
Aggregation-Based Certificate Transparency Gossip

Rasmus Dahlberg, Tobias Pulls, Jonathan Vestin, Toke Høiland-Jørgensen and Andreas Kassler

Karlstad University
Universitetsgatan 2, 651 88 Karlstad, Sweden

email: first.last@kau.se

Abstract—Certificate Transparency (CT) requires that every cer-
tificate which is issued by a certificate authority must be publicly
logged. While a CT log can be untrusted in theory, it relies on
the assumption that every client observes and cryptographically
verifies the same log. As such, some form of gossip mechanism is
needed in practice. Despite CT being adopted by several major
browser vendors, no gossip mechanism is widely deployed. We
suggest an aggregation-based gossip mechanism that passively
observes cryptographic material that CT logs emit in plaintext,
aggregating at packet processors (such as routers and switches) to
periodically verify log consistency off-path. In other words, gossip
is provided as-a-service by the network. Our proposal can be
implemented for a variety of programmable packet processors at
line-speed without aggregation distinguishers (throughput), and,
based on 20 days of RIPE Atlas measurements that represent
clients from 3500 autonomous systems, we show that significant
protection against split-viewing CT logs can be achieved with a
realistic threat model and an incremental deployment scenario.

Keywords–Certificate Transparency; Gossip; P4; XDP.

I. INTRODUCTION

The HyperText Transfer Protocol Secure (HTTPS) ecosys-
tem is going through a paradigm shift. As opposed to blindly
trusting that Certificate Authorities (CAs) only issue certifi-
cates to the rightful domain owners—a model known for its
weakest-link security [1]—transparency into the set of issued
certificates is incrementally being required by major browser
vendors [2][3]. This transparency is forced and takes the form
of Certificate Transparency (CT) logs: the idea is to reject
any Transport Layer Security (TLS) certificate that have yet
to be publicly logged, such that domain owners can monitor
the logs for client-accepted certificates to detect certificate mis-
issuance after the fact [4]. While the requirement of certificate
logging is a significant improvement to the HTTPS ecosystem,
the underlying problem of trusting CAs cannot be solved
by the status quo of trusted CT logs (described further in
Section II-A). Therefore, it is paramount that nobody needs
to trust these logs once incremental deployments are matured.

CT is formalized and cryptographically verifiable [5], sup-
porting inclusion and consistency proofs. This means that a
client can verify whether a log is operated correctly: said
certificates are included in the log, and nothing is being
removed or modified. Despite the ability to cryptographically
verify these two properties, there are no assurances that ev-
erybody observes the same log [4][6]. For example, certificate
mis-issuance would not be detected by a domain owner that
monitors the logs if fraudulently issued certificates are shown
to the clients selectively. A log that serves different versions
of itself is said to present a split view [7]. Unless such log
misbehaviour can be detected, we must trust it not to happen.

The solution to the split viewing problem is a gossip
mechanism which ensures that everybody observes the same
consistent log [4]. This assumption is simple in theory but
remarkably hard in practice due to client privacy, varying threat
models, and deployment challenges [7][8]. While Google
started on a package that supports minimal gossip [9] and
the mechanisms of Nordberg et al. [7], there is “next to
no deployment in the wild” [10]. To this end, we propose
a gossip mechanism that helps detecting split-view attacks
retroactively based on the idea of packet processors, such as
routers and middleboxes, that aggregate Signed Tree Heads
(STHs)—succinct representations of the logs’ states—that are
exposed to the network in plaintext. The aggregated STHs
are then used to challenge the logs to prove consistency via
an off-path, such that the logs cannot distinguish between
challenges that come from different aggregators. Given this
indistinguishability assumption, it is non-trivial to serve a
consistent split-view to an unknown location [11]. Thus, all
aggregators must be on the same view, and accordingly all
clients that are covered by these aggregators must also be on
the same view despite not doing any explicit gossip themselves
because gossip is provided as-a-service by the network. An
isolated client (i.e., untrusted network path to the aggregator)
is notably beyond reach of any retroactive gossip [8].

The premise of having STHs in plaintext is controversial
given current trends to encrypt transport protocols, which is
otherwise an approach that combats inspection of network
traffic and protocol ossification [12][13]. We argue that keeping
gossip related material in plaintext to support aggregation-
based gossip comes with few downsides though: it is easy
to implement, there are no major negative privacy impacts,
and it would offer significant protection for a large portion
of the Internet with a realistic threat model despite relatively
small deployment efforts. The three main limitations are no
protection against isolated clients, reliance on clients that
fetch STHs from the logs in plaintext, and possible concerns
surrounding protocol ossification [13]. Our contributions are:

• Design and security considerations for a network-
based gossip mechanism that passively aggregates
STHs to verify log consistency off-path (Section III).

• Generic implementations of the aggregation step using
Programming Protocol independent Packet Processors
(P4) [14] and eXpress Data Path (XDP) [15] for plain-
text STHs, supporting line-speed packet processing on
systems that range from switches, routers, network
interface cards, and Linux (Section IV).

• A simulation based on RIPE Atlas measurements that
evaluate the impact of deploying aggregation-based

120Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



gossip at Autonomous Systems (ASes) and Internet
Exchange Points (IXPs). Our evaluation shows that
incremental roll-out at well-connected locations would
protect a significant portion of all Internet clients from
undetected split views (Section V).

Besides the sections referenced above, the paper introduces
necessary background in Section II and provides discussion,
conclusion, and future work in Sections VI–VIII. A full version
with additional implementation details is available online [16].

II. BACKGROUND

First, additional prerequisites are provided on CT and the
status quo, then the techniques which allow us to program
custom packet processors are introduced.

