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Abstract—Semantic analysis is a very important part of natural 

language processing that often relies on statistical models and 

machine learning approaches. However, these approaches 

require resources that are costly to acquire. This paper 

describes our experiments to compare Anasem, a Prolog rule-

based semantic analyzer, with the best system of the 

Conference on Natural Language Learning (CoNLL) shared 

task dedicated to a sub-task of semantic analysis: Semantic 

Role Labeling. Both CoNLL best system and Anasem are 

based on a dependency grammar, but the major difference is 

how the two systems extract their semantic structures (rules 

versus machine learning). Our results show that a rule-based 

approach might still be a promising solution able to compete 

with a machine learning system under certain conditions.  

Keywords-Semantic role labeling; evaluation; rule-base 

systems; machine learning. 

I. INTRODUCTION 

One of the most challenging tasks of natural language 
processing is semantic analysis (SA), which aims at 
discovering semantic structures in texts. Two schools of 
thought try to tackle this hard task:  

The Computational Semantics approach: semantic 
analysis is often built on top of grammars describing lexical 
items through feature structures [3]. The aim is to extract a 
logical representation such as first-order logic and discourse 
representation structures (DRS). These types of grammars 
are often hard to build and maintain but they offer a wide 
coverage of various linguistic phenomena (e.g., co-reference 
resolution, negations, and long-distance dependencies). To 
our knowledge, such a wide coverage is only handled 
through this type of systems. Another problem is that very 
few if any datasets enable the comparison of these types of 
systems. 

The Machine Learning approach: semantic analysis is 
decomposed into various tasks such as semantic role labeling 
(SRL) [4], co-reference resolution [11] and named entity 
extraction [1]. While machine learning, especially supervised 
approaches, proved to be successful in some of these tasks, it 
suffers from well-known shortcomings: Firstly, the 
algorithms depend highly on the availability of training 
corpora, which take a lot of resources to be developed. 
Secondly, the learned models often do not scale well on 
different datasets and domains, thus necessitating other 
training corpora.  

The two aforementioned approaches involve a non-
negligible effort either in terms of software development 
(computational semantics) or in terms of data availability 
(machine learning). The two obvious questions are whether 
one of these approaches is less costly than the other and 
whether one is more successful than the other. Trying to 
address the second aspect, this paper aims at providing 
insights on the following research question: Can a rule-

based semantic analyzer reach the same performance of 
a machine learning one?  

Despite the fact that machine learning systems have 
become prominent in some tasks such as syntactic parsing, 
there is no clear evidence that they are more efficient and 
less costly for the semantic analysis task.  

In this paper, we compare two systems on a specific sub-
task of semantic analysis, which is the identification of 
predicates and their arguments: 

 ANASEM, our Prolog-based semantic analysis system 
which outputs Discourse Representations Structures 
based on dependency grammar patterns. We consider 
that ANASEM falls within the computational semantics 
approach;  

 The LTH Parser [4], which is the winner of CoNLL 
(The Twelfth Conference on Computational Natural 
Language Learning) shared task, dedicated to SRL. This 
system is based on dependency parsing and machine 
learning.  

These two systems are run on a subset of the CoNLL 
gold standard [12]. The paper explains in detail how we 
handled this comparison. 

The paper is organized as follows. Section 2 provides a 
brief overview of the state of the art in semantic analysis. 
Section 3 is a description of our rule-based semantic analyzer 
Anasem. Section 4 presents the core of our methodology by 
explaining the adaptations we had to perform on our system 
to compare our results with CoNLL winner. Section 5 details 
the results obtained by Anasem. Finally, section 6 discusses 
the limitations of our approach. 

