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Abstract—If the documents on the WWW were somehow
structured, then machines can be made to extract meaning
(or semantics) from the content and help us find more data
that is relevant to what we search. There is an effort to find
better ways to include machine-meaning in the documents
already present on the WWW by using Natural Language
Processing (NLP) techniques and Web technologies such as
XML and RDF that are used to insert and represent the
“meaning” in the extracted content. We propose an application
that uses Information Extraction to extract patterns from a
human readable text and use it to try and find similar patterns
elsewhere by searching the WWW. This is done to bootstrap
the creation of further data elements. These data elements are
then stored in RDF format and reused in other searches. Our
evaluation show that this approach gives an encouraging degree
of success with a precision of 79% and a recall of 71%.
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I. INTRODUCTION

The WWW has become a powerful modern medium that
in some ways is surpassing the old-style media. This is
true of advertising where in the United Kingdom online
advertising has surpassed that of television [1] and in the
United States, in 2010, a total of $12 billion was spent
on Web advertising [2]. This does not make the Web a
structured medium, almost totally the opposite. [3] dreamt
of a web where humans and machines share the contents and
help each other in doing so. He said everyone should publish
linked data that automatically links pieces of data together
[4]. Thus, the aim of this research will be to increase Linked
Data triples by using patterns extracted from parts of text
to find similar patterns and generate new triples by using
Information Extraction techniques.

II. BACKGROUND

Our research will be divided in two: Linked Data and
Information Extraction. We will show that there is a link
between the two so information islands are linked together
more.

A. Publishing Linked Data

With more linked data available we will be able to query
the Web as a database [5]. The Web of Data will use names

for things. A book, a person, a car, a cat; they are all “things”
having a URI as a name. To be able to publish Linked Data,
Tim Berners-Lee listed the following four principles [6]:

1) Use URIs as names for things.
2) Use HTTP URIs so that people can look up those

names.
3) When someone looks up a URI, provide useful infor-

mation, using the standards (RDF, SPARQL).
4) Include links to other URIs so that they can discover

more things.
Since the beginning of the Linked Data project
(http://linkeddata.org/) the number of datasets published as
linked data now stands at 203 from a humble 12 in 2007
[7]. One of the first entities to use linked data was the
British Broadcasting Corporation (BBC) that used linked
data for all its programs in an effort to centralise the vast
amount of information from all its programs micro sites
[8].

B. RDF and DBPedia

The Resource Description Framework (RDF) is a simple
graph model of the form subject-predicate- object hence
triple. It was developed to describe web resources and
machine readable information [5]. The graph has two nodes
that may be either blank or a URI with a directed arc (the
predicate) always a URI.
DBPedia is an effort to extract information from Wikipedia
articles that have info boxes although the number of
such articles is roughly a third of all the English articles
[9]. The effort produced an astonishing 25 billion triples
(http://www4.wiwiss.fu-berlin.de/lodcloud) but this is only a
drop when compared with the vast amounts of information
on the indexed Web (http://www.worldwidewebsize.com).
The main difficulty to extract data from information on the
WWW is that the latter is inconsistent, ambiguous, uncertain
and whose corpus is constantly changing [10].

C. Natural Language Processing

This is the study of text processing within a computer
system for a spoken or written language [11]. It touches on
three main areas of understanding: Theoretical Linguistics,
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Computational Linguistics and Articial Intelligence with
the greatest advances coming with the computer age. In
1950s Alan Turing hinted that machine translation needed
to be unambiguous and that machines need to learn to
think [12]. During the 1960’s and early 1970’s, ELIZA
[13] and SHRDLU [14], were an early attempt at NLP and
Artificial Intelligence (AI). Although from then, technology
has mushroomed we are still far from an ideal situation due
to the many nuances in spoken and written languages.

D. Extracting Information from the Web

Before we extract information we need to retrieve it. With
Information Retrieval (IR) we get a subset of documents
from a collection (the corpus) whilst with Information
Extraction (IE) we extract facts or structured information
from those documents [15]. IE is used in another field
called Named Entity Recognition (NER) where special tools
identify different types of semantics from words such as
names, nouns, etc. NER tools determine what we take
foregranted while reading such as paragraphs or sentence
endings [11]. NER tools contain resources such as Tokenis-
ers, Part of Speech taggers (POS), Sentence Parsers and
Semantic Taggers. These aid the system to successfully
process a body of text.