A. Certificate Transparency
The main motivation of CT is that the CA ecosystem is

error-prone [17]: a CA can normally issue certificates for any
domain name, and given that there are hundreds of trusted
CAs an attacker only needs to target the weakest link [1].
While the requirement of CT logging all certificates cannot
prevent mis-issuance proactively, it allows anyone to detect it
retroactively by monitoring the logs [4]. After a log promises to
include a certificate by issuing a Signed Certificate Timestamp
(SCT), a new STH including the appended certificate must be
issued within a Maximum Merge Delay (MMD). Typically,
logs use 24 hour MMDs. Should non-included SCTs and/or
inconsistent STHs be found, binding evidence of misbehaviour
exists because these statements are digitally signed by the logs.
Other than MMD a log’s policy defines parameters such as
STH frequency: the number of STHs that can be issued during
an MMD, making it harder to track clients [7].

CT is being deployed across Apple’s platform [2] and
Google’s Chrome [3]. The status quo is to trust a CA-signed
certificate if it is accompanied by two or more SCTs, thereby
relying on at least one log to append each certificate so that
mis-issuance can be detected by monitors that inspect the logs.
The next step of this incremental deployment is to verify that
these certificates are logged by querying for inclusion [18], and
that the log’s append-only property is respected by challenging
the log to prove STH consistency. Finally, to fully distrust CT
logs we need mechanisms that detect split-views. One such
mechanism which is based on programmable packet processors
(introduced next) is presented in Section III, and it is compared
to related work on CT gossip in Section VI.

B. Programmable Data Planes
Packet processors such as switches, routers, and network

interface cards are typically integrated tightly using customized
hardware and application-specific integrated circuits. This in-
flexible design limits the potential for innovation and leads to
long product upgrade cycles, where it takes years to introduce
new processing capabilities and support for different protocols
and header fields (mostly following lengthy standardization
cycles). The recent shift towards flexible match+action packet-
processing pipelines—including Reconfigurable Match Tables
(RMT) [19], Intel FlexPipe [20], Cavium XPliant packet
Architecture (XPA) [21], and Barefoot Tofino [22]—now have
the potential to change the way in which packet processing
hardware is implemented: it enables programmability using
high-level languages, such as P4, while at the same time
maintaining performance comparable to fixed-function chips.

1) P4: The main goal of P4 is to simplify programming
of protocol-independent packet processors by providing an
abstract programming model for the network data plane [14].
In this setting, the functionality of a packet processing device
is specified without assuming any hardwired protocols and
headers. Consequently, a P4 program must parse headers and
connect the values of those protocol fields to the actions
that should be executed based on a pipeline of reconfigurable
match+action tables. Based on the specified P4 code, a front-
end compiler generates a high-level intermediate representation
that a back-end compiler uses to create a target-dependent
program representation. Compilers are available for several
platforms, including the software-based simple switch architec-
ture [23], SDNet for Xilinx’s NetFPGA (Field-Programmable
Gate Array) boards [24], and Netronome’s smart network
interfaces [25]. It is also possible to compile basic P4 programs
into eBPF byte code [26].

2) XDP: The Berkeley Packet Filter (BPF) is a Linux-
based packet filtering mechanism [27]. Verified bytecode is
injected from user space, and executed for each received
packet in kernel space by a just-in-time compiler. Extended
BPF (eBPF) enhances the original BPF concept, enabling
faster runtime and many new features. For example, an eBPF
program can be attached to the Linux traffic control tool tc,
and additional hooks were defined for XDP [15]. In contrast to
the Intel Data Plane Development Kit (DPDK), which runs in
user space and completely controls a given network interface
that supports a DPDK driver, XDP cooperates with the Linux
stack to achieve fast, programmable, and reconfigurable packet
processing using C-like programs.

III. DESIGN

An overview of aggregation-based gossip is shown in
Figure 1. The setting consists of logs that send plaintext
STHs to clients over a network, and, as part of the network,
inline packet processors passively aggregate observed STHs
to their own off-path challengers which challenge the logs to
prove consistency. A log cannot present split views to different
clients that share an aggregating vantage point because it
would trivially be detected by that vantage point’s challenger.
A log also cannot present a persistent split view to different
challengers because they are off-path in the sense that they
are indistinguishable from one another. This means that every
client that is covered by an aggregator must be on the same
view because at least one challenger will otherwise detect an
inconsistency and report it. A client that is not directly covered
by an aggregator may receive indirect protection in the form
of herd immunity. This is discussed in Section VII-D.

A. Threat Model and Security Notion
The overarching threat is undetectable domain imperson-

ation (ex-post) by an attacker that is capable of compromising
at least one CA and a sufficient number of CT logs to convince
a client into accepting a forged certificate. We assume that
any illegitimately issued certificate would be detected by the
legitimate domain owner through self or delegated third-party
monitoring. This means that an attacker must either provide
a split view towards the victim or the monitoring entity. We
also assume that clients query the logs for certificate inclusion
based on STHs that they acquire from the logs via plaintext
mechanisms that packet processors can observe, and that some

121Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



Client Log

aggregate

Challenger
challenge

Packet Processor

Figure 1. Packet processor that aggregates plaintext STHs for off-path verification.

other entities than challengers process STHs using the chosen
off-paths (SectionVII-A). We do not account for the fact that
CA compromises may be detected by other means, focusing
solely on split-viewing CT logs.

1) Limitations: Our gossip mechanism is limited to STHs
that packet processors can observe. As such, a client isolated
by an attacker is not protected. We limit ourselves to attackers
that act over a network some distance (in the sense of network
path length) from a client in plaintext so that aggregation
can take place. Our limitations and assumptions are further
discussed in Section VII-A.

