
Comparing a Rule-Based and a Machine Learning Approach

for Semantic Analysis

Francois-Xavier Desmarais
École Polytechnique

de Montréal

Montréal, PQ, Canada
Francois-Xavier.Desmarais@polymtl.ca

Michel Gagnon
École Polytechnique

de Montréal

Montreal, PQ, Canada

Michel.gagnon@polymtl.ca

Amal Zouaq
Royal Military College of Canada

Department of Mathematics and Computer

Science

 Kingston, ON, Canada
Amal.Zouaq@rmc.ca

Abstract—Semantic analysis is a very important part of natural

language processing that often relies on statistical models and

machine learning approaches. However, these approaches

require resources that are costly to acquire. This paper

describes our experiments to compare Anasem, a Prolog rule-

based semantic analyzer, with the best system of the

Conference on Natural Language Learning (CoNLL) shared

task dedicated to a sub-task of semantic analysis: Semantic

Role Labeling. Both CoNLL best system and Anasem are

based on a dependency grammar, but the major difference is

how the two systems extract their semantic structures (rules

versus machine learning). Our results show that a rule-based

approach might still be a promising solution able to compete

with a machine learning system under certain conditions.

Keywords-Semantic role labeling; evaluation; rule-base

systems; machine learning.

I. INTRODUCTION

One of the most challenging tasks of natural language
processing is semantic analysis (SA), which aims at
discovering semantic structures in texts. Two schools of
thought try to tackle this hard task:

The Computational Semantics approach: semantic
analysis is often built on top of grammars describing lexical
items through feature structures [3]. The aim is to extract a
logical representation such as first-order logic and discourse
representation structures (DRS). These types of grammars
are often hard to build and maintain but they offer a wide
coverage of various linguistic phenomena (e.g., co-reference
resolution, negations, and long-distance dependencies). To
our knowledge, such a wide coverage is only handled
through this type of systems. Another problem is that very
few if any datasets enable the comparison of these types of
systems.

The Machine Learning approach: semantic analysis is
decomposed into various tasks such as semantic role labeling
(SRL) [4], co-reference resolution [11] and named entity
extraction [1]. While machine learning, especially supervised
approaches, proved to be successful in some of these tasks, it
suffers from well-known shortcomings: Firstly, the
algorithms depend highly on the availability of training
corpora, which take a lot of resources to be developed.
Secondly, the learned models often do not scale well on
different datasets and domains, thus necessitating other
training corpora.

The two aforementioned approaches involve a non-
negligible effort either in terms of software development
(computational semantics) or in terms of data availability
(machine learning). The two obvious questions are whether
one of these approaches is less costly than the other and
whether one is more successful than the other. Trying to
address the second aspect, this paper aims at providing
insights on the following research question: Can a rule-

based semantic analyzer reach the same performance of
a machine learning one?

Despite the fact that machine learning systems have
become prominent in some tasks such as syntactic parsing,
there is no clear evidence that they are more efficient and
less costly for the semantic analysis task.

In this paper, we compare two systems on a specific sub-
task of semantic analysis, which is the identification of
predicates and their arguments:

 ANASEM, our Prolog-based semantic analysis system
which outputs Discourse Representations Structures
based on dependency grammar patterns. We consider
that ANASEM falls within the computational semantics
approach;

 The LTH Parser [4], which is the winner of CoNLL
(The Twelfth Conference on Computational Natural
Language Learning) shared task, dedicated to SRL. This
system is based on dependency parsing and machine
learning.

These two systems are run on a subset of the CoNLL
gold standard [12]. The paper explains in detail how we
handled this comparison.

The paper is organized as follows. Section 2 provides a
brief overview of the state of the art in semantic analysis.
Section 3 is a description of our rule-based semantic analyzer
Anasem. Section 4 presents the core of our methodology by
explaining the adaptations we had to perform on our system
to compare our results with CoNLL winner. Section 5 details
the results obtained by Anasem. Finally, section 6 discusses
the limitations of our approach.

