
Automotive Network Protocol Detection for Supporting Penetration Testing

Florian Sommer∗, Jürgen Dürrwang†, Marius Wolf‡, Hendrik Juraschek§, Richard Ranert¶ and Reiner Kriesten‖

Institute of Energy Efficient Mobility (IEEM)
Karlsruhe University of Applied Sciences

Karlsruhe, Germany
email:{∗florian.sommer, †juergen.duerrwang, ‡woma1029, §juhe1012, ¶rari1012, ‖reiner.kriesten}@hs-karlsruhe.de

Abstract—Currently, the automotive industry aims to integrate
security into the vehicle development process. In this process, a
vehicle is analyzed for possible security threats in order to develop
security concepts or security measures. Another important aspect
in vehicle security development is security testing. Penetration
testing is often used for this purpose. In penetration testing,
a tester acts from the perspective of an attacker and tries to
violate security properties of a vehicle through attacks (tests)
in order to uncover possible vulnerabilities. Since this task is
usually performed as a black box test with little knowledge
about the system, penetration testing is a highly experience-based
activity. Due to this, an automation of this process is hard to
achieve. In this paper, we want to support the penetration testing
process and its automation by introducing an extension of our
automotive portscanner tool. This scanner was developed to scan
vehicle networks, which are different from typical Information
Technology (IT) networks, in order to extract information about
the vehicle. Our tool is able to gather Electronic Control Units
(ECUs) installed in a vehicle, as well as diagnostic services and
subfunctions they provide. This functionality is extended by an
automatic detection of transport and diagnostic protocols used in
vehicles. With this knowledge, new use cases and functionalities
like fuzzing or an automated generation of penetration test cases
can be realized.

Keywords–Automotive Security; Penetration Testing; Automa-
tion; Network Protocols.

I. INTRODUCTION

A trend towards autonomous driving is currently pursued
in the automotive industry [1]. This increases the number
of sensors and actuators installed in vehicles, as well as the
complexity of internal and external communication of vehicle
components. The required communication with the outside
world for autonomous driving results in an increased risk of
security attacks. This has already been demonstrated by various
research groups [2]–[8]. Attacks were carried out on vehicles
in which it was possible to manipulate actuators, which had
an influence on driving physics, such as steering and braking
systems. Since only a few methods have been established in
the automotive sector to protect against such attacks, a high
effort is currently being invested in research and development
of security measures, standards and processes. The devel-
opment partnership AUTomotive Open System ARchitecture
(AUTOSAR) presented a measure to secure internal vehicle
networks with Secure Onboard Communication (SecOC) [9],
which enables authenticated communication of the vehicle’s
internal bus systems. In January 2016, Society of Automotive
Engineers (SAE) International published SAE J3061 (Cyber-
security Guidebook for Cyber-Physical Vehicle Systems) [10],
a guideline in which security was integrated into the vehicle
development process. In this process, a vehicle is analyzed for
possible security threats in order to develop security concepts

or security measures. Another important aspect in vehicle
security development is security testing. In addition to the ver-
ification of implemented security measures, this also includes
testing the vehicle for vulnerabilities. Penetration testing [11]
is often used for this purpose. In penetration testing, a tester
acts from the perspective of an attacker. The tester tries to
violate security properties of a vehicle through attacks (tests)
in order to uncover possible vulnerabilities. Penetration tests
can be carried out as black box tests, without any information
about the internal function of a system, or as white box tests
in case of knowledge about the internal function. Especially
in case of black box tests, the success of a penetration test
depends on the experience of a tester, since there is limited
knowledge about the system.

Problem: Penetration testing can be time consuming and
potential vulnerabilities could be missed, depending on avail-
able system information. It is an explorative test method
which highly depends on a tester’s experience. As a result,
an automation of this process is hard to achieve.

Approach: We present a way to support the process of
penetration testing through a tool-based solution. Our auto-
motive portscanner, which was introduced in the past [12],
serves as a basis. This scanner was developed in order to scan
vehicle networks, since they differ from IT networks by used
communication technologies, protocols and operating systems.
Our tool is used to support the information gathering process
and it is able to gather ECUs installed in a vehicle, as well as
their diagnostic services and subfunctions.