II. STATE OF THE ART 

As aforementioned, the term “semantic analysis” might 
take various meanings depending on the targeted 
community. In this paper, we consider SA as the process of 
extracting predicates and arguments. There have been 
considerable efforts these last years in areas such as semantic 
role labeling [12], dependency-based representations [14] 
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and machine learning [4] to extract these semantic structures. 
Two main approaches are pervasive to state-of-the-art 
Natural Language Processing systems: statistical and 
machine learning techniques and rule-based techniques. 
Syntactic analysis seems to have evolved essentially towards 
statistical parsers [8]. However, rule-based approaches have 
proven successful in others tasks. For example, the best-
performing system at the CoNLL 2011 shared task for co-
reference resolution [6] is a rule-based system. Similarly, in 
semantic analysis, the STEP 2008 shared task [2] reported on 
various systems among which Boxer [3] used a categorical 
grammar approach. A formal comparison of these systems, 
using a gold standard, is missing. To our knowledge, CoNLL 
2008 Shared task is among the very few which offer such a 
gold standard. The participants at this competition were 
essentially machine learning systems including the first-
ranked system, the LTH Parser [4], which relied on 
dependency analysis and classifiers for SRL. In this paper, 
our objective is to compare the performance of ANASEM 
with the LTH parser. To our knowledge, there was no 
previous tentative in recent semantic analyzers to compare a 
symbolic rule-based approach to a machine learning 
approach on the same corpus. 

III. ANASEM, A PROLOG-BASED SEMANTIC ANALYZER 

Anasem [14] is a rule-based system written in Prolog and 
built on a modular pipeline made of 3 functionalities: 
syntactic parsing, canonical tree generation and pattern 
recognition. 

A. Syntactic Analysis 

The syntactic analysis is the first step in the pipeline, and 
like [4] it is based on dependency parsing. Anasem uses the 
Stanford parser [5], its dependency module [7] and its part-
of-speech tagger [13] to perform the syntactic analysis. For 
instance, the sentence They drank brandy in the lounge 
returns the following result, where part-of-speech tags and 
dependencies are given (note that each word is given with its 
position in the sentence.) 

 Part of speech:  
They/PRP drank/VBD brandy/NN in/IN the/DT 

lounge/NN ./. 
Syntactic analysis:  
nsubj(drank-2, They-1) 

dobj(drank-2, brandy-3) 

prep(drank-2, in-4) 

det(lounge-6, the-5) 

pobj(in-4, lounge-6) 

B. Canonical Tree generation 

The second step of the pipeline is to generate a canonical 
tree from the syntactic analysis to facilitate the subsequent 
step of pattern recognition. The dependency parse is coupled 
with parts-of-speech to create a Prolog term. This Prolog 
term represents a unified structure that can be processed 
recursively based on the principle of compositionality. Using 
our previous example, we obtain the following 
representation:  
root/tree(token(drank, 2)/v, 

 [nsubj/tree(token(they, 1)/prp, []),  

  dobj/tree(token(brandy, 3)/n, []),  

  prep/tree(token(in, 4)/prep,  

   [pobj/tree(token(lounge, 6)/n,  

     [det/tree(token(the,5)/d,[])])])])  

A final step is to modify the generated tree to facilitate 
patterns identification. Some important modifications are 
related to coordination and negation. Dependencies 
involving a coordinated form are duplicated and attached to 
every member of the coordination. For example, the parse 
tree for the sentence John visited Paris and Roma would be 
translated into a tree that corresponds to the sentence John 
visited Paris and John visited Roma. Another important 
transformation achieved at this step concerns negation. 
Instead of being dependent of the main verb of the clause, 
the negation is moved at the root of the clause. 

C. Pattern recognition 

An Anasem pattern represents a syntactic rule that can be 
mapped to a semantic representation. Anasem contains about 
60 patterns. Each part of the Prolog tree is analyzed in a 
recursive manner, thus implementing a pattern hierarchy 
(based on the rules appearance in Prolog). The output is a 
discourse representation structure [14]. Using the previous 
example, we obtain the following DRS: 

--------------------------------- 
[id1,id2,e1,id3] 

--------------------------------- 

entity(id1,they) 

entity(id2,brandy) 

event(e1,drank,id1,id2) 

entity(id3,lounge) 

in(e1,id3) 

--------------------------------- 

This DRS introduces three entities and one event. Event 
e1 is a drinking event that involves two entities (the brandy 
and the persons who are drinking it). The DRS also 
expresses a relation between the event and its location (the 
lounge). 

IV. METHODOLOGY 

This section describes the methodology followed to 
compare Anasem with LTH Parser.  