II. STATE OF THE ART

As aforementioned, the term “semantic analysis” might
take various meanings depending on the targeted
community. In this paper, we consider SA as the process of
extracting predicates and arguments. There have been
considerable efforts these last years in areas such as semantic
role labeling [12], dependency-based representations [14]

103Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

and machine learning [4] to extract these semantic structures.
Two main approaches are pervasive to state-of-the-art
Natural Language Processing systems: statistical and
machine learning techniques and rule-based techniques.
Syntactic analysis seems to have evolved essentially towards
statistical parsers [8]. However, rule-based approaches have
proven successful in others tasks. For example, the best-
performing system at the CoNLL 2011 shared task for co-
reference resolution [6] is a rule-based system. Similarly, in
semantic analysis, the STEP 2008 shared task [2] reported on
various systems among which Boxer [3] used a categorical
grammar approach. A formal comparison of these systems,
using a gold standard, is missing. To our knowledge, CoNLL
2008 Shared task is among the very few which offer such a
gold standard. The participants at this competition were
essentially machine learning systems including the first-
ranked system, the LTH Parser [4], which relied on
dependency analysis and classifiers for SRL. In this paper,
our objective is to compare the performance of ANASEM
with the LTH parser. To our knowledge, there was no
previous tentative in recent semantic analyzers to compare a
symbolic rule-based approach to a machine learning
approach on the same corpus.

III. ANASEM, A PROLOG-BASED SEMANTIC ANALYZER

Anasem [14] is a rule-based system written in Prolog and
built on a modular pipeline made of 3 functionalities:
syntactic parsing, canonical tree generation and pattern
recognition.

A. Syntactic Analysis

The syntactic analysis is the first step in the pipeline, and
like [4] it is based on dependency parsing. Anasem uses the
Stanford parser [5], its dependency module [7] and its part-
of-speech tagger [13] to perform the syntactic analysis. For
instance, the sentence They drank brandy in the lounge
returns the following result, where part-of-speech tags and
dependencies are given (note that each word is given with its
position in the sentence.)

 Part of speech:
They/PRP drank/VBD brandy/NN in/IN the/DT

lounge/NN ./.
Syntactic analysis:
nsubj(drank-2, They-1)

dobj(drank-2, brandy-3)

prep(drank-2, in-4)

det(lounge-6, the-5)

pobj(in-4, lounge-6)

B. Canonical Tree generation

The second step of the pipeline is to generate a canonical
tree from the syntactic analysis to facilitate the subsequent
step of pattern recognition. The dependency parse is coupled
with parts-of-speech to create a Prolog term. This Prolog
term represents a unified structure that can be processed
recursively based on the principle of compositionality. Using
our previous example, we obtain the following
representation:
root/tree(token(drank, 2)/v,

 [nsubj/tree(token(they, 1)/prp, []),

 dobj/tree(token(brandy, 3)/n, []),

 prep/tree(token(in, 4)/prep,

 [pobj/tree(token(lounge, 6)/n,

 [det/tree(token(the,5)/d,[])])])])

A final step is to modify the generated tree to facilitate
patterns identification. Some important modifications are
related to coordination and negation. Dependencies
involving a coordinated form are duplicated and attached to
every member of the coordination. For example, the parse
tree for the sentence John visited Paris and Roma would be
translated into a tree that corresponds to the sentence John
visited Paris and John visited Roma. Another important
transformation achieved at this step concerns negation.
Instead of being dependent of the main verb of the clause,
the negation is moved at the root of the clause.

C. Pattern recognition

An Anasem pattern represents a syntactic rule that can be
mapped to a semantic representation. Anasem contains about
60 patterns. Each part of the Prolog tree is analyzed in a
recursive manner, thus implementing a pattern hierarchy
(based on the rules appearance in Prolog). The output is a
discourse representation structure [14]. Using the previous
example, we obtain the following DRS:

[id1,id2,e1,id3]

entity(id1,they)

entity(id2,brandy)

event(e1,drank,id1,id2)

entity(id3,lounge)

in(e1,id3)

This DRS introduces three entities and one event. Event
e1 is a drinking event that involves two entities (the brandy
and the persons who are drinking it). The DRS also
expresses a relation between the event and its location (the
lounge).