Contribution: We extend the functionality of our portscan-
ner by an automatic detection of transport and diagnostic
protocols which delivers additional information about a vehicle
and its internal structure. This leads to a greater coverage when
extracting vehicle data. We show how this can contribute to an
automation of penetration testing subprocesses by presenting
use cases which are possible with the knowledge about a
vehicle’s transport and diagnostic protocols. As a result, new
functionalities like automated testing of attacks or fuzzing [13]
based on these transport and diagnostic protocols can be
realized.

This work is structured as follows: In Section II, we
discuss existing vehicle network communication systems and
relevant transport and diagnostic protocols. Furthermore, we
present basic penetration testing processes and automotive
related adaptions. In Section III, we present our automotive
portscanner, as well as its extension for automatic protocol de-
tection and resulting use cases. We also illustrate, how ECUs,
transport protocols and diagnostic protocols are automatically
detected. To point out how this can contribute to support
automated penetration tests, we present different functionalities

114Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

in Section IV, which can be realized by our automatic protocol
detection. Finally, we summarize our results in Section V and
present planned future work.

II. BACKGROUND

In this section, we want to give a short overview of a
vehicle’s network and its communication systems, as well as
the process of penetration testing and how it is performed in
the automotive domain.

A. Vehicle Network Protocols
The Open Systems Interconnection (OSI) layer model [14]

is used for a structured description of communication systems.
It describes seven different layers which include specific tasks
of message transmission. Since we focus on transport and
diagnostic protocols for automotive communication systems,
the relevant layers for our purposes are: physical layer (1), data
link layer (2), transport layer (4) and application layer (7). The
layers 1 and 2 are represented by the used communication sys-
tems. There are different communication systems in a vehicle,
like FlexRay [15], Controller Area Network (CAN) [16], Local
Interconnect Network (LIN) [17], Ethernet [18] and Media
Oriented System Transport (MOST) [19]. These systems are
used for various applications and have different properties.
FlexRay is a cyclic network communication system which is
used for applications requiring high data rates (10 Mbit/s).
MOST and Ethernet are mainly applied for multimedia pur-
poses with even higher data rates. LIN is a serial network
protocol which connects components like sensors and ECUs.
For the automotive sector, CAN [16] is one of the most
important and commonly used bus systems. It is a bitstream-
oriented bus system, using twisted pair wires as physical
medium. CAN is a broadcast system in which each message
is uniquely characterized by an identifier. Since it is currently
the most used bus system in the automotive domain, we first
focus on CAN for the automated protocol detection. To explain
the functionality of that mechanism, this paper is focused
on CAN-based transport and diagnostic protocols. Transport
protocols represent the fourth layer of the OSI layer model.
They are required to transfer data larger than the maximum
message length. This is particularly necessary for diagnostic
applications and flash programming of ECUs. A further task
of the transport protocols is to control time intervals between
individual data packages. Transport protocols are also used to
forward messages via gateways to networks with a different
address space. The widespread protocols are International Or-
ganization for Standardization Transport Protocol (ISOTP) [20]
and SAE J1939 [21], which are standardized, and Transport
Protocol (TP) 2.0 [22], which is a proprietary protocol of
vehicle manufacturer Volkswagen. ISOTP and TP 2.0 come
into operation for passenger cars, whereas the SAE J1939
protocol is used for commercial vehicles. The application layer
is represented by diagnostic protocols. Diagnostic protocols
use a so-called Service Identifier (SID) [23] to select different
diagnostic services an ECU offers. To understand their func-
tionality, the communication principle is shown in Figure 1.
An external diagnostic testing device runs as a client, whereas
the ECU runs as a server. To start a diagnostic communication,
the diagnostic testing device has to send a diagnostic request
message to an ECU. This request contains a SID and a
subfunction which is necessary to address diagnostic services
like reading the error memory. The addressed ECU can answer

with a positive or negative response. A positive response is
characterized by the addition of value 0x40 to the SID. A
negative response is characterized by an Error-ID (0x7F), the
original SID and a Response Code that contains the reason for
the negative reponse.

Figure 1. Request and response scheme of automotive diagnostic protocols.