A. CoNLL Corpus and Terminology Description 

CoNLL Shared Task provided a corpus based on a 

subset of the Penn Treebank II [7] [12]. Two types of 

corpora were made available: a training corpus that 

contained a structured output with parts of speech, syntactic 

analysis and semantic representations, and a test corpus. In 

our case, the major problem with these corpora is the lack of 

compatibility with Anasem's output format (DRS, 

grammatical relationships, grammatical categories and 

semantic categories). Table I shows the subset of CoNLL 

format that was used in our adaptations. Each term is related 

to a part-of-speech, the position of its head in the sentence 

(value is 0 for the root of the sentence), and a grammatical 

relationship. The semantic representation starts with the 

semantic predicate (and its frame in PropBank [10] and 

NomBank [9]). Finally the last columns indicate semantic 
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arguments in the form of semantic categories labeled A0, 

A1, AM-TMP, etc. For every predicate there is a 

corresponding column, in the same order. For example, in 

Table I, predicate happen.01 has arguments A1 and AM-

TMP that correspond to accident and as, respectively.  

TABLE I.      AN EXAMPLE OF CONLL FORMAT 

1 The DT 2 NMOD _ _ _ 

2 accident NN 3 SBJ _ A1 _ 

3 happened VBD 0 ROOT happen.01 _ _ 
4 as IN 3 TMP _ AM-

TMP 

_ 

5 the DT 6 NMOD _ _ _ 
6 night NN 7 SBJ _ _ A1 

7 was VBD 4 SUB _ _ _ 

8 falling VBG 7 VC fall.01 _ _ 
9 . . 3 P _ _ _ 

B.  Anasem Adaptation to CoNLL 

Given the different terminology adopted by CoNLL, we 

had to modify two major modules of Anasem, namely the 

canonical tree generator and the semantic patterns that were 

using the Stanford nomenclature. 

1) The Canonical Tree Generator 

As aforementioned, Anasem uses the Stanford parser [5] 

to generate the canonical trees. To exploit our patterns, we 

had to keep Anasem's canonical tree representation while 

using CoNLL lexico-syntactic representations. These 

representations were available in the shared task corpora [12] 

designated hereafter as the gold standard (GS). We extracted 

the syntactic relations, the parts of speech and the head of 

each word from the GS (see Table II) and replaced Anasem’s 

dependency relationships and parts of speech.  

The sentence The accident happened as the night was 

falling was transformed into the trees illustrated in Table II. 

As can be noticed, although there were similarities 

between the initial tree and the obtained tree, there were also 

some major differences. For example, some root nodes 

changed as shown by comparing the node advcl 

falling/v in our initial tree with the node tmp as/prep 

in the obtained tree. These differences can be explained by 

the fact that the Stanford parser and CoNLL have different 

syntactic representations. For example, the "auxiliary" is 

represented by the Stanford Parser with its head as the verb 

and the syntactic relation as "aux", while in CoNLL, the 

auxiliary is the head and its syntactic relation is called a 

"verb chain" (vc). 

TABLE II.      CANONICAL TREE TRANSFORMATION 

Initial Canonical Tree 

root happened/v  

nsubj accident/n  

 det the/d  

advcl falling/v  

 mark as/prep  

 nsubj night/n  

    det the/d  

 aux was/v 

Tree using CoNLL Terminology 

root happened/v  

sbj accident/n  

 nmod the/d  

tmp as/prep  

 sub was/v  

 sbj night/n  

      nmod the/d  

 vc falling/v 

Modified Canonical Tree 

root happened/v  

sbj accident/n  

 nmod the/d  

tmp falling/v  

 sbj night/n  

  nmod the/d  

 aux was/v  

 complm as/prep 

We classified these differences into two major categories:  

a. Structural differences, which happen when word 

positions and heads inside the tree are different. 

b. Nominal differences, which happen when the 

terminology of the grammatical relations is 

different but the meaning is the same. 

We had to adapt the canonical tree generator to deal with 

these differences. Most problems caused by structural 

differences were solved by creating a set of rules that we 

applied to the canonical tree (for instance AUX in our 

previous example). Nominal differences were then resolved 

by providing a mapping between Stanford grammatical 

relations and CoNLL relations and updating Anasem patterns 

accordingly. 