IV. METHODOLOGY

This section describes the methodology followed to
compare Anasem with LTH Parser.

A. CoNLL Corpus and Terminology Description

CoNLL Shared Task provided a corpus based on a

subset of the Penn Treebank II [7] [12]. Two types of

corpora were made available: a training corpus that

contained a structured output with parts of speech, syntactic

analysis and semantic representations, and a test corpus. In

our case, the major problem with these corpora is the lack of

compatibility with Anasem's output format (DRS,

grammatical relationships, grammatical categories and

semantic categories). Table I shows the subset of CoNLL

format that was used in our adaptations. Each term is related

to a part-of-speech, the position of its head in the sentence

(value is 0 for the root of the sentence), and a grammatical

relationship. The semantic representation starts with the

semantic predicate (and its frame in PropBank [10] and

NomBank [9]). Finally the last columns indicate semantic

104Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

arguments in the form of semantic categories labeled A0,

A1, AM-TMP, etc. For every predicate there is a

corresponding column, in the same order. For example, in

Table I, predicate happen.01 has arguments A1 and AM-

TMP that correspond to accident and as, respectively.

TABLE I. AN EXAMPLE OF CONLL FORMAT

1 The DT 2 NMOD _ _ _

2 accident NN 3 SBJ _ A1 _

3 happened VBD 0 ROOT happen.01 _ _
4 as IN 3 TMP _ AM-

TMP

_

5 the DT 6 NMOD _ _ _
6 night NN 7 SBJ _ _ A1

7 was VBD 4 SUB _ _ _

8 falling VBG 7 VC fall.01 _ _
9 . . 3 P _ _ _

B. Anasem Adaptation to CoNLL

Given the different terminology adopted by CoNLL, we

had to modify two major modules of Anasem, namely the

canonical tree generator and the semantic patterns that were

using the Stanford nomenclature.

1) The Canonical Tree Generator

As aforementioned, Anasem uses the Stanford parser [5]

to generate the canonical trees. To exploit our patterns, we

had to keep Anasem's canonical tree representation while

using CoNLL lexico-syntactic representations. These

representations were available in the shared task corpora [12]

designated hereafter as the gold standard (GS). We extracted

the syntactic relations, the parts of speech and the head of

each word from the GS (see Table II) and replaced Anasem’s

dependency relationships and parts of speech.

The sentence The accident happened as the night was

falling was transformed into the trees illustrated in Table II.

As can be noticed, although there were similarities

between the initial tree and the obtained tree, there were also

some major differences. For example, some root nodes

changed as shown by comparing the node advcl

falling/v in our initial tree with the node tmp as/prep

in the obtained tree. These differences can be explained by

the fact that the Stanford parser and CoNLL have different

syntactic representations. For example, the "auxiliary" is

represented by the Stanford Parser with its head as the verb

and the syntactic relation as "aux", while in CoNLL, the

auxiliary is the head and its syntactic relation is called a

"verb chain" (vc).

TABLE II. CANONICAL TREE TRANSFORMATION

Initial Canonical Tree

root happened/v

nsubj accident/n

 det the/d

advcl falling/v

 mark as/prep

 nsubj night/n

 det the/d

 aux was/v

Tree using CoNLL Terminology

root happened/v

sbj accident/n

 nmod the/d

tmp as/prep

 sub was/v

 sbj night/n

 nmod the/d

 vc falling/v

Modified Canonical Tree

root happened/v

sbj accident/n

 nmod the/d

tmp falling/v

 sbj night/n

 nmod the/d

 aux was/v

 complm as/prep

We classified these differences into two major categories:

a. Structural differences, which happen when word

positions and heads inside the tree are different.

b. Nominal differences, which happen when the

terminology of the grammatical relations is

different but the meaning is the same.