The following three diagnostic protocols are relevant: Key-
word Protocol (KWP) 2000 [24], Unified Diagnostic Services
(UDS) [23] and On-Board Diagnostics (OBD) [25]. These
protocols are standardized and similar to each other, since all of
them follow the communication principle in Figure 1. To sum
up, there are three relevant components in vehicle networks:
the communication systems, tranport protocols and diagnostic
protocols. The transport protocol is embedded into the data
field of the communication system message and the diagnostic
protocol is embedded into the transport protocol.

B. Penetration Testing
Penetration tests are carried out on running systems and

take place in the late phases of the development cycle. Usu-
ally, these tests are black box tests, since the tester has no
knowledge of the internal functionality of the system. Thus, the
tester acts from the attacker’s point of view. Several standards
and guidelines have been published for conducting penetration
tests. Pure penetration testing standards can be seen as a part
of security assessment methods, whereas security assessment
methods describe a comprehensive assessment of the security
of a system or company. Examples for security assessment
guides are National Institute of Standards and Technology
(NIST) SP 800-115 (Technical Guide to Information Security
Testing and Assessment) [26], Open Source Security Testing
Methodology Manual (OSSTMM) 3 [27], Information Systems
Security Assessment Framework (ISSAF) [28] and Open Web
Application Security Project (OWASP) Testing Guide [29].
An example of a pure penetration testing standard is the
Penetration Testing Execution Standard (PTES) [30], which is
intended to support companies and security service providers
in conducting penetration tests. A methodology for security
testing in the automotive sector is presented in the disser-
tation [31] with Automotive Security Testing Methodology
(ASTM), which is divided into five areas: planning phase,
detection phase, safe state analysis, moving vehicle analysis,
documentation and review. The methodology covers the typical
phases of the aforementioned methods and transfers them to
the automotive sector, especially the vehicle networking of
the control units. Our portscanner is used as an examplary
tool for the information gathering phase (detection phase).
Vehicle penetration testing has also been addressed in other
works. Bayer et al. [32] address penetration testing as a part

115Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

of practical automotive security testing. In [33], they classify
penetration testing as a parallel test method to functional
testing, fuzz testing and vulnerability testing, distinguishing
between hardware, software, backend and network penetration
testing and also considering organizational aspects. In [34],
Bayer et al. present an approach for the realization of a
penetration testing framework for CAN networks which is
based on the work mentioned above and enables a systematic
approach for penetration testers. This approach is demonstrated
by two examples in which a reverse engineering of CAN
identifiers and an exploitation of UDS diagnostic commands
is carried out. Another approach to penetration testing was
presented by Smith [35]. An overview of possible CAN tools
was presented by Pozzobon et al. [36] and Sintsov [37].
Additionally, Dürrwang et al. [38] emphasise the benefits of
penetration testing in the automotive sector by exploiting a
vulnerability they found in an airbag ECU with a systematic
penetration testing process.

III. APPROACH

In this section, our automotive portscanner and its ex-
tension for an automated detection of a vehicle’s network
protocols is introduced.

A. Automotive Portscanner
The portscanner’s purpose is to detect ECUs in a vehicle

and to search for offered diagnostic services and subservices,
as well as specific data from an ECU. The tool operates without
the knowledge of any manufacturer specific information by the
user and can be connected to the OBD connector, as shown in
Figure 2, and also directly to a bus system.

Figure 2. The portscanner sends diagnostic requests to the car to gather
ECUs, their diagnostic services and subservices.

In the first step, the portscanner uses an exhaustive search
method to detect all ECUs inside a vehicle network. There-
fore, standard diagnostic requests, as defined in International
Organization for Standardisation (ISO) 14229, are sequencially
sent to every possible CAN Identifier (ID). If a response
to a request is received (positive or negative), an ECU is
identified. In the next step, supported diagnostic services are
identified. Similar to the ECU identification process before,
every possible SID is checked by sending diagnostic requests
to every detected ECU. A service is supported if there is
a positive or negative response to a request. As a last step,
subservices of all found diagnostic services are identified by
sending diagnostic requests to every possible subservice for
all supported services of each ECU. A challenge with the
portscanner is the variation of transport protocols that can be

used in vehicle networks. ISOTP in combination with OBD
is required by law for diagnostic purposes. However, specific
areas are reserved for vehicle manufacturers in diagnostic
standards. For example, transport protocols, such as TP 2.0 are
used for these diagnostic requests in vehicles of Volkswagen
AG. An example of current capabilities of the portscanner is
given in [31], where the tool was applied on two vehicles.
On the first vehicle, our portscanner could find 47 ECUs, 380
diagnostic services and 1,924 subservices within 48 minutes
and 27 seconds. On the second vehicle, it could find 43
ECUs, 282 diagnostic services and 2,538 subservices within
36 minutes and 5 seconds. A further evaluation across several
vehicle types and manufacturers will have to be carried out
in the future. The portscanner functionality is extended by
an automatic protocol detection in order to achieve a greater
coverage during the extraction of vehicle data.