2) Patterns Adaptation 

Almost all the patterns had to be adapted to use the 

CoNLL grammatical terminology. Many patterns needed a 

nomenclature modification, for example the noun subject 

tagged NSUBJ in Stanford had to be renamed to SBJ to match 

CoNLL terminology. There were few exceptions such as the 

negative form which did not necessitate a change. Apart 

from the terminological changes, we experienced some 

mapping problems due to differences in granularities 

between the Stanford grammatical relationships hierarchy 

(which seems more fine-grained) and the CoNLL one. The 

grammatical relationship NMOD is a good example of this 

problem. For example, in CoNLL, determiner and adjectives 

are both classified as a NMOD, while Stanford has specific 

categories (DET, AMOD). In this case, we were able to perform 

mappings with the Stanford hierarchy by using parts of 

speech to differentiate the various possibilities.  

Certain patterns were not used because their grammatical 

relations were not identified in CoNLL. For example, clausal 

complements, represented by the CCOMP relation in Stanford 

parser, are interpreted as generic complements in CoNLL.  

Although there were many differences between Anasem's 

output (DRS) and CoNLL's output (Table I), attempts were 

made to automate the process, but they were unsuccessful 

due to too many special cases. Therefore, we had to select a 

subset of the original corpora, manually identify the 
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mappings and finally check the obtained tree transformations 

before being able to parse the obtained trees using the pattern 

recognition module. 

C.  Corpus Selection and Comparison Methodology 

We selected a subset of sentences from the original 

corpora to analyze them with our system and compare the 

results with LTH Parser. We established few rules to avoid 

some specific problems with few characters, which are not 

processed by the current version of Anasem, and to deal with 

the way CoNLL handle hyphenated words. These rules are 

as follow: 

 A sentence must not contain the following characters 

(-`&$%()_:\/) as Anasem is not robust in front of this 

type of input. 

 A sentence must not contain hyphenated words: this 

rule was due to the way CoNLL processes these 

words. The GS separates the words and the hyphen 

and considers each word independently while 

Anasem considers them as a single entity. 

 A sentence must have between 5 and 30 words. 

 A sentence must have at least 1 verb. 

In particular, the last two rules were used to focus on the 

most representative and declarative sentences (e.g., with at 

least one verb). For instance, a sentence such as : “At law 

school, the same” was excluded from our evaluation. 

Using these filtering rules, we extracted sentences from 

the CoNLL training corpus (dev set). Then, to avoid any 

bias, we randomized all the sentences with 

"www.random.org" and extracted the first 51. These 

sentences (dev set) were used to compare Anasem results 

with the gold standard semantic representations. We repeated 

the same process on the test corpus to extract a set of 

sentences to be used for a fair comparison between Anasem 

results and LTH Parser, which was trained on CoNLL 

training corpus. 50 sentences were extracted from the test 

corpus, with an overall of 101 sentences.  

To be able to compare Anasem with CoNLL semantic 

representation, we had to establish a comparison 

methodology. Due to the differences between Anasem 

semantic representation (DRS containing entities, events, 

attributes, etc.), this comparison was essentially based on the 

unlabeled extraction of the semantic representations. 

We ran Anasem on the test and dev corpora and the LTH 

Parser on the test corpus. 

To evaluate ANASEM DRS, we extracted the predicates 

from the gold standard and we verified if these predicates 

were available in the generated DRS either as an entity or 

an event. Then for each of these predicates, we compared 

the arguments indicated in the gold standard with those in the 

DRS to correlate them with either an event argument (e.g., 

event (e2,falling,id2)) or a complement argument 

(e.g., time(e1,e2) or in (id2,id3)). This allowed us to 

compute recall for Anasem. 

For the comparison between ANASEM and LTH Parser, 

we used the evaluation tool of the CoNLL competition 

shared task. Since we aimed mainly at the identification of 

predicates and arguments (without providing a label), we 

slightly modified this tool to display the presentation of 

unlabelled arguments and predicates.  

V. RESULTS 

In this section, we present the results of our experiments.  

A. Sentence-based results 

We categorized our results into the following:  

All sentences: These results include both fully and partially 

covered sentences on both corpora (development and test). 

Since we do not cover all the possible patterns yet in 

Anasem, it was anticipated that some sentences would be 

partially analyzed.  

Sentences with full predicate coverage: These results 

describe the performance of Anasem over sentences that 

were successfully parsed at the syntactic level and whose 

predicates have all been discovered at the semantic analysis 

level. These sentences are qualified as fully covered 

sentences in our results. 