We had to adapt the canonical tree generator to deal with

these differences. Most problems caused by structural

differences were solved by creating a set of rules that we

applied to the canonical tree (for instance AUX in our

previous example). Nominal differences were then resolved

by providing a mapping between Stanford grammatical

relations and CoNLL relations and updating Anasem patterns

accordingly.

2) Patterns Adaptation

Almost all the patterns had to be adapted to use the

CoNLL grammatical terminology. Many patterns needed a

nomenclature modification, for example the noun subject

tagged NSUBJ in Stanford had to be renamed to SBJ to match

CoNLL terminology. There were few exceptions such as the

negative form which did not necessitate a change. Apart

from the terminological changes, we experienced some

mapping problems due to differences in granularities

between the Stanford grammatical relationships hierarchy

(which seems more fine-grained) and the CoNLL one. The

grammatical relationship NMOD is a good example of this

problem. For example, in CoNLL, determiner and adjectives

are both classified as a NMOD, while Stanford has specific

categories (DET, AMOD). In this case, we were able to perform

mappings with the Stanford hierarchy by using parts of

speech to differentiate the various possibilities.

Certain patterns were not used because their grammatical

relations were not identified in CoNLL. For example, clausal

complements, represented by the CCOMP relation in Stanford

parser, are interpreted as generic complements in CoNLL.

Although there were many differences between Anasem's

output (DRS) and CoNLL's output (Table I), attempts were

made to automate the process, but they were unsuccessful

due to too many special cases. Therefore, we had to select a

subset of the original corpora, manually identify the

105Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

mappings and finally check the obtained tree transformations

before being able to parse the obtained trees using the pattern

recognition module.

C. Corpus Selection and Comparison Methodology

We selected a subset of sentences from the original

corpora to analyze them with our system and compare the

results with LTH Parser. We established few rules to avoid

some specific problems with few characters, which are not

processed by the current version of Anasem, and to deal with

the way CoNLL handle hyphenated words. These rules are

as follow:

 A sentence must not contain the following characters

(-`&$%()_:\/) as Anasem is not robust in front of this

type of input.

 A sentence must not contain hyphenated words: this

rule was due to the way CoNLL processes these

words. The GS separates the words and the hyphen

and considers each word independently while

Anasem considers them as a single entity.

 A sentence must have between 5 and 30 words.

 A sentence must have at least 1 verb.

In particular, the last two rules were used to focus on the

most representative and declarative sentences (e.g., with at

least one verb). For instance, a sentence such as : “At law

school, the same” was excluded from our evaluation.

Using these filtering rules, we extracted sentences from

the CoNLL training corpus (dev set). Then, to avoid any

bias, we randomized all the sentences with

"www.random.org" and extracted the first 51. These

sentences (dev set) were used to compare Anasem results

with the gold standard semantic representations. We repeated

the same process on the test corpus to extract a set of

sentences to be used for a fair comparison between Anasem

results and LTH Parser, which was trained on CoNLL

training corpus. 50 sentences were extracted from the test

corpus, with an overall of 101 sentences.

To be able to compare Anasem with CoNLL semantic

representation, we had to establish a comparison

methodology. Due to the differences between Anasem

semantic representation (DRS containing entities, events,

attributes, etc.), this comparison was essentially based on the

unlabeled extraction of the semantic representations.

We ran Anasem on the test and dev corpora and the LTH

Parser on the test corpus.

To evaluate ANASEM DRS, we extracted the predicates

from the gold standard and we verified if these predicates

were available in the generated DRS either as an entity or

an event. Then for each of these predicates, we compared

the arguments indicated in the gold standard with those in the

DRS to correlate them with either an event argument (e.g.,

event (e2,falling,id2)) or a complement argument

(e.g., time(e1,e2) or in (id2,id3)). This allowed us to

compute recall for Anasem.

For the comparison between ANASEM and LTH Parser,

we used the evaluation tool of the CoNLL competition

shared task. Since we aimed mainly at the identification of

predicates and arguments (without providing a label), we

slightly modified this tool to display the presentation of

unlabelled arguments and predicates.