III. METHODOLOGY

We aim to extract patterns from text and find similar
patterns from the Web using GATE (http://gate.ac.uk) and
JENA (http://jena.sourceforge.net).

The Gate system encompasses a host of well written
tools providing a solid base for IE, and NER. It also boasts
its own complete IE system called ANNIE (a Nearly New
Information Extraction system). ANNIE makes use of JAPE
(Java Annotations Pattern Engine). Gate uses

• Features: attribute/value pairs
• Corpora: collection(s) of document
• Documents: the input documents
• Annotations: directed acyclic graphs modelled as anno-

tations using XML
We used ANNIE’s resources to process the input into

sentences, nouns, verbs etc. ANNIE does this by using
JAPE which provides finite state transduction over the
annotations based on regular expressions [16]. ANNIE sets
a serial pipeline of text processing resources that inserts a
unique ID, type and offsets within the text. Feature map.

By using JAPE grammars, ANNIE matches wanted
patterns and then inserts these newly matched patterns
into new feature maps. A JAPE grammar consists of a
left hand side, containing annotation patterns, and a right
hand side containing Java code to manipulate those patterns.

We also make use of Jena, a framework for reading and
writing RDF data as XML. Jena also provides a backend
triple database that can be either accessed from command

Figure 1. A typical ANNIE pipeline - source The GATE user manual

line or from a web interface called Fuseki. SPARQL is
a query language for expressing RDF queries over triple-
stores (http://www.w3.org). A SPARQL query may contain
triples, conjunctions or disjunctions and some other optional
patterns. Its syntax is similar to SQL with queries starting
with a SELECT statement.

A. Overview

Figure 2. High-level System Flowchart

We propose a system that processes input from text
documents to find patterns by using Natural Language Pro-
cessing techniques. We use SPARQL queries over a database
containing over 1.7 million triples and submit Web queries
to find other similar patterns on the open WWW. To aid our
system to find the required patterns we will also propose
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two new JAPE grammars that match the patterns we need
in the text input.
Our system presents a simple user interface that processes
input documents using four stages:

1) The input stage whereby the system is
given an initial URL of a document such as
http://en.wikipedia.org/wiki/Barack Obama which is
then downloaded and stored in the system for future
processing.

2) The processing stage where GATE is used to annotate
text with specific rules or patterns. An example rule
might be ...

Locate the sentence which contains a date, a
location, a person and a born event

A date, location and a person are standard extraction
patterns found in Gate. A born event is an additional
pattern which we crafted to identify phrases such as
”born on”, etc.

The rule eventually extracts sentences such as
”Obama was born on August 4, 1961, in Hawaii”
since Obama will be recognised as a peron, ”was
born on” is recognised by the born event extraction
patterns, August 4,1961 is a date and Hawaii is a
location.

3) In the querying stage, we query our database to check
if the data we just extracted exists in the database.
If it doesn’t, it is inserted in the database as a new
RDF data item. An issue to consider is the validity of
the data since different pages might return different
results for the same person. In the example we’re
considering, we found that almost 2 million pages
claim that ”Obama was born in Kenya” and not
in Hawaii. After removing the reposted articles and
comparing the top patterns extracted, only one piece
of data will prevail and that data will be inserted in
the database. This is definitely not a foolproof way of
ascertaining the truth however, it returns good results
in most cases.

4) The Web search stage looks for patterns, similar to
the ones in the database in order to extract new
information. By similar we mean, that the data just
retrieved is sent to the search engine but one of the
patterns is omitted. This will retrieve other variances
which might not have been covered. So using the data
we just retrieved about Obama but omitting the born
event, we discover a new piece of data such as

”Obama’s date of birth is August 4, 1961, in

Hawaii”
We can see that this data is very similar since all the
data items match however the born event pattern is
very different. Thus, we use this phrase to construct
new patterns by adding wildcards such as

*’s date of birth is *, in *
This new query will then be fed into Bing and new
pages are retrieved which are then sent to the input
stage mentioned earlier and the cycle is repeated.
By using this simple bootstrapping approach, new
information can be discovered all over the web thus
generating new linked data almost automatically.