All the results based on the GS are reported as unlabeled 

recall values only. In fact, even though we consider CoNLL 

corpus as a GS, our analysis is that this GS is not very well 

adapted for a fair computation of Anasem precision. In fact, 

Anasem covers semantic relationships that are not available 

in the GS but that are still valid. One case is that Anasem 

extracts all attributes when CoNLL GS seems to neglect 

some. For example in the phrase “…his sweaty armpits…” , 

CoNLL considers only “his” as an attribute of “armpits” 

(A1) while Anasem identifies also “sweaty” as an attribute, 

which seems reasonable. Another case is that CoNLL 

restricts the analysis to predicates with arguments from 

PropBank [10] and NomBank [9], and cannot identify 

predicates without arguments (such as Shipyard(X)), which 

might be criticized in the context of a global semantic 

analysis. Computing precision over this GS would affect 

negatively the precision of Anasem. However, to give the 

reader an idea about the performance of our system, we 

manually computed the precision over the DRS extracted 

from the test corpus (see Table III). 

TABLE III.      PRECISION RESULTS FOR ANASEM 

Predicates 92 % 

Arguments 80 % 

Predicates and 

arguments 

86 % 

All sentences 

These results are obtained on the 101 sentences from the 

test and development corpora. Each sentence is broken 

down into predicates and arguments to allow for a more 

focused analysis of the results. Among these 101 sentences, 

there were 53 fully covered sentences, 37 partially covered 

sentences and 11 empty outputs. These outputs are due to 

failure at the semantic or syntactic level (e.g., an unknown 

pattern or an illegal Prolog term generation) with a total of 
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229 predicates and 404 arguments. For the same set of 

sentences, the gold standard indicated 298 predicates and 

672 arguments. Overall, we obtained a recall of 77 % for the 

identification of predicates and 61 % for the arguments.  

Sentences with full predicate coverage  
As mentioned previously, we tagged sentences with 

missing predicates as partially analyzed sentences. The 

missing items often resulted from some unimplemented 

pattern in our Prolog-based semantic analyzer. Thus, we 

decided to present the results of fully covered sentences 

separately, as we wanted to evaluate our success on 

identified patterns. There were 53 fully covered sentences in 

our corpus with 337 possible arguments among which we 

identified 271 arguments. This resulted in a significant 

improvement of 19% over the previous results with a recall 

of 80%.  

Table IV summarizes the results obtained for the 

extraction of unlabeled predicates and arguments. 

TABLE IV.      RECALL VALUES FOR THE DETECTION OF 

PREDICATES AND THEIR ARGUMENTS 
(UNLABELED). 

 Predicates Arguments 

All sentences 77%  61% 

 Fully covered 

sentences 

100% 80% 

We can notice that the recall for predicates and 

arguments identification is much better on fully covered 

sentences. 

B. Arguments recognition 

These results focus on arguments rather than on the 

predicates. The objective is to assess the success of Anasem 

in correctly extracting arguments when the predicate is 

identified.  

Table V shows the recall values for argument detection 

when we consider the correctly identified predicates, 

independently of the sentences (All detected predicates). In 

the 50 sentences corpus, 94 predicates were found. In the 

gold standard, there were 218 arguments associated to these 

predicates, from which 162 were found by Anasem. That is 

a 74 % rate of success. 

TABLE V.      RECALL VALUES FOR ARGUMENT 

DETECTION IF WE CONSIDER ONLY CASES 
WHERE PREDICATES WERE DETECTED. 

 Arguments 

All detected predicates  74% 

Predicates detected in fully 

covered sentences 
78% 

Taking only the predicates that were detected in fully 

covered sentences, the figures are slightly better (106 out of 

136 arguments), that is, a 78 % rate of success. This shows 

that choosing arguments from partially analyzed sentences 

tends to give worst results than with fully-covered 

sentences.  

C. Comparison with CoNLL Shared Task Best System 

We also executed LTH Parser on the 50 sentences from 

the test corpus. LTH results were as follow for the unlabeled 

predicates and arguments: 136 predicates out of 142 and 250 

arguments out of the 314 that were in the gold standard. 

This represents a 95 % recall rate for the predicates and 80 

% recall value for the identification of the arguments (see 

Table VI). Results are significantly lower with Anasem 

especially for argument detection. However, we see that by 

considering only completely parsed sentences, the 

difference seems to vanish.  

TABLE VI.      COMPARISON OF RECALL VALUES IN % FOR 

ANASEM AND LTH. 

 Predicates Arguments 

Anasem (All 

sentences) 
72% 57% 

Anasem (fully 

covered sentences) 
- 79% 

LTH 95% 80% 

Since Anasem makes a distinction between core 

arguments (that correspond to A0, A1…A4 in CoNLL) and 

modifier arguments (all other arguments in CoNLL), we 

were interested to see whether the recall values are the same 

for both categories. Table VII shows the results, including 

LTH evaluation on the test corpus. Interestingly, we note 

that the difference between core and modifiers is greater in 

LTH Parser than in Anasem. 

TABLE VII.      RECALL VALUES FOR ARGUMENT 

DETECTION, DISTINGUISHING CORE ARGUMENTS 

AND MODIFIER ARGUMENTS. 

 Core Modifiers 

All sentences results on test 

corpus - Anasem 
57% 53% 

Fully covered sentences 

results on test corpus - 

Anasem 

81% 76% 

Results on test corpus - LTH 84% 69% 

VI. DISCUSSION 

A. General Observations 

There are a few things that we need to clarify regarding 

our results. In the CoNLL shared task, the participating 

systems were based on external lexicons, namely PropBank 

[10] and NomBank [9] to identify the arguments types. 

These lexicons identify arguments based on a word 

considered as a predicate. Each word-predicate is related to 

a frame that assigns generic categories such as A0 or A1 to 

the arguments. 

The peculiarity of Anasem is that it is a standalone 

system, which does not rely on any external resource to 

identify predicates and arguments. Only dependency parses 

are used, which means that Anasem is able to extract these 

predicates and arguments but cannot annotate them with 

particular categories or types. Therefore, we relied on the 
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unlabeled extraction task of the competition and compared 

unlabeled results. This means that whenever we compare 

our output with the gold standard, we only compare the 

presence of the arguments and the predicates, regardless of 

the type of the arguments.  

The results for all the sentences in the combined corpora 

were not outstanding (77 % for the predicates and 61 % for 

the arguments). On the one hand, this was not really 

surprising, considering the limited amount of patterns 

implemented in Anasem. On the other hand, with the fully 

covered sentences the results rivaled the winner's of the 

shared task of CoNLL (79% versus 80% argument wise). 

Our conclusion is that Anasem, though not complete yet, 

has a good potential to perform as well as a machine 

learning approach, while staying independent from a 

training corpus and domain. These results will have to be 

confirmed in future experiments on bigger corpora. 

B.  Limitations 

There are limitations in our experiments. To begin with, 

we used a sub-corpus of the original corpus of CoNLL, and 

it was a rather small part of it with only 101 sentences. This 

small number was largely due to the complexity of 

comparing our adapted output to the CoNLL format and to 

the time-consuming effort required to make the manual 

comparison. This manual comparison might have been 

biased due to possible potential errors by the expert 

performing the comparison. However, a clear methodology 

for comparing the representations was established upfront 

and was closely followed. 

 We are conscious that our limited set of sentences might 

affect positively our results if well-analyzed sentences are 

selected. However, these sentences were randomly selected 

as previously explained. Moreover, the opposite 

phenomenon might occur and amplify analysis errors if the 

wrong sentences (i.e., not well-analyzed sentences) are 

selected from the gold standard.  
Another important point is that there are a number of 

errors that we identified in the CoNLL gold standard, and in 

general these errors affected negatively our experiments, 

and probably more strongly than if we had thousands of 

sentences. This is the main reason of dividing the results 

into fully covered and partially covered sentences. 

VII. CONCLUSION 

This paper presented the results of a rule-based system 

for semantic analysis and compared it to the winner of the 

CoNLL shared task [12]. It shows that using a modular 

system with syntactic analysis based on dependency 

grammar can have comparable results with a machine-

learning based analysis when the sentences are fully 

covered. It also demonstrates the difficulty of comparing 

systems based on various formalisms and lexicons. In future 

work, we plan to add new rules to our pattern recognition 

analyzer and to repeat the same types of experiments using a 

wider range of sentences. We also want to find a way to 

measure the precision and the F1 scores. Our preliminary 

conclusion is that semantic analysis with ruled-based 

systems has its place among statistical and machine-learning 

approaches. 
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