2) Attackers: Exceptionally powerful attackers can isolate
clients, but clients are not necessarily easy to isolate for a
significant number of relevant attackers. Isolation may require
physical control over a device [28], clients may be using
anonymity networks like Tor where path selection is inherently
unpredictable [29], or sufficiently large parts of the network
cannot be controlled to ensure that no aggregation takes
place. This may be the case if we consider a nation state
actor attacking another nation state actor, the prevalence of
edge security middleboxes, and that home routers or network
interfaces nearby the clients could aggregate. Any attacker that
cannot account for these considerations is within our threat
model.

3) Security Notion: To bypass our approach towards gos-
sip, an adaptive attacker may attempt to actively probe the
network for aggregating packet processors. This leads us to
the key security notion: aggregation indistinguishability. An
attacker should not be able to determine if a packet processor
is aggregating STHs. The importance of aggregation indistin-
guishability motivates the design of our gossip mechanism into
two distinct components: aggregation that takes place inline at
packet processors, and periodic off-path log challenging that
checks whether the observed STHs are consistent.

B. Packet Processor Aggregation
An aggregating packet-processor determines for each

packet if it is STH-related. If so, the packet is cloned and sent
to a challenging component for off-path verification. The exact
definition of STH-related depends on the plaintext source,
but it is ultimately the process of inspecting multiple packet
headers such as transport protocol and port number. It should
be noted that the original packet must not be dropped or
modified. For example, an aggregator would have a trivial
aggregation distinguisher if it dropped any malformed STH.

For each aggregating packet processor, we have to take
IP fragmentation into consideration. Recall that IP fragmenta-
tion usually occurs when a packet is larger than the Max-
imum Transmission Unit (MTU), splitting it into multiple

smaller IP packets that are reassembled at the destination host.
Normally, an STH should not be fragmented because it is
much smaller than the de-facto minimum MTU of (at least)
576 bytes [30][31], but an attacker could use fragmentation to
intentionally spread expected headers across multiple packets.
Assuming stateless packet processing, an aggregator cannot
identify such fragmented packets as STH-related because some
header would be absent (cf. stateless firewalls). All tiny frag-
ments should therefore be aggregated to account for intentional
IP fragmentation, which appears to have little or no impact
on normal traffic because tiny fragments are anomalies [32].
The threat of multi-path fragmentation is discussed in Sec-
tion VII-A.

Large traffic loads must also be taken into account. If an
aggregating packet processor degrades in performance as the
portion of STH-related traffic increases, a distant attacker may
probe for such behaviour to determine if a path contains an
aggregator. Each implementation must therefore be evaluated
individually for such behaviour, and, if trivial aggregation
distinguishers exist, this needs to be solved. For example,
STH-related traffic could be aggregated probabilistically to
reduce the amount of work. Another option is to load-balance
the traffic before aggregation, i.e., avoid worst-case loads that
cannot be handled.

C. Off-Path Log Challenging
A challenger is setup to listen for aggregated traffic,

reassembling IP fragments and storing the aggregated STHs
for periodic off-path verification. Periodic off-path verification
means that the challenger challenges the log based on its own
(off-path fetched) STHs and the observed (aggregated) STHs
to verify log consistency periodically, e.g., every day. The
definition of off-path is that the challenger must not be linkable
to its aggregating packet processor(s) or any other challenger
(including itself). Without an off-path, there is no gossip step
amongst aggregator-challenger instances that are operated by
different actors, and our approach towards gossip would only
assert that clients behind the same vantage point observe
the same logs. If a log cannot distinguish between different
challengers due to the use of off-paths, however, it is non-
trivial to maintain a targeted split-view towards an unknown
location. Therefore, we get a form of implicit gossip [11]
because at least one challenger would detect an inconsistency
unless everybody observes the same log. If every challenger
observes the same log, so does every client that is covered
by an aggregating packet processor. Notably, the challenger
component does not run inline to avoid timing distinguish-
ers. Note that there are other important considerations when
implementing a challenger, as discussed in Section VII-A.

122Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



IV. DISTINGUISHABILITY EXPERIMENTS

There are many different ways to implement the aggre-
gation step. We decided to use P4 and XDP because a
large variety of programmable packet processors support these
languages (Section II-B). The aggregated plaintext source is
assumed to be CT-over-DNS [33], which means that a client
obtains STHs by fetching IN TXT resource records. Since
languages for programmable packet processors are somewhat
restricted, we facilitated packet processing by requiring that
at most one STH is sent per UDP packet. This is reasonable
because logs should only have one most recent STH. A DNS
STH is roughly 170 bytes without any packet headers and
should normally not be fragmented, but to ensure that we
do not miss any intentionally fragmented STHs we aggregate
every tiny fragment. We did not implement the challenging
component because it is relatively easy given an existing off-
path. Should any scalability issue arise for the challenger there
is nothing that prevents a distributed front-end that processes
the aggregated material before storage. Storage is not an issue
because there are only a limited amount of unique STHs per
day and log (one new STH per hour is a common policy, and
browsers recognize ≈ 40 logs). Further implementation details
can be found online [16][34].

A. Setup
We used a test-bed consisting of a traffic generator, a traffic

receiver, and an aggregating target in between. The first target
is a P4-enabled NetFPGA SUME board that runs an adapted
version of our P4 reference implementation. The second target
is a net-next kernel v4.17.0-rc6 Linux machine that runs XDP
on one core with a 10 Gb SFP+ X520 82599ES Intel card,
a 3.6 GHz Intel Core i7-4790 CPU, and 16 GB of RAM
at 1600 MHz (Hynix/Hyundai). We would like to determine
whether there are any aggregation distinguishers as the fraction
of STHs (experiment 1) and tiny fragments (experiment 2) in
the traffic is increased from 0–100%, i.e., does performance
degrade as a function of STH-related rate? Non-fragmented
STH packets are 411 bytes (we used excessively large DNS
headers to maximize the packet parsing overhead), and tiny
fragments are 64 bytes. All background traffic has the same
packet sizes but is not deemed STH-related.

