from the
ontology being used by the user whose domain and range
matches that of the preceding and subsequent predicates in
the query. With this approach, we get a number of queries
with different predicates chosen from the ontology all of
which are presented to the user as suggestions. Future work
also consists of how the quality of service can be maintained.

B. Query-log based Suggestions

This section addresses the problem of generation
SPARQL query suggestions as they are being partially
entered by the user using the query log. We represent the
set of queries entered by the user in the form of a single
directed graph. The nodes of this graph contain the triple
patterns and the edges contain weights which represent the
number of times the triple pattern has been given as part of
a query. We normalize the different variable names given in
queries into a single set, with each variable representing the
nodes at each stage in the query log graph. We maintain a list
containing the different combinations of the two variables in
the descending order of their occurrance for each node in
the query log graph.

When the new query is being entered by the user, the triple
patterns entered are matched with the nodes in the query
log graph. To produce suggestions, the outgoing edges for
the matched node in the graph are collected and sorted in
the decreasing order of their weights and the triple patterns
which are attached to the edges presented to the user as
the next possible triple pattern and the two variables for the
triple pattern are picked from the node’s associated variable
list. We also propose the use of an ontology during the
process of generation of suggestions by re-ordering the triple
patterns based on how close they are semantically to the
user’s original query. The semantic distance is computed
using the least common ancestor method between two con-
cepts in the ontology.

C. Cache based Query Reformulation suggestions at Run-
time

This section presents an approach to generate suggestions
in order to speed up the execution of SPARQL queries. Our
approach proceeds by suggesting the modifications to the
query at run-time to the user. The query is modified by either
replacing the predicates in it with another set of predicates
chosen from a query which was issued earlier or adding

new set of predicates from an earlier query whose results
are present in the cache. This allows the remaining results
for a part of the query to be picked from the cache itself.

In order to replace or add the new predicates in the current
query, we take a sample of the intermediate results of the
query and compare it with sample of the intermediate results
of previous queries during the query execution [19]. If the
number of matches exceeds a pre-determined threshold we
generate the new query and suggest the modification to the
user to either replace it with the new predicates or add the
new ones instead, such that the intermediate results are now
picked from the cache. The scheme poses the question of
how to access the relevant samples of intermediate results
of previous query executions efficiently which we plan to
address in the future.

D. Query reformulations suggestion based on exploration

In the fourth approach, we explore the distributed se-
mantic data looking for paths which are equivalent to the
concerned predicate in the query and present them as sug-
gestions to the user. We consider an equivalent path as one
which connects the same pair of entities which the concerned
predicate in the query connects. Of course, there will be
many sets of equivalent paths which requires heuristics to
determine the set which can be used to expand the query.
The heuristic we use in this paper computes the number of
times the query predicate and an probable equivalent path
occur together. If the number of times a probable equivalent
path occuring with the query predicate exceeds a certain
threshold, we confirm it as an equivalent path and use it to
expand the query. We also propose the use of an ontology to
optimize the search process of semantically equivalent paths.
The semantic distance is computed using the least common
ancestor method between two concepts in the ontology.
Future work also consists of making use of statistics and
ontology matching techniques to precisely determine the
equivalent path.

E. Conclusions

In this part of the paper, we presented an overview of
the research project dealing with generating suggestions to
SPARQL queries given by user which are executed over
the web of linked data. We also proposed four approaches
for this problem. Related work is being done in the field
of traditional databases to generate suggestions to SQL
queries [20] and we believe extending it to SPARQL taking
into consideration the semantic web concepts of reasoning
and implicit information represents a new research direction
worth exploring.

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data – the
story so far,” International Journal on Semantic Web and
Information Systems, vol. 5, no. 3, pp. 1–22, 2009.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

[2] O. Hartig and J.-C. Freytag, “Foundations of traversal
based query execution over linked data.” in HT,
E. V. Munson and M. Strohmaier, Eds. ACM,
2012, pp. 43–52. [Online]. Available: http://dblp.uni-
trier.de/db/conf/ht/ht2012.htmlHartigF12

[3] C. Hewitt, “Actor model of computation: Scalable
robust information systems,” Tech. Rep. v24, July 2012,
cite arxiv:1008.1459Comment: improved syntax. [Online].
Available: http://arxiv.org/abs/1008.1459v24

[4] J. Ayres and S. Eisenbach, “Stage: Python with
Actors,” in International Workshop on Multicore Software
Engineering (IWMSE), April 2009. [Online]. Available:
http://pubs.doc.ic.ac.uk/actors-in-python/

[5] P. Haase, M. Schmidt, and A. Schwarte, “The information
workbench as a self-service platform for linked data applica-
tions.” in COLD, ser. CEUR Workshop Proceedings, vol. 782.
CEUR-WS.org, 2011. [Online]. Available: http://dblp.uni-
trier.de/db/conf/semweb/cold2011.htmlHaaseSS11

[6] J. Broekstra, A. Kampman, and F. van Harmelen, “Sesame:
A generic architecture for storing and querying RDF and
RDF Schema,” in The Semantic Web – ISWC 2002: First
International Semantic Web Conference Sardinia, Italy, 2002,
pp. 54–68.

[7] K. Hose, R. Schenkel, M. Theobald, and G. Weikum,
“Database foundations for scalable RDF processing,” in Rea-
soning Web, 2011, pp. 202–249.

[8] D. Bonetta and C. Pautasso, “Towards liquid service oriented
architectures.” in WWW (Companion Volume). ACM,
2011, pp. 337–342. [Online]. Available: http://dblp.uni-
trier.de/db/conf/www/www2011c.htmlBonettaP11

[9] A. Garrote. (2011) antoniogarrote / rdfstore-js. [Online].
Available: https://github.com/antoniogarrote/rdfstore-js

[10] T. Desell, K. E. Maghraoui, and C. Varela, “Load balancing
of autonomous actors over dynamic networks,” in In Pro-
ceedings of the Hawaii International Conference on System
Sciences, HICSS-37 Software Technology Track, 2004, pp. 1–
10.

[11] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey
of cloud computing systems,” in Proceedings of the 2009
Fifth International Joint Conference on INC, IMS and IDC,
ser. NCM ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 44–51. [Online]. Available:

[12] A. Flahive, D. Taniar, and W. Rahayu, “Ontology as a service
(oaas): a case for sub-ontology merging on the cloud,”
The Journal of Supercomputing, pp. 1–32, 2011. [Online].
Available: http://dx.doi.org/10.1007/s11227-011-0711-4

[13] M. Franklin, A. Halevy, and D. Maier, “From databases to
dataspaces: a new abstraction for information management,”
SIGMOD Rec., vol. 34, no. 4, pp. 27–33, Dec. 2005. [Online].
Available: http://doi.acm.org/10.1145/1107499.1107502

[14] D. Martin, M. Burstein, E. Hobbs, O. Lassila, D. Mcdermott,
S. Mcilraith, S. Narayanan, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “OWL-S: Semantic Markup for
Web Services,” Tech. Rep., Nov. 2004. [Online]. Available:
http://www.w3.org/Submission/OWL-S/

[15] N. B. Mustapha, H. B. Zghal, M.-A. Aufaure, and
H. H. B. Ghzala, “Semantic search using modular
ontology learning and case-based reasoning.” in EDBT/ICDT
Workshops, ser. ACM International Conference Proceeding
Series. ACM, 201. [Online]. Available: http://dblp.uni-
trier.de/db/conf/edbtw/edbtw2010.htmlMustaphaZAG10

[16] P. Haase and J. Vlker, “Ontology learning and reasoning –
dealing with uncertainty and inconsistency,” in Uncertainty
Reasoning for the Semantic Web I, ser. LNCS. Springer
Berlin / Heidelberg, 2008, vol. 5327, pp. 366–384.

[17] J. Bock, A. Lenk, and C. Dänschel, “Ontology Alignment in
the Cloud,” in Proceedings of the 5th International Workshop
on Ontology Matching (OM-2010), vol. 689. http://ceur-
ws.org: CEUR Workshop Proceedings, November 2010, pp.
73–84.

[18] M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara, “A bro-
ker for owl-s web services,” in First International Semantic
Web Services Symposium, AAAI Spring Symposium Series,
2004.

[19] M. Yang and G. Wu, “Caching intermediate result of sparql
queries.” in WWW (Companion Volume). ACM, 2011, pp.
159–160.

[20] J. Fan, G. Li, and L. Zhou, “Interactive sql query suggestion:
Making databases user-friendly,” in Proceedings of the 27th
International Conference on Data Engineering, ICDE 2011,
April 11-16, 2011, Hannover, Germany. IEEE Computer
Society, 2011, pp. 351–362.

[21] Filali. Imen, Bongiovanni. Francesco, Huet. Fabrice and
Baude. Francoise, “A Survey of Structured P2P Systems for
RDF Data Storage and Retrieval.” in Transactions on Large-
Scale Data and Knowledge-Centered Systems III. Springer
Berlin / Heidelberg, volume 6790, 2011.

[22] Fuhr. Norbert, Klas. Claus-Peter, “Combining RDF and
Agent-Based Architectures for Semantic Interoperability in
Digital Libraries” in Proceedings of the DELOS Workshop
on Interoperability in Digital Libraries.2001.

[23] Husain. Mohammad Farhan, Doshi. Pankil, Khan. Latifur,
Thuraisingham. Bhavani, “Storage and Retrieval of Large
RDF Graph Using Hadoop and MapReduce” in Cloud Com-
puting. . Springer Berlin / Heidelberg, volume 5931, 2009.

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-293-6

SEMAPRO 2013 : The Seventh International Conference on Advances in Semantic Processing