B. Automatic Protocol Detection
To operate the portscanner in an automated way, it is

necessary to know the used transport protocol and type of
CAN identifiers. Unfortunately, this information is unknown by
default. Because of that, we decided to develop an automatic
protocol detection to extend the functionality of our portscan-
ner. At first, a differentiation between 11-bit and 29-bit CAN
bus systems is necessary. The 11-bit CAN system is refered to
as CAN 2.0A, while a 29-bit system is refered to as CAN 2.0B.
Both formats are specified in [16]. A differentiation between
these formats can be made by the Identifier Extension (IDE)
bit, which is a part of the control field of a CAN message.
On this account, the tool monitors the CAN bus and checks
if the IDE bit is dominant (value 0) or recessive (value 1). A
dominant bit signals the usage of the standard 11-bit format.
After the ID format is known, transport and diagnostic pro-
tocols can be identified. As mentioned in Section II, relevant
diagnostic protocols (UDS, OBD, KWP 2000) follow the same
scheme, which is illustrated in Figure 1. The main difference
between these protocols are the services they address. This
results in different SID areas that can be called. In order to
identify supported diagnostic protocols, requests have to be
sent to vehicle ECUs in which potential SIDs are addressed.
In case of a response to a SID, the service and its related
diagnostic protocol is supported. Since diagnostic protocols
are embedded in a transport protocol format, the identification
of these protocols can be executed at the same time. In
order to identify a transport protocol, the exhaustive search
attempt of the portscanner is extended. The method starts
by sending diagnostic requests embedded in every possible
transport protocol (ISOTP, TP 2.0, SAE J1939). If there is a
response (positive or negative) to one of the combinations,
the used transport protocol is supported. In Figure 3, this
process is illustrated for 11-bit CAN IDs. If the CAN ID is
in range 0x7E0 to 0x7EF, it concerns OBD, since that range
is reserved for this diagnostic protocol combined with ISOTP.
If the CAN ID is not in that range, we have to check for
the transport protocol by checking the CAN frame for ISOTP
and TP 2.0 formats. After the transport protocol is recognized,
the diganostic protocol support for UDS and KWP 2000 is
checked. After the diagnostic protocol is recognized, the next
CAN frame with the next CAN ID can be evaluated until all
IDs are checked. It should be mentioned that more than one
transport protocol can be used within a communication system.
For example, even if CAN uses ISOTP, it can additionally use

116Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

TP 2.0. The same applies for diagnostic protocols.

Figure 3. Protocol detection procedure for 11-bit CAN IDs.

This possibility is not shown in Figure 3 due to clearness
of the process illustration. Based on the CAN ID, it is possible
to reduce the number of potential protocol combinations. For
example, since SAE J1939 is only defined for 29-bit systems,
it has not to be considered for 11-bit CAN systems. Another
reduction can be made for 29-bit CAN IDs. In theory, there
are 229 possible IDs for these systems, so an exhaustive
search on a 29-bit identifier is not feasible in practice. In
order to bypass this problem, the specifications of diagnostic
protocols are used. For diagnostic purposes, 29-bit CAN IDs
have a specified structure. For ISO 15765, the ID structure is
illustrated in Figure 4. As can be seen, there is a differentiation
between Source and Destination Address. Source Address is
the testers (portscanners) address, which is usually set to
0xF1. Destination Address is the address of an ECU. Since
a Destination Address only consists of 11 bit, the number

of possible identifiers is reduced to 211, which is equal to
CAN 2.0A 11-bit IDs. The SAE J1939 protocol has a similar
structure in which the Destination Address only consists of
8 bit, so there are just 28 possible identifiers. These two
specifications lead to a significant reduction of the original
229 possible CAN IDs.