B. Results
Figure 2a shows throughput as a function of STH-related

rate for the P4-enabled NetFPGA. While we were unable
to observe any distinguisher between normal routing and
the edge case of 100% aggregation for non-fragmented STH
packets, there is a small constant throughput difference for
tiny fragments (7.5 Kbps). This is a non-negligible program
distinguisher if a packet processor is physically isolated as in
our benchmark, i.e., something other than a routing program
is running but it is not necessarily an aggregator because
performance does not degrade as a function of increased STH-
related rate. However, we found such degradation behaviour for
the single-core XDP case (Figure 2b). If line-speed is higher
than 2 Gbps, STHs could be aggregated probabilistically or
traffic could be load-balanced to overcome this issue.

C. Lessons learned
P4-NetFPGA provides aggregation indistinguishability re-

gardless of STH load. For XDP, it depends on the scenario:

9518.25

9518.30

9518.35

9518.40

9518.45

0 10 20 30 40 50 60 70 80 90 100T
h

ro
u

g
h

p
u

t 
(M

b
p

s
) No Fragmentation

7826.00

7826.05

7826.10

7826.15

0 10 20 30 40 50 60 70 80 90 100

STH Rate

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
) Fragmentation

Aggregating Normal Routing

(a) P4 NetFPGA

6000

7000

8000

9000

0 10 20 30 40 50 60 70 80 90 100T
h

ro
u

g
h

p
u

t 
(M

b
p

s
) No Fragmentation

2000

3000

4000

5000

0 10 20 30 40 50 60 70 80 90 100

STH Rate

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
) Fragmentation

Aggregating Normal Routing

(b) XDP on a single core

Figure 2. Throughput as a function of STH-related traffic that is aggregated.

what is the line-rate criteria and how many cores are available.
For example, five cores support 10 Gbps aggregation indistin-
guishability without probabilistic filtering or load balancing.

V. ESTIMATED IMPACT OF DEPLOYMENT

We conducted 20 daily traceroute measurements during the
spring of 2018 on the RIPE Atlas platform to evaluate the
effectiveness of aggregation-based gossip. The basic idea is to
look at client coverage as central ASes and IXPs aggregate
STHs. If any significant client coverage can be achieved, the
likelihood of pulling off an undetected split-view will be small.

A. Setup
We scheduled RIPE Atlas measurements from roughly

3500 unique ASes that represent 40% of the IPv4 space,
trace-routing Google’s authoritative CT-over-DNS server and
NORDUnet’s CT log to simulate clients that fetch DNS STHs
in plaintext. Each traceroute result is a list of traversed IPs, and
it can be translated into the corresponding ASes and IXPs using
public data sets [35][36]. In other words, traversed ASes and
IXPs can be determined for each probe. Since we are interested
in client coverage as ASes and IXPs aggregate, each probe is
weighted by the IPv4 space of its AS. While an IP address
is an imperfect representation of a client, e.g., an IP may be
unused or reused, it gives a decent idea of how significant it
is to cover a given probe.

B. Results
Figure 3 shows AS/IXP path length and stability from the

probes to the targets. If the AS path length is one, a single

123Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



0 1 2 3 4 5+
path length

0.0

0.2

0.4

0.6

0.8

1.0
pd

f
Google AS
Google IXP
NORDUnet AS
NORDUnet IXP

0 1 2 3 4 5+
number of unique paths

0.0

0.2

0.4

0.6

0.8

1.0

pd
f

Google AS
Google IXP
NORDUnet AS
NORDUnet IXP

Figure 3. Path length and stability towards Google and NORDUnet.

21 23 25 27 29

top-ranked aggregators
0.0

0.2

0.4

0.6

0.8

1.0

cd
f

Google
AS CAIDA
AS Pop
IXP Pop

21 23 25 27 29

top-ranked aggregators
0.0

0.2

0.4

0.6

0.8

1.0
cd

f
NORDUnet

AS CAIDA
AS Pop
IXP Pop

Figure 4. Coverage as a function of aggregation opt-in.

AS is traversed before reaching the target. It is evident that an
AS path tends to be one hop longer towards NORDUnet than
Google because there is a rough off-by-one offset on the x-
axis. A similar trend of greater path length towards NORDUnet
can be observed for IXPs. For example, 74.0% of all paths
traversed no IXP towards Google, but 58.5% of all paths
traversed a single IXP towards NORDUnet. These results can
be explained by infrastructural differences of our targets: since
Google is a worldwide actor an average path should be shorter
than compared to a region-restricted actor like NORDUnet. We
also observed that AS and IXP paths tend to be quite stable
over 20 days (the duration of our measurements). In other
words, if AS a and b are traversed it is unlikely to suddenly
be routed via AS c.

Figure 4 shows coverage of the RIPE Atlas network as 1...n
actors aggregate STHs. For example, 100% and 50% coverage
means that at least 40% and 20% of the full IPv4 space
is covered. The aggregating ASes and IXPs were selected
based on the most commonly traversed vantage points in
our measurements (Pop), as well as CAIDA’s largest AS
ranking [37]. We found that more coverage is achieved when
targeting NORDUnet than Google. This is expected given that
the paths tend to be longer. Further, if CAIDA’s top-32 enabled
aggregation the coverage would be significant towards Google
(31.6%) and NORDUnet (58.1%).