IV. TESTING

We tested our application with a small text file containing
five seed samples that contain the four pattern parts we need
to match in no particular order and in one complete short
sentence.

• PersonEvent - Kenny Matthieson Dalglish
• BornEvent - the verb born or its tenses
• DateEvent - 4 March 1951
• LocationEvent - Glasgow in Scotland

A typical whole sentence pattern may be: On 4 March 1951
in Glasgow in Scotland Kenny Matthieson Dalglish was
born. These patterns are taken from WikipediaTM. During
the initial test runs, our system retrieved quite a good number
of new triples. We manually went through a sample of the
triples and found that there were quite a few with errors or
false positives.

V. EVALUATION

We analysed our results both using a known metric and
by manually going through the new triples to check for
validity. As a metric we used Precision & Recall (P&R)
with the following criteria:

Precision =
Relevant triples retrieved

Number of triples retrieved

Recall =
Relevant triples retrieved

Number of triples in text

This method of evaluation has been applied to the field of
Information Retrieval such as extracting text summaries
from news texts [17]. In IE, no evaluating algorithm is
perfect due to contradictions in the texts and the nuances
of the language [18].

Our initial evaluation of the results gave very low values
of 0.21 and 0.13 for precision and recall respectively. In
view of these results we had to determine what was causing
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them to be so low.

We encountered errors due to different font encoding
(ANSI, UTF-8), to characters that make the application
throw exceptions etc. Other errors in the data resulted from:

• Annotations spanning sentences
• Partial annotations not being discarded
• False positives especially in DateEvents
• Order of annotations when passing through the Annie

pipeline
• False positives overall

In order to get better results we rectified the above error
instigators by modifying one of our Jape grammars and
one of our most important methods so that we matched a
more specific pattern in the left hand side of the grammar
to ensure that the sentences retrieved really contain the four
pattern parts we needed. We also added a more specific
RegEx to match dates instead of relying on ANNIE’s
default Date type.

A. Modifications made

One of the main issues was that the annotations were
spanning sentences and so we had to introduce a {Sentence}
condition in our grammar. This made sure that we could
select whole sentences as annotations to check within their
span for our four part-pattern. The right hand side of our
modified Jape grammar works by:

1) Retrieve a whole sentence annotation
2) Obtain an iterator over the annotation
3) Try to match the various pattern parts within

the sentence annotation
4) Set a Boolean variable to true if a part is found
5) If all four pattern parts are found and all Flags are

TRUE
• put the parts together in a new type called AllParts
• add a new rule called GetAllPartsRule

Other modifications were made in the performGatePro-
cessing() method that now uses sentence annotations and
then the algorithm searches over them for the pattern parts.
This made sure that only the patterns within that sentence
are selected.

These modifications gave their fruit as the results and the
P&R values increased four-fold and five-fold for Precision
and Recall respectively. In the following section we will only
list the values recorded from the results tables.

B. Results after modifications

For Test 1 we used the same criteria as the initial test.
This test gave the following results:

Table I
MODIFICATION FOR PERFORMGATEPROCESSING() METHOD -

SOURCE: AUTHOR

1.Get sentence annotation - put in sentence Set
2.Get sentence offsets - put in pattern Set
3.Retrieve the current annotation, i.e. the part of

pattern needed
4.If GetAllParts is true
5. Get features and offsets
6. For (each type of pattern)
7. Check if the type’s offsets are within the

GetAllParts offsets
8. If (YES) retrieve the annotation with those

offsets from the Set & Process accordingly
10.Remove consumed annotation from annotation set

Test 1

Precision =
8 + 27 + 100 + 336

8 + 27 + 100 + 389
= 0.89

Recall =
8 + 27 + 100 + 336

9 + 29 + 102 + 585
= 0.65

For subsequent tests, and to test the system’s robustness,
we used different seed files with information coming
mainly from the IMDB website (http://www.imdb.com).
The results of these tests gave a precision of 0.97, 0.61, 1,
0.7 and 0.54. The recall measure gave values of 0.97, 0.61,
0.83, 0.7 and 0.5. Taking all the above precision and recall
results whilst summing for an average, we get the following:

Precision =
4.71

6
= 0.79

Recall =
4.26

6
= 0.71

These successful results were only possible with the
code modifications we made after the initial runs of the
application. This meant that when we used the same seed
file during the development of the application and were
getting good responses from the system we were failing to
realise that the system was not as robust as it should have
been. These shortcomings then manifested themselves after
we used larger input files that gave many errors.

With these modifications the application retrieved less
results, which was the only disadvantage we noticed. Apart
from that we noticed that the results, although less, have
more quality in that they are more correct. There are also
less results that contain error or erroneous data and this can
be verified from the Precision & Recall values we recorded.
The quality of the triples we retrieved varied greatly although
the quantity is less. We are of the opinion that less does not
mean worse, we rather have less triples that are of very
good quality rather than have large quantities whose quality
is poor.
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C. A note on Precision & Recall

According to [19], Precision & Recall results are
supposed to be inversely proportional. In [20] it was found
that precision and recall applied to data from news sources
(data having some structure), places P&R values in the
high 80s or low 90s (percentage-wise). In another study by
[21], similar to ours, it was found that precision and recall
are not always inversely proportional but may also produce
values close to our results.

VI. ACHIEVEMENTS & LIMITATIONS

The main aim of our research was to try and increase the
chances of new triples being extracted from unstructured
text or documents.

A. Achievements

In order to reach our set goals we produced an application
that although having a simple design meets our goals’ needs.
The application makes use of embedded code from the
GATE system and this permitted our application to generate
the acceptable output we had. We also wrote two new JAPE
grammars that helped us find our required four pattern parts
and then use them to check whether these are contained in
a given sentence that was also extracted from the same text.
With the encouraging results we obtained after we modified
our code, we have reached our objectives.

B. Limitations

During our research and application development we
also encountered some difficulties that we did not have
control upon but which made our development a little more
interesting.

Our application currently operates with both the
SPARQL and the Web search query code hard-coded within
the application’s methods. We intended for these to be
dynamic and left to the user to decide which of the pattern
parts to use in the query. This would have given the user a
better usage experience.

In this application we are also not inserting on updating
the dataset in the database due to certain factors such as
the retrieved person names’ ambiguity. We are accepting
each new triple at face value as long as they are valid
and correctly built. For example, Steven George Gerrard
and Steven “Stevie” Gerrard may be found as being two
different persons when in actual fact they are not. To
overcome this the application would need other grammars
that would have been outside of the scope of this research.

We are also not checking for duplicate findings so that
in our result files we can find more that one entry with

the same name. This happens because search engines may
return similar result snippets that we are appending in
one file and subsequently using these files as input for
subsequent runs and tests.

VII. FUTURE WORK

On the whole, the application produced good results.
Because of this, there are two areas where it needs improve-
ments. First and foremost, we need to test the application on
other patterns. At the moment, the patterns used were limited
to identifying birth date and locations whilst associating
them to a person. This is very useful information howerver
there are other areas which one could explore such as
working relations, educational relations, family relations,
etc. In particular, we should go a step further and explore
ways of generating these initial patterns automatically thus
ensuring that the system is fully automated. This can be done
by delving further into the creation of personal ontologies
automatically.

Secondly, we need to test the system on a larger dataset. In
particular it would be ideal to test it on the whole DBPedia
corpus. Obviously, this is not a trivial thing to do especially
since we require massive investment in computing resources.
However the recent proliferation of cloud computing means
that these massive requirements are finally within reach.
Thus, our next project will involve the utilisation of the could
to generate even more Linked Data.

VIII. CONCLUSION

Our research tried to exploit information extraction in
order to generate linked data automatically thus realise Tim
Berners-Lee’s vision of the future web. A web made up
of human readable documents together with documents that
permit machines to also understand the documents they
display and process. In doing so, the machine can be put
in a better position to help its human user in doing more in
a shorter span of time and in attaining more by the direct
help of the machine itself.

Our system managed to extract patterns from a human
readable text and use it to find similar patterns elsewhere by
searching the WWW. This was achieved by using bootstrap
techniques. The new data generated is then stored in RDF
format and reused in other searches.

The evaluation conducted also produced extremely good
results having an overall precision of 79% and a recall
of 71%, thus encouraging us to look further into similar
approaches. In conclusion, we demonstrated that semantic
meaning can be extracted from natural text and that Linked
Data can be generated with little effort. Our data can then
be easily added to the growing datasets of the Linked Open
Data cloud thus bring the Semantic Web a step closer to
reality.
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