Figure 4. 29-bit CAN identifier in ISO 15765.

C. Example
To illustrate how the protocol detection works, its function-

ality is described with an example of a 11-bit CAN system,
which is shown in Table I. This example follows the control
flow shown in Figure 3 and distinguishes three iterations. In
the first iteration (line 1 in Table I) of the example, the protocol
detection for ISOTP in combination with OBD is explained.
The second iteration (line 2) explains the protocol detection
for ISOTP in combination with UDS. The last iteration (line
3) shows the detection for ISOTP in combination with KWP
2000. For conciseness reasons, we decided not to show an
example of the protocol detection for TP 2.0 or ISOTP in case
of a message segmentation (more than 8 data bytes), since the
structure of these transport protocols is far more complex and
would go beyond the scope of this publication.

TABLE I. EXAMPLE OF THE AUTOMATIC PROTOCOL DETECTION BY
SENDING DIFFERENT REQUESTS AS DESCRIBED IN FIGURE 3 (NUMBERS

ARE IN HEXADECIMAL FORMAT).

Message ID Data Identified
ISOTP OBD Request 7E0 02 01 05 00 00 00 00 00 ISOTP,
ISOTP OBD Response 7E8 06 41 05 22 AA 00 D5 00 OBD
ISOTP UDS Request 602 02 10 03 00 00 00 00 00 ISOTP,
ISOTP UDS Response 630 04 40 03 00 CD 00 00 00 UDS
ISOTP KWP 2000 Request 604 02 1A 01 00 00 00 00 00 ISOTP,
ISOTP KWP 2000 Response 6A0 06 5A 01 00 89 23 41 00 KWP 2000

In the first iteration (line 1), a diagnostic request based on
ISOTP and OBD is sent on CAN. Since there is a response to
this request and the CAN ID is in range 0x7E0 to 0x7EF, the
transport protocol ISOTP and the diagnostic protocol OBD
is supported. The second iteration (line 2) is similar to the
first one. The difference is the diagnostic protocol used for the
request, which is UDS now. The CAN ID of the reponse is not
in the OBD ID range, so according to Figure 3 the response is
checked for ISOTP, which is supported, since the reponse has
the format of this transport protocol. After that, the diagnostic
protocol has to be recognized. The requested service (SID =
0x10) and its subservice (0x03) is a UDS specific service,
so the diagnostic protocol is UDS. The last iteration (line 3)
contains a diagnostic request based on ISOTP and KWP 2000.
The detection works similar to the former two iterations. Since
the requested service (SID = 0x1A) is a KWP 2000 specific
service, the diagnostic protocol is KWP 2000. It should be
mentioned that presented transport and diagnostic protocols
are relatively complex, so the example in Table I and detection
process in Figure 3 can differ for some protocol combinations
or detection functions. UDS, for example, is a replacement

117Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

for KWP 2000 and many services between those protocols
have the same SID, so in this case a differentiation has to
be made at the level of subservices. Another difference could
be more physical when considering the baudrate of the bus
system. For example, UDS does not prescribe a baudrate, in
contrast to OBD. We do not want to go into too much detail
of the special protocol properties. Instead, we want to focus
on the use cases our automatic protocol detection can enable
for penetration testing, which is described in next Section.

IV. USE CASES

In this section, use cases of the portscanner and its auto-
matic protocol detection for penetration testing purposes are
presented.

A. Gathering ECUs, Services, Subservices and Vehicle Data
The possibility to extract information about existing ECUs,

its diagnostic services and subservices has been described
before and is part of the portscanner functionality. Another
feature facilitates the extraction of vehicle data like fault
memory, chassis number, or ECU firmware versions. This
can be done by requesting diagnostic services. Further, the
extension to support an automatic protocol detection enables
our tool to achieve a greater coverage by gathering even more
vehicle information including prescribed and manufacturer-
specific diagnostic functions. This is an advantage for pen-
etration testing, as it enables the tester to obtain far more
information about the vehicle which is particularly relevant
for black box penetration tests.

B. Reverse Engineering of the Routing Table
Normally, a diagnostic tester is connected to the OBD

connector of a vehicle. For vehicles, which usually have several
bus systems, these bus systems are separated via gateways,
whereas each gateway is responsible for mapping the message
format of one bus system to the message format of another bus
system (for example CAN to LIN). If a diagnostic request is
sent to a control unit that is connected to the OBD connector
via several gateways and bus systems, diagnostic messages
have to be routed via these connections to the target ECU. This
routing is determined during the development of the vehicle
in form of a routing table, which is not known to testers.
From a penetration testing point of view, reverse engineering
of that table can be accomplished with the automatic protocol
detection by sending a diagnostic request to observe the
message routing on the bus systems between OBD connector,
gateways and target ECUs. However, it should be mentioned
that this requires a physical connection to these bus systems.

C. Automatic Test Case Generation
Based on recognized vehicle network protocols, it is pos-

sible to automatically derive test cases. This can be done
on the basis of known vulnerabilities which can be used
for an exploitation of diagnostic services that were attacked
in the past. Many of the attacks mentioned in Section I
are based on exploited diagnostic services [2]–[4]. Therefore,
this information can be used as data input for the automatic
generation of test cases. Another possible data input could
be our own collection [39] of vulnerabilities and attacks on
vehicles, which was classified in form of a taxonomy [40], to
support penetration testing.

D. Fuzzing
In fuzzing, an attempt is made to test a system for its

susceptibility to errors or robustness by entering random or
modified data [13]. This method can uncover new vulnera-
bilities in a system. The usage of fuzzing techniques in the
automotive sector has been shown in [41] in which fuzzing is
performed using the data bytes of CAN messages, or in [42]
in which the fuzzing tool beSTORM was extended by the
Controller Area Network Flexible Datarate (CAN FD) [43]
protocol. Another fuzzing tool in the automotive industry is
CaringCaribou, which was developed as part of the HEAl-
ing Vulnerabilities to ENhance Software Security and Safety
(HEAVENS) research project [44]. By knowing the transport
and diagnostic protocols, the input sequence for fuzzing can be
specified based on the given information by simply changing
the data within these protocols.
E. Vulnerability Scanning

Another use case incorporates vulnerability scanning in
which a system is scanned for known security vulnerabili-
ties. Through an automatic detection of supported vehicular
network protocols, the scanning process can be automated.
Vulnerability databases can serve as data input for our tool.
The Karlsruhe University of Applied Sciences [45] currently
aims to develop such a database for the automotive sector
as part of the Security For Connected, Autonomous caRs
(SecForCARs) [46] project.
F. Exploitation Tool

Considering the aforementioned features, our tool could
be extended to an exploitation tool, with which it is possible
to exploit found vulnerabilities, in order to carry out an actual
attack on the vehicle. Therefore, the tool could actively support
the process of penetration testing and its partial automation.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension of our automotive
portscanner [12] by introducing an automatic protocol detec-
tion for vehicle networks. The automatic protocol detection re-
sults in new use cases, which allow an extension of penetration
test activities by additional functions. This especially supports
black box penetration tests and enables a partial automation of
the process. Since only the use cases Gathering ECUs, Ser-
vices, Subservices and Vehicle Data and Reverse Engineering
of the Routing Table are realized currently, future work could
include the extension of our tool by further use cases. To put
the aforementioned use cases into practice, an incorporation
of further bus systems into our tool is required. Examples
are LIN, Ethernet, CAN FD and FlexRay. These bus systems
partially use different protocols like User Datagram Protocol
(UDP) [47] and Transmission Control Protocol (TCP) [48] for
the transport layer or Diagnostics over IP (DoIP) [49] for the
application layer of Ethernet. An extension of our tool by these
protocols could be conceivable. Since there have been several
remote attacks on vehicles, another extension could include
an implementation of wireless technologies to our tool, so the
risk for this type of attack can be assessed. In this way, the
portscanner can be extended to a useful penetration testing tool
for vehicle networks.

ACKNOWLEDGEMENTS

This work has been developed in the project SAFE ME
ASAP (reference number: 03FH011IX5) that is partly funded
by the German ministry of education and research (BMBF).

118Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

REFERENCES

[1] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, ”Autonomes Fahren:
technische, rechtliche und gesellschaftliche Aspekte [Autonomous Driv-
ing: Technical, Legal and Social Aspects]”. Springer-Verlag, 2015.

[2] C. Miller and C. Valasek, “Adventures in automotive networks and
control units,” Def Con, vol. 21, 2013, pp. 260–264.

[3] ——, “A survey of remote automotive attack surfaces,” Black Hat USA,
vol. 2014, 2014.

[4] ——, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, vol. 2015, 2015.

[5] Keen Lab, “Experimental Security Assessment of BMW Cars: A
Summary Report,” 2017.

[6] K. Mahaffey, “Hacking a Tesla Model S: What we found and what
we learned,” 2015, https://blog.lookout.com/hacking-a-tesla. [accessed:
2019-09-03].

[7] K. Koscher et al., “Experimental Security Analysis of a Modern
Automobile,” in 2010 IEEE Symposium on Security and Privacy. IEEE,
5/16/2010 - 5/19/2010, pp. 447–462.

[8] S. Checkoway et al., “Comprehensive Experimental Analyses of Auto-
motive Attack Surfaces,” in USENIX Security Symposium, 2011.

[9] AUTOSAR, “Specification of Secure Onboard Communication,”
2018, https://www.autosar.org/fileadmin/user upload/standards/classic/
4-3/AUTOSAR SWS SecureOnboardCommunication.pdf. [accessed:
2019-09-03].

[10] SAE Vehicle Electrical System Security Committee, “SAE J3061-
Cybersecurity Guidebook for Cyber-Physical Vehicle Systems,” SAE-
Society of Automotive Engineers, 2016.

[11] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,”
IEEE Security & Privacy, vol. 3, no. 1, 2005, pp. 84–87.

[12] M. Ring, J. Dürrwang, F. Sommer, and R. Kriesten, “Survey on
Vehicular Attacks - Building a Vulnerability Database,” in 2015 IEEE
International Conference on Vehicular Electronics and Safety (ICVES).
IEEE, 11/5/2015 - 11/7/2015, pp. 208–212.

[13] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the
reliability of UNIX utilities,” Communications of the ACM, vol. 33,
no. 12, 1990, pp. 32–44.

[14] ISO/IEC 7498-1:1994, “Information technology - Open Systems Inter-
connection - Basic Reference Model: The Basic Model,” 1994.

[15] ISO 17458-1:2013, “Road vehicles–FlexRay communications system–
Part 1: General information and use case definition,” International
Organization for Standardization, 2013.

[16] ISO 11898-1:2015, “Road vehicles – Controller area network (CAN) –
Part 1: Data link layer and physical signalling,” 1993.

[17] L. Consortium, “LIN: Specification Package. Revision 2.2 A, 2010.”

[18] IEEE 802.3bw-2015, “IEEE Standard for Ethernet Amendment 1:
Physical Layer Specifications and Management Parameters for 100
Mb/s Operation over a Single Balanced Twisted Pair Cable (100BASE-
T1),” 2015.

[19] M. Cooperation, “MOST Specification Rev 3.0,” 2008.

[20] ISO 15765-2:2016, “Road vehicles – Diagnostic communication over
Controller Area Network (DoCAN) – Part 2: Transport protocol and
network layer services,” 2016.

[21] SAE J1939 201206, “Serial Control and Communications Heavy Duty
Vehicle Network - Top Level Document,” 2012.

[22] W. Zimmermann and R. Schmidgall, ”Bussysteme in der Fahrzeugtech-
nik: Protokolle, Standards und Softwarearchitektur [Bus Systems in
Automotive Engineering: Protocols, Standards and Software Architec-
ture]”, 5th ed. Wiesbaden: Springer Vieweg, 2014.

[23] ISO 14229:2006, “Road vehicles — Unified diagnostic services (UDS)
— Specification and requirements,” 2006.

[24] ISO 14230-3:1999, “Road vehicles – Diagnostic systems – Keyword
Protocol 2000 – Part 3: Application layer,” 1999.

[25] ISO 15031-3:2016, “Road vehicles – Communication between vehicle
and external equipment for emissions-related diagnostics – Part 3:
Diagnostic connector and related electrical circuits: Specification and
use,” 2016.

[26] K. A. Scarfone, M. P. Souppaya, A. Cody, and A. D. Orebaugh,
“SP 800-115. Technical Guide to Information Security Testing and
Assessment,” 2008.

[27] P. Herzog, “Open-Source Security Testing Methodology Manual,” In-
stitute for Security and Open Methodologies (ISECOM), 2003.

[28] B. Rathore et al., “ISSAF-Information System Security Assesment
Framework-30.04,” 2006.

[29] M. Meucci, E. Keary, and D. Cuthbert, “OWASP Testing Guide, v3,”
OWASP Foundation, vol. 16, 2008.

[30] C. Nickerson et al., “The Penetration Testing Execution Standard,”
2017.

[31] M. Ring, “Systematische Security-Tests von Kraftfahrzeugen [System-
atic Security Tests of Motor Vehicles],” Dissertation, Universität Ulm,
Ulm, 2019.

[32] S. Bayer, T. Enderle, D. Oka, and M. Wolf, “Automotive Security
Testing—The Digital Crash Test,” in Energy Consumption and Au-
tonomous Driving. Springer, 2016, pp. 13–22.

[33] S. Bayer, “Practical Security Evaluations of Automotive Onboard IT
Components,” 2015.

[34] S. Bayer, K. Hirata, and D. Oka, “Towards a Systematic Pentesting
Framework for In-Vehicular CAN,” 2016.

[35] C. Smith, The Car Hacker’s Handbook: A Guide for the Penetration
Tester. No Starch Press, 2016.

[36] E. Pozzobon, N. Weiss, S. Renner, and R. Hackenberg, “A Survey on
Media Access Solutions for CAN Penetration Testing,” 2018.

[37] A. Sintsov, “Pentesting Vehicles with CANToolz: YACHT - Yet Another
Car Hacking Tool,” 2016.

[38] J. Dürrwang, J. Braun, M. Rumez, R. Kriesten, and A. Pretschner,
“Enhancement of Automotive Penetration Testing with Threat Analyses
Results,” SAE International Journal of Transportation Cybersecurity and
Privacy, vol. 1, no. 11-01-02-0005, 2018, pp. 91–112.

[39] F. Sommer and J. Dürrwang, “Automotive Attack Database (AAD),”
2019, https://github.com/IEEM-HsKA/AAD [accessed: 2019-09-03].

[40] F. Sommer, J. Dürrwang, and R. Kriesten, “Survey and Classification
of Automotive Security Attacks,” Information, vol. 10, no. 4, 2019, p.
148.

[41] H. Lee, K. Choi, K. Chung, J. Kim, and K. Yim, “Fuzzing CAN Packets
into Automobiles,” in 2015 IEEE 29th International Conference on
Advanced Information Networking and Applications, 2015, pp. 817–
821.

[42] R. Nishimura et al., “Implementation of the CAN-FD protocol in the
fuzzing tool beSTORM,” in 2016 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), 2016, pp. 1–6.

[43] F. Hartwich, “CAN with flexible data-rate,” in Proc. iCC. Citeseer,
2012, pp. 1–9.

[44] The HEAVENS project, “CaringCaribou: A friendly car secu-
rity exploration tool,” https://github.com/CaringCaribou/caringcaribou,
2019, https://github.com/CaringCaribou/caringcaribou [accessed: 2019-
09-03].

[45] Karlsruhe University of Applied Sciences, “Sichere Datenverarbeitung
beim autonomen Fahren: Starke IT-Sicherheit für das Auto der Zukunft
– Forschungsverbund entwickelt neue Ansätze [Secure Data Processing
during Autonomous Driving: Strong IT Security for the Car of the
Future – Research Consortium develops new Approaches],” 2019, https:
//www.hs-karlsruhe.de/presse/secforcars/. [accessed: 2019-09-03].

[46] Federal Ministry of Education and Research, “SecForCARs:
Security For Connected, Autonomous Cars,” 2019, https:
//www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/
sicherheit-fuer-vernetzte-autonome-fahrzeuge. [accessed: 2019-09-03].

[47] J. Postel, “RFC 768: User datagram protocol,” Tech. Rep., 1980.
[48] ——, “RFC 793: Transmission control protocol,” 1981.
[49] ISO 13400-2:20126, “Road vehicles - Diagnostic communication over

Internet Protocol (DoIP) – Part 2: Transport protocol and network layer
services,” 2012.

119Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