C. Lessons learned
A vast majority of all clients traverse at least one AS that

could aggregate. It is relatively rare to traverse IXPs towards
Google but not NORDUnet. We also learned that paths tends to
be stable, which means that the time until split view detection
would be at least 20 days if it is possible to find an un-
protected client. This increases the importance of aggregation
indistinguishability. Finally, we identified vantage points that
are commonly traversed using Pop, and these vantage points
are represented well by CAIDA’s independent AS ranking.
Little opt-in from ASes and IXPs provides significant coverage
against an attacker that is relatively close to a client (cf.
world-wide infrastructure of Google). Although we got better
coverage for NORDUnet, any weak attacker would approach

Google’s coverage by renting infrastructure nearby. Any weak
attacker could also circumvent IXP aggregation by detecting
the IXP itself [38]. As such, top-ranked AS aggregation should
give the best split-view protection.

VI. RELATED WORK

Earlier approaches towards CT gossip are categorized as
proactive or retroactive in Figure 5. We consider an approach
proactive if gossip takes place before SCTs and/or STHs reach
the broader audience of clients. Syta et al. proposed proactive
witness cosigning, in which an STH is collectively signed by
a large number of witnesses and at most a fraction of those
can be faulty to ensure that a benevolent witness observed an
STH [8]. STH cross-logging [9][39][40] is similar in that an
STH must be proactively disclosed in another transparency log
to be trusted, avoiding any additional cosigning infrastructure
at the cost of reducing the size and diversity of the witnessing
group. Tomescu and Devadas [41] suggested a similar cross-
logging scheme, but split-view detection is instead reduced to
the difficulty of forking the Bitcoin blockchain (big-O cost
of downloading all block headers as a TLS client). The final
proactive approach is STH pushing, where a trusted third-party
pushes the same verified STH history to a base of clients [18].

We consider a gossip mechanism retroactive if gossip takes
place after SCTs and/or STHs reach the broader audience
of clients. Chuat et al. proposed that TLS clients and TLS
servers be modified to pool exchanged STHs and relevant
consistency proofs [6]. Nordberg et al. continued this line of
work, suggesting privacy-preserving client-server pollination
of fresh STHs [7]. Nordberg et al. also proposed that clients
feedback SCTs and certificate chains on every server revisit,
and that trusted auditor relationships could be engaged if
privacy need not be protected. The latter is somewhat similar
to the formalized client-monitor gossip of Chase and Meik-
lejohn [43], as well as the CT honey bee project where a
client process fetches and submits STHs to a pre-compiled
list of auditors [42]. Laurie suggested that a client can resolve
privacy-sensitive SCTs to privacy-insensitive STHs via DNS
(which are easier to gossip) [33]. Private information retrievals
could likely achieve something similar [44]. Assuming that
TLS clients are indistinguishable from one another, split-view
detection could also be implicit as proposed by Gunn et al.
for the verifiable key-value store CONIKS [11][45].

Given that aggregation-based gossip takes place after an
STH is issued, it is a retroactive approach. As such, we
cannot protect an isolated client from split-views [8]. Similar
to STH pooling and STH pollination, we rely on client-driven
communication and an existing infrastructure of packet pro-
cessors to aggregate. Our off-path verification is based on the
same multi-path probing and indistinguishability assumptions
as Gunn et al. [11][46][47]. Further, given that aggregation is
application neutral and deployable on hosts, it could provide
gossip for the CT honey bee project (assuming plaintext STHs)
and any other transparency application like Trillian [48]. An-
other benefit when compared to browsing-centric and vendor-
specific approaches is that a plethora of HTTPS clients are
covered, ranging from niche web browsers to command line
tools and embedded libraries that are vital to protect but
yet lack the resources of major browser vendors [49][50].

124Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



RetroactiveProactiveSTH cross-logging [9][39][40][41]

STH pushing [18]

STH cosigning [8]

Implicit via multipath [11]

STH pooling [6][7]

Trusted auditing [7]

SCT feedback [7]

CT honey bee [42]

Figure 5. A categorization of approaches towards CT gossip.

Our approach coexists well with witness cosigning and cross-
logging due to different threat models, but not necessarily STH
pushing if the secure channel is encrypted (no need to fetch
what a trusted party provides).

VII. DISCUSSION

Next, we discuss assumptions, limitations and deployment,
showing that our approach towards retroactive gossip can be
deployed to detect split-views by many relevant attackers with
relatively little effort. The main drawback is reliance on clients
fetching STHs in plaintext, e.g., using CT-over-DNS [33].

A. Assumptions and Limitations

Aggregation-based gossip is limited to network traffic that
packet processors can observe. The strongest type of attacker
in this setting—who can completely isolate a client—trivially
defeats our gossip mechanism and other retroactive approaches
in the literature (see Section VI). A weaker attacker cannot
isolate a client, but is located nearby in a network path length
sense. This limits the opportunity for packet processor aggre-
gation, but an attacker cannot rule it out given aggregation
indistinguishability. Section IV showed based on performance
that it is non-trivial to distinguish between (non-)aggregating
packet processors on two different targets using P4 and XDP.
Off-path challengers must also be indistinguishable from one
another to achieve implicit gossip. While we suggested the use
of anonymity networks like Tor, a prerequisite is that this is
in and of itself not an aggregation distinguisher. Therefore, we
assume that other entities also use off-paths to fetch and verify
STHs. The fact that a unique STH is not audited from an off-
path could also be an aggregation distinguisher. To avoid this
we could rely on a verifiable STH history [51] and wait until
the next MMD to audit or simply monitor the full log so that
consistency proofs are unnecessary.