V. RESULTS

In this section, we present the results of our experiments.

A. Sentence-based results

We categorized our results into the following:

All sentences: These results include both fully and partially

covered sentences on both corpora (development and test).

Since we do not cover all the possible patterns yet in

Anasem, it was anticipated that some sentences would be

partially analyzed.

Sentences with full predicate coverage: These results

describe the performance of Anasem over sentences that

were successfully parsed at the syntactic level and whose

predicates have all been discovered at the semantic analysis

level. These sentences are qualified as fully covered

sentences in our results.

All the results based on the GS are reported as unlabeled

recall values only. In fact, even though we consider CoNLL

corpus as a GS, our analysis is that this GS is not very well

adapted for a fair computation of Anasem precision. In fact,

Anasem covers semantic relationships that are not available

in the GS but that are still valid. One case is that Anasem

extracts all attributes when CoNLL GS seems to neglect

some. For example in the phrase “…his sweaty armpits…” ,

CoNLL considers only “his” as an attribute of “armpits”

(A1) while Anasem identifies also “sweaty” as an attribute,

which seems reasonable. Another case is that CoNLL

restricts the analysis to predicates with arguments from

PropBank [10] and NomBank [9], and cannot identify

predicates without arguments (such as Shipyard(X)), which

might be criticized in the context of a global semantic

analysis. Computing precision over this GS would affect

negatively the precision of Anasem. However, to give the

reader an idea about the performance of our system, we

manually computed the precision over the DRS extracted

from the test corpus (see Table III).

TABLE III. PRECISION RESULTS FOR ANASEM

Predicates 92 %

Arguments 80 %

Predicates and

arguments

86 %

All sentences

These results are obtained on the 101 sentences from the

test and development corpora. Each sentence is broken

down into predicates and arguments to allow for a more

focused analysis of the results. Among these 101 sentences,

there were 53 fully covered sentences, 37 partially covered

sentences and 11 empty outputs. These outputs are due to

failure at the semantic or syntactic level (e.g., an unknown

pattern or an illegal Prolog term generation) with a total of

106Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

229 predicates and 404 arguments. For the same set of

sentences, the gold standard indicated 298 predicates and

672 arguments. Overall, we obtained a recall of 77 % for the

identification of predicates and 61 % for the arguments.

Sentences with full predicate coverage
As mentioned previously, we tagged sentences with

missing predicates as partially analyzed sentences. The

missing items often resulted from some unimplemented

pattern in our Prolog-based semantic analyzer. Thus, we

decided to present the results of fully covered sentences

separately, as we wanted to evaluate our success on

identified patterns. There were 53 fully covered sentences in

our corpus with 337 possible arguments among which we

identified 271 arguments. This resulted in a significant

improvement of 19% over the previous results with a recall

of 80%.

Table IV summarizes the results obtained for the

extraction of unlabeled predicates and arguments.

TABLE IV. RECALL VALUES FOR THE DETECTION OF

PREDICATES AND THEIR ARGUMENTS
(UNLABELED).

 Predicates Arguments

All sentences 77% 61%

 Fully covered

sentences

100% 80%

We can notice that the recall for predicates and

arguments identification is much better on fully covered

sentences.

B. Arguments recognition

These results focus on arguments rather than on the

predicates. The objective is to assess the success of Anasem

in correctly extracting arguments when the predicate is

identified.

Table V shows the recall values for argument detection

when we consider the correctly identified predicates,

independently of the sentences (All detected predicates). In

the 50 sentences corpus, 94 predicates were found. In the

gold standard, there were 218 arguments associated to these

predicates, from which 162 were found by Anasem. That is

a 74 % rate of success.

TABLE V. RECALL VALUES FOR ARGUMENT

DETECTION IF WE CONSIDER ONLY CASES
WHERE PREDICATES WERE DETECTED.

 Arguments

All detected predicates 74%

Predicates detected in fully

covered sentences
78%

Taking only the predicates that were detected in fully

covered sentences, the figures are slightly better (106 out of

136 arguments), that is, a 78 % rate of success. This shows

that choosing arguments from partially analyzed sentences

tends to give worst results than with fully-covered

sentences.

C. Comparison with CoNLL Shared Task Best System

We also executed LTH Parser on the 50 sentences from

the test corpus. LTH results were as follow for the unlabeled

predicates and arguments: 136 predicates out of 142 and 250

arguments out of the 314 that were in the gold standard.

This represents a 95 % recall rate for the predicates and 80

% recall value for the identification of the arguments (see

Table VI). Results are significantly lower with Anasem

especially for argument detection. However, we see that by

considering only completely parsed sentences, the

difference seems to vanish.

TABLE VI. COMPARISON OF RECALL VALUES IN % FOR

ANASEM AND LTH.

 Predicates Arguments

Anasem (All

sentences)
72% 57%

Anasem (fully

covered sentences)
- 79%

LTH 95% 80%

Since Anasem makes a distinction between core

arguments (that correspond to A0, A1…A4 in CoNLL) and

modifier arguments (all other arguments in CoNLL), we

were interested to see whether the recall values are the same

for both categories. Table VII shows the results, including

LTH evaluation on the test corpus. Interestingly, we note

that the difference between core and modifiers is greater in

LTH Parser than in Anasem.

TABLE VII. RECALL VALUES FOR ARGUMENT

DETECTION, DISTINGUISHING CORE ARGUMENTS

AND MODIFIER ARGUMENTS.

 Core Modifiers

All sentences results on test

corpus - Anasem
57% 53%

Fully covered sentences

results on test corpus -

Anasem

81% 76%

Results on test corpus - LTH 84% 69%

VI. DISCUSSION

A. General Observations

There are a few things that we need to clarify regarding

our results. In the CoNLL shared task, the participating

systems were based on external lexicons, namely PropBank

[10] and NomBank [9] to identify the arguments types.

These lexicons identify arguments based on a word

considered as a predicate. Each word-predicate is related to

a frame that assigns generic categories such as A0 or A1 to

the arguments.

The peculiarity of Anasem is that it is a standalone

system, which does not rely on any external resource to

identify predicates and arguments. Only dependency parses

are used, which means that Anasem is able to extract these

predicates and arguments but cannot annotate them with

particular categories or types. Therefore, we relied on the

107Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

unlabeled extraction task of the competition and compared

unlabeled results. This means that whenever we compare

our output with the gold standard, we only compare the

presence of the arguments and the predicates, regardless of

the type of the arguments.

The results for all the sentences in the combined corpora

were not outstanding (77 % for the predicates and 61 % for

the arguments). On the one hand, this was not really

surprising, considering the limited amount of patterns

implemented in Anasem. On the other hand, with the fully

covered sentences the results rivaled the winner's of the

shared task of CoNLL (79% versus 80% argument wise).

Our conclusion is that Anasem, though not complete yet,

has a good potential to perform as well as a machine

learning approach, while staying independent from a

training corpus and domain. These results will have to be

confirmed in future experiments on bigger corpora.

B. Limitations

There are limitations in our experiments. To begin with,

we used a sub-corpus of the original corpus of CoNLL, and

it was a rather small part of it with only 101 sentences. This

small number was largely due to the complexity of

comparing our adapted output to the CoNLL format and to

the time-consuming effort required to make the manual

comparison. This manual comparison might have been

biased due to possible potential errors by the expert

performing the comparison. However, a clear methodology

for comparing the representations was established upfront

and was closely followed.

 We are conscious that our limited set of sentences might

affect positively our results if well-analyzed sentences are

selected. However, these sentences were randomly selected

as previously explained. Moreover, the opposite

phenomenon might occur and amplify analysis errors if the

wrong sentences (i.e., not well-analyzed sentences) are

selected from the gold standard.
Another important point is that there are a number of

errors that we identified in the CoNLL gold standard, and in

general these errors affected negatively our experiments,

and probably more strongly than if we had thousands of

sentences. This is the main reason of dividing the results

into fully covered and partially covered sentences.

VII. CONCLUSION

This paper presented the results of a rule-based system

for semantic analysis and compared it to the winner of the

CoNLL shared task [12]. It shows that using a modular

system with syntactic analysis based on dependency

grammar can have comparable results with a machine-

learning based analysis when the sentences are fully

covered. It also demonstrates the difficulty of comparing

systems based on various formalisms and lexicons. In future

work, we plan to add new rules to our pattern recognition

analyzer and to repeat the same types of experiments using a

wider range of sentences. We also want to find a way to

measure the precision and the F1 scores. Our preliminary

conclusion is that semantic analysis with ruled-based

systems has its place among statistical and machine-learning

approaches.

ACKNOWLEDGMENTS

The authors would like to thank the Royal Military

College of Canada (RMC) for its financial support through

the Start-up Fund Program.

REFERENCES

1] Baluja, S., Mittal, V. O. and Sukthankar, R., 2000.

Applying Machine Learning for High-Performance

Named-Entity Extraction.. Computational Intelligence,

16(4), pp. 586-595.

2] Bos, J., 2008. Introduction to the shared task on

Comparing Semantic Representations. In: Proceedings of

the 2008 Conference on Semantics in Text Processing.

Venice: ACL, pp. 257-261.

3] Bos, J., 2008. Wide-Coverage Semantic Analysis with

Boxer. In: J. Bos and R. Delmonte, eds. Semantics in

Text Processing. STEP 2008 Conference

Proceedings:College Publications., pp. 277-286.

4] Johansson, R. and Nugues, P., 2008. Dependency-based

syntactic-semantic analysis with PropBank and

NomBank. ACL, pp. 183--187.

5] Klein, D. and Manning, C. D., 2003. Accurate

Unlexicalized Parsing. s.l., s.n., pp. 423-430.

6] Lee, H., Peirsman, Y., Chang, A., Chambers, N.,

Surdeanu, M. and Jurafsky, D., 2011. Stanford's multi-

pass sieve coreference resolution system at the CoNLL-

2011 shared task. In: Proceedings of the Fifteenth

Conference on Computational Natural Language

Learning: Shared Task:ACL, pp. 28-34.

7] Marcus, M., Santorini, B. and Marcinkiewicz, M. A.,

1993. Building a large annotated corpus of English: the

Penn Treebank.. Computation Linguistics, p. 19(2).

8] Marneffe, M.-C. d., MacCartney, B. and Manning, C. D.,

2006. Generating Typed Dependency Parses from

Phrase Structure Parses. s.l., s.n.

9] Meyers, A. et al., 2004. The NomBank Project: An

Interim Report. Boston, ACL, pp. 24-31.

10] Palmer, M., Gildea, D. and Kingsbury, P., 2005. The

Proposition Bank: A Corpus Annotated with Semantic

Roles. Computational Linguistics Journal, p. 31:1.

11] Soon, W. M., Ng, H. T. and Lim, D. C. Y., 2001. A

Machine Learning Approach to Coreference Resolution

of Noun Phrases. Computational Linguistics, 27(4), pp.

521-544.

12] Surdeanu, M., Johansson, R., Meyers, A., Marquez, L.

and Nivre, J., 2008. The CoNLL-2008 Shared Task on

Joint Parsing of Syntactic and Semantic Dependencies.

s.l., s.n.

13] Toutanova, K., Klein, D., Manning, C. and Singer, Y.,

2003. Feature-Rich Part-of-Speech Tagging with a

Cyclic Dependency Network. s.l., s.n., pp. 252-259.

14] Zouaq, A., Gagnon, M. and Ozell, B., 2010. Semantic

Analysis using Dependency-based Grammars. s.l., Bahri

Publications, pp. 85-101.

108Copyright (c) IARIA, 2012. ISBN: 978-1-61208-240-0

SEMAPRO 2012 : The Sixth International Conference on Advances in Semantic Processing