The existence of multiple network paths are fundamental
to the structure and functioning of the Internet. A weak
attacker may use IP fragmentation such that each individual
STH fragment is injected from a different location to make
aggregation harder, approaching the capabilities of a stronger
attacker that is located closer to the client. This is further ex-
acerbated by the deployment of multi-path transport protocols
like MPTCP (which can also be fragmented). Looking back
at our RIPE Atlas measurements in Section V, the results
towards Google’s world-wide infrastructure better represent
an active attacker that takes some measures to circumvent
aggregation by approaching a client nearby the edge. Given
that the likelihood of aggregation is high if any IXP is present
(Figure 4), aggregation at well-connected IXPs are most likely
to be circumvented.

B. Deployment
Besides aggregating at strategic locations in the Internet’s

backbone, Internet Service Providers (ISPs) and enterprise
networks have the opportunity to protect all of their clients
with relatively little effort. Deployment of special-purpose
middleboxes are already prevalent in these environments, and
then the inconvenience of fragmentation tends to go away due
to features such as packet reassembly. Further, an attacker
cannot trivially circumvent the edge of a network topology—
especially not if aggregation takes place on an end-system: all
fragments are needed to reassemble a packet, which means that
multi-path fragmentation is no longer a threat. If aggregation-
based gossip is deployed on an end-system, STHs could be
hooked using other approaches than P4/XDP. For example,
shim-layers that intercept TLS certificates higher up in the
networking stack were already proposed by Bates et al. [52]
and O’Neill et al. [53]. In this setting, an end-system is viewed
as the aggregating packet processor, and it reports back to an
off-path challenger that may be a local process running on
the same system or a remote entity, e.g., a TelCo could host
challengers that collect aggregated STHs from smartphones.

While we looked at programming physical packet pro-
cessors like routers, STH aggregation could be approached
in hypervisors and software switches [54] to protect many
virtual hosts. If CT-over-DNS is used to fetch STHs, it would
be promising to output DNS server caches to implement the
aggregation step. Similar to DNS servers, so called Tor exist
relays also operate DNS caches. In other words, P4 and XDP
are only examples of how to instantiate the aggregation step.
Depending on the used plaintext source, packet processor, and
network topology other approaches may be more suitable, e.g.,
C for vendor-specific middleboxes.

C. Retroactive Gossip Benefits From Plaintext
As opposed to an Internet core that only forwards IP pack-

ets, extra functionality is often embedded which causes com-
plex processing dependencies and protocol ossification [13].
Many security and protocol issues were found for middle-
boxes that provides extra functionality [12][55], resulting in
the mindset that everything should be encrypted [55]. Our
work is controversial because it goes against this mindset and
advocates that STHs should be communicated in plaintext. We
argue that this makes sense in the context of STHs due to the
absence of privacy concerns and because the entire point of
gossip is to make STHs available (rather than end-to-end). The
idea of intentionally exposing information to the network is not
new, e.g., MPQUIC is designed to support traffic shaping [56].

While we used CT-over-DNS as a plaintext source,
there is a push towards DNS-over-TLS [57] and DNS-over-
HTTPS [58]. Wide use of these approaches could undermine
our gossip mechanism, but ironically the security of TLS could

125Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



be jeopardized unless gossip is deployed. In other words,
long term gossip is an essential component of CT and other
transparency logs to avoid becoming yet another class of
trusted third-parties. If proactive approaches such as witness
cosigning are rejected in favour of retroactive mechanisms,
then ensuring that STHs are widely spread and easily acces-
sible is vital. An STH needs no secrecy if the appropriate
measures are taken to make it privacy-insensitive [7]. While
secure channels also provide integrity and replay protection,
an STH is already signed by logs and freshness is covered
by MMDs, as well as issue frequency to protect privacy. A
valid argument against exposing any plaintext to the network is
protocol ossification. We emphasize that our design motivates
why packet processors should fail open: otherwise there is
no aggregation indistinguishability. Note that there are other
plaintext sources than CT-over-DNS that could be aggregated.
However, if these sources require stream-reassembly it is gen-
erally hard to process in languages such as P4 and XDP [59].

D. Indistinguishability and Herd Immunity
An attacker that gains control over a CT log is bound to

be more risk averse than an attacker that compromises a CA.
There is an order of magnitude fewer logs than CAs, and client
vendors are likely going to be exceptionally picky when it
comes to accepted and rejected logs. We have already seen
examples of this, including Google Chrome disqualifying logs
that made mistakes: Izenpe used the same key for production
and testing [60], and Venafi suffered from an unfortunate
power outage [61]. Risk averse attackers combined with packet
processors that are aggregation indistinguishable may lead
to herd immunity: despite a significant fraction of clients
that lack aggregators, indirect protection may be provided
because the risk of eventual detection is unacceptable to many
attackers. Hof and Carle [40] and Nordberg et al. [7] discussed
herd immunity briefly before us. While herd immunity is
promising, it should be noted that aggregation distinguishable
packet processors at the edge of a network topology may be
acceptable for some. In other words, if an aggregator cannot
be circumvented but it is detectable split-views would still be
deterred against covered clients if the challenger is off-path.

VIII. CONCLUSION AND FUTURE WORK

Wide spread modifications of TLS clients are inevitable
to support CT gossip. We propose that these modifications
include challenging the logs to prove certificate inclusion based
on STHs fetched in plaintext, thereby enabling the traversed
packet processors to assist in split view detection retroactively
by aggregating STHs for periodic off-path verification. Our re-
sults show that the aggregation-step can be implemented with-
out throughput-based distinguishers for a distant attacker, and
that our approach offers rapid incremental deployment with
high impact on a significant fraction of Internet users. Beyond
being an application neutral approach that is complementary
to proactive gossip, a compelling aspect is that core packet
processors are used (rather than clients) as a key building
block: should a consistency issue arise, it is already in the
hands of an actor that is better equipped to investigate the cause
manually. Further, considering that far from all TLS clients are
backed by big browser vendors (not to mention other use-cases
of transparency logs in general) it is likely a long-term win to
avoid pushing complex retroactive gossip logic into all the

different types of clients when there are orders of magnitudes
fewer packet processors that could aggregate to their own off-
path challengers. Future work includes different instantiations
of the aggregation step and evaluating whether aggregation
indistinguishability is provided based on throughput and/or
latency. The setting may also change in some scenarios, e.g., if
DNS caches are aggregated the transport need not be plaintext.

ACKNOWLEDGMENT

We would like to thank Stefan Alfredsson and Philipp
Winter for their RIPE Atlas credits, as well as Jonas Karlsson
and Ricardo Santos for helping with the NetFPGA setup. We
also received funding from the HITS research profile which is
funded by the Swedish Knowledge Foundation.

REFERENCES

[1] Z. Durumeric, J. Kasten, M. Bailey, and J. A. Halderman, “Analysis of
the HTTPS certificate ecosystem,” in ICM, 2013, pp. 291–304.

[2] “Apple’s certificate transparency policy,” 2018, URL: https : / /
web.archive.org/web/20190401135231/https://support.apple.com/en-
us/HT205280 [accessed 2019-09-04].

[3] D. O’Brien, “Certificate transparency enforcement in Google Chrome,”
2018, URL: https://groups.google.com/a/chromium.org/forum/\#!msg/
ct-policy/wHILiYf31DE/iMFmpMEkAQAJ [accessed 2019-09-04].

[4] B. Laurie, A. Langley, and E. Kasper, “Certificate transparency,” RFC
6962, 2013.

[5] B. Dowling, F. Günther, U. Herath, and D. Stebila, “Secure logging
schemes and certificate transparency,” in ESORICS, 2016, pp. 140–158.

[6] L. Chuat, P. Szalachowski, A. Perrig, B. Laurie, and E. Messeri,
“Efficient gossip protocols for verifying the consistency of certificate
logs,” in CNS, 2015, pp. 415–423.

[7] L. Nordberg, D. K. Gillmor, and T. Ritter, “Gossiping in CT,” Internet-
draft draft-ietf-trans-gossip-05, 2018.

[8] E. Syta et al., “Keeping authorities “honest or bust” with decentralized
witness cosigning,” in IEEE SP, 2016, pp. 526–545.

[9] D. Drysdale, “Minimal gossip,” 2018, URL: https://github.com/google/
certificate-transparency-go/blob/master/gossip/minimal [accessed 2019-
09-04].

[10] O. Gasser, B. Hof, M. Helm, M. Korczynski, R. Holz, and G. Carle,
“In log we trust: Revealing poor security practices with certificate
transparency logs and Internet measurements,” in PAM, 2018, pp. 173–
185.

[11] L. J. Gunn, A. Allison, and D. Abbott, “Safety in numbers: Anonymiza-
tion makes keyservers trustworthy,” in HotPETs, 2017, pp. 1–2.

[12] Z. Durumeric et al., “The security impact of HTTPS interception,” in
NDSS, 2017.

[13] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda, “Is it still possible to extend TCP?” in ICM, 2011, pp.
181–194.

[14] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” CCR, vol. 44, no. 3, 2014, pp. 87–95.

[15] T. Høiland-Jørgensen et al., “The express data path: Fast programmable
packet processing in the operating system kernel,” in CoNEXT, 2018,
pp. 54–66.

[16] R. Dahlberg, T. Pulls, J. Vestin, T. Høiland-Jørgensen, and A. Kassler,
“Aggregation-based gossip for certificate transparency,” CoRR, vol.
abs/1806.08817, 2019, pp. 1–20.

[17] B. Laurie, “Certificate transparency,” ACM Queue, vol. 12, no. 8, 2014,
pp. 10–19.

[18] R. Sleevi and E. Messeri, “Certificate transparency in Chrome: Mon-
itoring CT logs consistency,” 2017, URL: https://docs.google.com/
document / d / 1FP5J5Sfsg0OR9P4YT0q1dM02iavhi8ix1mZlZe z - ls /
edit?pref=2&pli=1 [accessed 2019-09-04].

[19] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” in ACM SIGCOMM,
2013, pp. 99–110.

126Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies



[20] “Intel ethernet switch FM600 series: 10/40 GbE low latency switching
silicon,” URL: https://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/ethernet- switch- fm6000-series-brief.pdf
[accessed 2019-09-04].

[21] “Cavium and XPliant introduce a fully programmable switch silicon
family scaling to 3.2 terabits per second,” URL: https://cavium.com/
newsevents - cavium - and - xpliant - introduce - a - fully - programmable -
switch-silicon-family.html [accessed 2019-09-04].

[22] “Tofino: World’s fastest P4-programmable ethernet switch ASICs,”
URL: https: / /barefootnetworks.com/products/brief- tofino/ [accessed
2019-09-04].

[23] “Behavioral model repository,” URL: https : / / github.com / p4lang /
behavioral-model [accessed 2019-09-04].

[24] G. Brebner, “P4 for an FPGA target,” in P4 Workshop, 2015,
URL: \fullversion{https://web.archive.org/web/20190418085926/https:
/ / p4workshop2015.sched.com /event / 3ZQA/ p4 - for- an - fpga - target}
{https : / / p4workshop2015.sched.com / event / 3ZQA / p4 - for - an - fpga -
targe} [accessed 2019-09-04].

[25] “Programming NFP with P4 and C,” URL: https : / /
www.netronome.com / media / redactor files / WP Programming with
P4 and C.pdf [accessed 2019-09-04].

[26] M. Budiu, “Compiling P4 to eBPF,” URL: https://github.com/iovisor/
bcc/tree/master/src/cc/frontends/p4 [accessed 2019-09-04].

[27] S. McCanne and V. Jacobson, “The BSD packet filter: A new ar-
chitecture for user-level packet capture,” in Usenix Winter Technical
Conference, 1993, pp. 259–270.

[28] “Apple challenges FBI: All writs act order (CA),” URL: https : / /
www.eff.org/cases/apple-challenges- fbi-all-writs-act-order [accessed
2019-09-04].

[29] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The second-
generation onion router,” in USENIX Security, 2004, pp. 303–320.

[30] R. Braden, “Requirements for Internet hosts—communication layers,”
RFC 1122.

[31] S. Deering and R. Hinden, “Internet protocol version 6 (IPv6) specifi-
cation,” RFC 8200.

[32] C. Shannon, D. Moore, and K. C. Claffy, “Beyond folklore: Observa-
tions on fragmented traffic,” IEEE/ACM Trans. Netw., vol. 10, no. 6,
2002, pp. 709–720.

[33] B. Laurie, “Certificate transparency over DNS,” 2016, URL: https:
//github.com/google/certificate- transparency-rfcs/blob/master/dns [ac-
cessed 2019-09-04].

[34] “Aggregation-based gossip for certificate transparency logs,” 2018,
URL: https://github.com/rgdd/ctga [acessed 2019-09-04].

[35] “The CAIDA UCSD IXPs dataset,” February 2018, URL: https://
www.caida.org/data/ixps/ [accessed 2019-09-04].

[36] “The Routeviews MRT format RIBs and UPDATEs dataset,” March
2018, URL: http://archive.routeviews.org/bgpdata/2018.03/RIBS/ [ac-
cessed 2019-09-04].

[37] “ARank,” URL: http://as-rank.caida.org/ [accessed 2019-09-04].

[38] G. Nomikos and X. A. Dimitropoulos, “traIXroute: Detecting IXPs in
traceroute paths,” in PAM, 2016, pp. 346–358.

[39] B. Hof, “STH cross logging,” Internet-draft draft-hof-trans-cross-00,
2017.

[40] B. Hof and G. Carle, “Software distribution transparency and auditabil-
ity,” CoRR, vol. abs/1711.07278, 2017, pp. 1–14.

[41] A. Tomescu and S. Devadas, “Catena: Efficient non-equivocation via
Bitcoin,” in IEEE SP, 2017, pp. 393–409.

[42] A. Ayer, “Lightweight program that pollinates STHs between certi-
ficte transparency logs and auditors,” 2018, URL: https://github.com/
SSLMate/ct-honeybee [accessed 2019-09-04].

[43] M. Chase and S. Meiklejohn, “Transparency overlays and applications,”
in CCS, 2016, pp. 168–179.

[44] W. Lueks and I. Goldberg, “Sublinear scaling for multi-client private
information retrieval,” in FC, 2015, pp. 168–186.

[45] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten, and M. J.
Freedman, “CONIKS: Bringing key transparency to end users,” in
USENIX Security, 2015, pp. 383–398.

[46] M. Alicherry and A. D. Keromytis, “DoubleCheck: Multi-path verifica-
tion against man-in-the-middle attacks,” in ISCC, 2009, pp. 557–563.

[47] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
SSH-style host authentication with multi-path probing,” in USENIX
ATC, 2008, pp. 321–334.

[48] A. Eijdenberg, B. Laurie, and A. Cutter, “Verifiable data structures,”
2015, URL: https://github.com/google/trillian/blob/master/docs/papers
[accessed 2019-09-04].

[49] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library de-
tection in Android and its security applications,” in CCS, 2016, pp.
356–367.

[50] E. Derr, S. Bugiel, S. Fahl, Y. Acar, and M. Backes, “Keep me updated:
An empirical study of third-party library updatability on Android,” in
CCS, 2017, pp. 2187–2200.

[51] L. Nordberg, “Re: [Trans] providing the history of STHs a log has
issued (in 6962-bis),” URL: https://mailarchive.ietf.org/arch/msg/trans/
JbFiwO90PjcYzXrEgh-Y7bFG5Fw [accessed 2019-09-04].

[52] A. M. Bates et al., “Securing SSL certificate verification through
dynamic linking,” in CCS, 2014, pp. 394–405.

[53] M. O’Neill et al., “TrustBase: An architecture to repair and strengthen
certificate-based authentication,” in USENIX Security, 2017, pp. 609–
624.

[54] M. Shahbaz et al., “PISCES: a programmable, protocol-independent
software switch,” in ACM SIGCOMM, 2016, pp. 525–538.

[55] A. Langley et al., “The QUIC transport protocol: Design and Internet-
scale deployment,” in SIGCOMM, 2017, pp. 183–196.

[56] Q. D. Coninck and O. Bonaventure, “Multipath QUIC: Design and
evaluation,” in CoNEXT, 2017, pp. 160–166.

[57] S. Dickinson, D. Gillmor, and T. Reddy, “Usage profiles for DNS over
TLS and DNS over DTLS,” RFC 8310, 2016.

[58] P. Hoffman and P. McManus, “DNS queries over HTTPS (DoH),” RFC
8484, 2018.

[59] R. Dahlberg, “Aggregating certificate transparency gossip using pro-
grammable packet processors,” Master Thesis, Karlstad University,
2018.

[60] R. Sleevi, “Upcoming CT log removal: Izenpe,” 2018, URL:
https: / /groups.google.com/a/chromium.org/forum/#!topic/ct - policy/
qOorKuhL1vA [accessed 2019-09-04].

[61] ——, “Upcoming log removal: Venafi ct log server,” 2017, URL:
https: / /groups.google.com/a/chromium.org/forum/#!topic/ct - policy/
KMAcNT3asTQ [accessed 2019-09-04].

127Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies


