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Abstract—Large data collections, such as big data, are utilized and
analyzed in business.Because large-scale data calculations require
a computer system with high processing power, it is practical
to outsource the processing to an external server. However,
especially when consigning confidential data, such as personal
information, it is important to take measures against information
leakage. There are various methods, such as data anonymization
processing for privacy protection, but in this research, as a
method of data confidentiality protection, a Fully Homomorphic
Encryption (FHE) that can be calculated in an encrypted state is
used. As in a previous study, P3CC (Privacy Preserving Protocol
for Counting Candidates) is used, which applies FHE to a client-
server type system that performs frequent pattern mining with
the Apriori algorithm. To implement this system, the Apriori
algorithm is changed to the FP-growth (frequent pattern growth)
algorithm in our research work, and the results are compared
with those of the existing method using the Apriori algorithm.

Keywords–Fully Homomorphic Encryption; Data Mining; Dis-
tributed System.

I. INTRODUCTION

Big data and large-scale data have been utilized in various
fields of business. To perform calculations that deal with large-
size data, a computer system with a high processing power is
required. When it is difficult to provide such a system, external
computing resources, such as the cloud can be used. In that
case, it is necessary to take sufficient measures to prevent the
leakage of the information to be transmitted during the con-
signment processing of data, such as personal information and
medical data, for which it is necessary to ensure confidentiality.
When the processing of confidential information is outsourced,
it is possible to perform addition and multiplication calculation
processing without showing plaintext data to the consignee
server by using fully homomorphic encryption (FHE). There-
fore, there is an expectation that data can be entrusted even if
transmitted by a server that is not reliable. As an application
example of FHE, Liu et al.’s P3CC [1] performed the frequent
pattern mining of transaction data by the Apriori algorithm;
studies on speeding up the approach have also been conducted
[2] [3], in addition to distributed processing using the FUP
(Fast Update) algorithm [4], as described in Section IV. In
this research, we implement the system of frequent pattern
mining but with the part processed by the FP-growth algorithm
instead of by Apriori, and we compare the results with those
of previous studies. The remainder of this paper is organized

as follows. Sections II and III introduce related technologies.
In Section IV, some of the previous researches are shown.
Sections VI and VII-A are about the experiment conducted
in this research. Finally, in Section VIII, the conclusion and
future plans are stated.

II. FULLY HOMOMORPHIC ENCRYPTION

A. Overview
Privacy homomorphism was firstly proposed by Rivest et

al. [5]. They proposed privacy homomorphism as the property
of being able to perform operations while being encrypted.
FHE is an encryption method that combines the features of
additive homomorphism and multiplicative homomorphism.

This approach has the function of a public key cryptosys-
tem, and capabilities for the addition and multiplication of
ciphertexts in an encrypted state are established. In other
words, it is possible to manipulate the plaintext before it is
decrypted by computing the ciphertexts. Therefore, by using
FHE, there is an expectation that calculation processing can be
outsourced without showing plaintext data to the outsourced
server.

For FHE, Gentry proposed a lattice-based implementation
method in 2009 [6]. In each ciphertext, random noise is added
to increase the indecipherability of the encryption.

The problem is that the computational complexity of the
process can be massive because of the large data size of the ci-
phertext and key, and the value of the noise increases each time
the ciphertext is calculated. If the noise exceeds the threshold,
the decryption becomes impossible. The noise value increases
significantly, especially when performing multiplication. By
performing a bootstrapping process, it is possible to refresh
the noise of the ciphertext, but this process also requires a
large amount of calculation.

B. Leveled FHE
Leveled FHE is an implementation of FHE that does

not use bootstrapping, and it was proposed by Brakerski et
al. [7]. Leveled FHE is a structure of perfect homomorphic
cryptography that can evaluate the result of a logic circuit of
fixed depth L. If the calculation logic circuit depth is small
enough for the level given in advance, there is no need to do
bootstrapping. This study uses Leveled FHE, so it does not
use bootstrapping.
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III. FREQUENT PATTERN MINING

Frequent pattern mining is a method aimed at extracting
correlation rules from a large quantity of data. This study deals
with transaction data.

In the frequent pattern mining used in this research, which
item is included in each transaction is represented as a binary
matrix. Frequent item sets are extracted based on whether the
support value is greater than or equal to the given minimum
support value. The support value of each item set is the ratio
of the number of transactions including the item set to the
total number of transactions. Apriori and FP-growth are typical
algorithms for frequent pattern mining. The outline of each
algorithm is provided below.

A. Apriori
Apriori algorithm was proposed by Agrawal et al. in 1993

[8]. Apriori is a breadth-first search algorithm that compares
the support value III with the given minimum support value
in order to acquire the list of frequent item set from size
of 1. Apriori is used in the previous research described in
Section IV. Even if there are few types of items, the number
of possible combinations of items can be massive. To reduce
the calculation amount, pruning is adopted. For example, if
the support value of an item set of item length n is less than
the minimum support value, it is determined that the pattern
of item length n + 1 including the item set is not frequent
anymore. The implementation of Apriori is relatively easy.

B. FP-growth
FP-growth is another algorithm used to extract frequent

item sets. In contrast to Apriori, FP-growth is a depth-first
search. The results of these two algorithms, the list of
frequent itemsets, will correspond to each other. The process
of FP-growth is different from Apriori in terms of the data
structure; it uses tree-structured data to search for frequent
itemsets. First, the database is scanned, and the transaction
data are stored in the tree structure of a prefix tree called
FP-tree. Then, frequent patterns are found by scanning the
tree. It is different from Apriori in that it does not enumerate
the frequent item set candidates. Depending on the data
size and data characteristics, there is an expectation that the
search can be made more efficient than Apriori, in which the
enumeration of frequent items becomes a bottleneck. The
implementation is also more complex than that of Apriori.
FP-tree is defined as follows [9]:

1) It consists of one root labeled as ”null”, a set of
item prefix subtrees as the children of the root, and
a frequent-item header table.

2) Each node in the item prefix subtree consists of three
fields: item-name, count, and nodelink, where item-
name registers which item this node represents, count
registers the number of transactions represented by
the portion of the path reaching this node, and node-
link links to the next node in the FP-tree carrying the
same item-name, or null if there is none.

3) Each entry in the frequent-item header table consists
of two fields, (1) item-name and (2) head of node-
link, which points to the first node in the FP-tree
carrying the item-name.

To construct an FP-tree, transaction data and minimum
support values are needed as input data. To pick the frequent
item sets, scan the constructed FP-tree recursively.

IV. PREVIOUS RESEARCH

An outline of the previous research on secure data mining
using FHE is provided below. The algorithm for frequent pat-
tern mining adopted in all of the previous research mentioned
in this section is Apriori.

A. P3CC

P3CC is a secure method for a frequent pattern mining
consignment system using FHE proposed by Liu et al. [1].
Comparing operations between ciphertexts are difficult when
FHE is used. Therefore, when the values of ciphertexts need
to be compared, they are sent back to the client machine. To
reduce the data size of the ciphertext, the numbers of items and
transactions are not encrypted, and only a binary matrix that
represents which items each transaction includes is encrypted.
Furthermore, adding dummy data on the client side prevents
the guessing of plaintext data from the server.

B. Speedup of P3CC with Cipher Text Packing and Cipher
Text Caching

Imabayashi et al. [2] proposed a method to speed up P3CC
by introducing a packing scheme by Smart and Vercauteren
[10]. The method reduced the amount of ciphertext and the
multiplication of ciphertexts using ciphertext packing by en-
crypting multiple integers as a vector. As a result, the process
achieved a 10-fold speedup compared to the case without
packing. This method can be applied not only to Apriori, but
also to secure search and other data mining algorithms. Then,
they proposed a method of caching a ciphertext to reduce the
space-time complexity of frequent pattern mining with FHE.
It is shown that the proposed method can greatly reduce the
execution time and memory usage of Apriori by P3CC, and the
effect is larger when the data set is large or when a dummy
set is added. In particular, when the number of transactions
is 10,000, a 430-fold faster speed and 94.7 % memory usage
reduction are realized compared to P3CC [3].

C. Implementation of P3CC in a distributed environment and
speeding up update with FUP algorithm

Yamamoto et al. [4] implemented a secure data mining
system using the FUP algorithm to speed up Apriori
algorithm when the database is updated [4]. They also applied
a master/worker-type distributed processing to speed up
the system. Item set division was applied to the distributed
processing method. As a result, the execution time of the
recalculation when the FUP algorithm is introduced at the time
of the database update can be shortened by approximately
3- to 4-fold compared with recalculation by the Apriori
algorithm. Additionally, due to the decentralized processing,
the calculation time on the master side is reduced according
to the number of distributed machines.
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Figure 1. execution time when FP-growth was used (Client)

V. IMPLEMENTATION OF SECURE FREQUENT PATTERN
MINING

In this research, a system like the one presented Figure 1 is
used. In this study, a master-worker (master-slave) distributed
system is adopted for processing on the server. The number of
workers is set from 1 to 4. Two algorithms of frequent pattern
mining are used in this system: FP-growth and Apriori (from
previous research). For both programs, we used ciphertext
packing based on previous research [2] by Imabayashi et
al. [2]. The program using Apriori is the one produced by
Yamamoto et al. [4]. This system was implemented in C++,
the library of the FHE is Helib [11], and the distributed/parallel
processing library is MPI [12].

The following shows the processing for each system using
the two types of algorithms.

A. Outline of processing using Apriori
The process is partially delegated to the server, as indicated

in Section IV. The procedure is shown below.

1) Preparing data on the client
a) Encrypt transaction data with FHE.
b) Create candidate items and send them to the

server.
2) Consigned processing on the server

a) Receive encrypted data from client and cal-
culate support value of item without de-
cryption. Then, send the result back to the
client. In this process, master-worker type
distributed processing is performed.

3) Comparison with minimum support value on the
client

a) Receive file from the server
b) Retrieve items whose support value is equal

to or greater than the minimum support
value.

c) Return to procedure 1b and send the candi-
date whose item set size is one larger. Repeat
until the number of candidates is 0.

B. Outline of processing using FP-growth
When using FP-growth, the procedure is similar to the

process with Apriori in the first step. In this program, the
calculation of the support value of the item, which is the first
step of the construction of FP-tree, is consigned to the server,
while the construction and scanning of the FP-tree are done on
the client machine. Because it is necessary to perform many

comparison operations to construct and scan an FP-tree, in this
research, these processes were performed on the client. Even
if the process on the client is not finished, the server ends the
program after sending the support value calculation result to
the client. The procedure FP-tree construction and scanning is
shown below.

1) Preparing data on the client
a) Encrypt transaction data with FHE.
b) Create candidate items and send them to the

server.
2) Consigned processing on the server

a) Receive encrypted data from client and cal-
culate support value of item without de-
cryption. Then, send the result back to the
client. In this process, master-worker type
distributed processing is performed.

3) FP-tree construction on client
a) Receive file from the server.
b) Retrieve items whose support value is equal

to or greater than the minimum support
value.

c) Sort the items in the order of occurrence and
recreate the transaction excluding the items
that are not frequent.

d) Construct an FP-tree.
4) FP-tree scanning on the client

a) Scan the constructed FP-tree and output the
result.

VI. EXPERIMENT

A. Experiment outline
The client program and server program were run on each

computer using two computers in the same network. We
confirm the execution time by changing the minimum support
value and the number of transactions.

B. Experiment environment
The performance of the computer used in the experiment

is shown in Table I.

TABLE I. DETAILS OF THE MACHINE USED IN THE EXPERIMENT

OS CentOS 6.9
CPU Intel R© Xeon R© Processor E5-2643 v3 3.6 GHz

6 core 12 threads
Memory 512 GB

One machine of the type shown in the Table I was used as
a client and a server. On the server side, as shown in Section
V, master-worker type distributed processing is performed, but
in this experiment, it is fixed to one. Additionally, the worker
runs on the same machine as the master.

C. Experiment method
1) Investigation of the lowest possible level for experimen-

tal data: For each transaction data, when minimum support
value is 0.01, an experiment was conducted with the possible
lowest level. In this case, the lowest level represents the lowest
one that the cyphertext can be normally decoded until the
end of the calculation. The level was specified by trial. In
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all experiments in this study, the level is set to 17 in Apriori
and 3 in FP-growth. These values of the level are the lowest
that can be applied to each method. If the levels are lower than
these values, execution will be end with a decode error.

2) Measurement of Execution time: The execution time was
measured for each combination of input data and minimum
support value.

3) Measurement of Resource Usage: CPU and memory
usage are measured by dstat command.

D. Input data
The input data in this experiment were artificially created.

Data generation was performed using IBM Quest Synthetic
Data Generator, and the parameters were generated by speci-
fying the average item length, the maximum pattern size, the
number of item types, and the number of transactions.

TABLE II. PARAMETERS OF INPUT DATA

Average transaction length 5
Maximum pattern size 5
Number of item types 30
Number of transactions 9900

The value of each parameter is specified as shown in Table
II.

VII. RESULTS AND DISCUSSION

A. Results
The execution time shown is the average of three trials

for each parameter. Figure 2 shows the execution time on the
client when FP-growth is used.

Figure 2. execution time when FP-growth was used (Client)

The execution time on the client side decreases almost
monotonically as the support value increases. It is the FP-
tree scan that is most affected by the computation time, and
this changes with the size of the tree created. The creation
time of the tree itself ends in linear time, but the scanning
requires recursive processing, so when the minimum support
value is small, the calculation time tends to jump. In the
current implementation, the calculation time on the server side
is approximately 10 seconds and hardly changes because the
process is the same if the data are the same.

Second, the execution time when FP-growth was dis-
tributed is shown in Figure 3.
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Figure 3. execution time when FP-growth was used (distributed)

The communication time increases as the number of work-
ers increases. However, since there were few parts of the
processing that were entrusted to the servers, the overhead was
large and the distribution effect was not so great.

A comparison between two programs with the two different
algorithms is shown in Figure 4.

1 2 3 4
apriori_all (client) 4186.500679 2428.341623 1514.817209 1199.619227
apriori_all (master) 4186.503753 2432.53919 1516.405 1203.901466
fpgrowth_all (client) 75.27033631 78.58226927 76.31201235 76.60046299
fpgrowth_all (master) 10.53994807 12.60987329 11.67660824 13.92486667
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Figure 4. comparison of execution time between the programs using Apriori
and FP-growth

The minimum value of the required level differs signif-
icantly between the systems using the two algorithms. This
difference directly affects the size of the ciphertext and the
execution time.

Figure 5 and Figure 6 show a comparison of the resources
used by the client’s machine. The data is measured when it is
run with four workers and minimum support value is 0.05. In
the system by Apriori, the CPU utilization peaked at the timing
of receiving data. In FP-growth, after receiving data, FP-tree
scan is performed in the part where the value is continuously
10%. In addition, the memory usage rate continued to be high
during entrustment processing in both programs.

B. Discussion
When Apriori is used, once the transaction data are en-

crypted, re-decryption is not performed every time when data
is exchanged with the server. Therefore, as the number of loops
of the calculation increases, in other words, as the maximum
value of the frequent item set length increases, the amount of
noise in the ciphertext increases. To prevent decryption error, it
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Figure 5. comparison of cpu usage between the programs using Apriori and
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Figure 6. comparison of memory usage amount between the programs using
Apriori and FP-growth

is necessary to set the value of the ciphertext level sufficiently
large in advance.

On the other hand, in this implemetation, transaction data
exchange with the server is performed only once in FP-growth;
the initial value of the level needs to be able to calculate the
support value only one time, so the required level compared
with Apriori is smaller.

In addition, it can be seen that the increase in the number
of candidate item sets more strongly affects the required
level than the number of transactions due to the change in
the support value. It can be confirmed that the execution
time of FP-growth is approximately 100-fold smaller than the
execution time of Apriori at maximum. The execution time
is longer in Apriori’s system. The higher the level is, the
larger the size of the ciphertext, and the amount of processing
could also be large. In FP-growth, although the amount of
computation in scanning of the FP-tree is also large, it was
found that it is extremely small when compared with the
processing of the ciphertext in this experiment.

In the experiment, it is confirmed that the difference in
the results between the two different systems was not only
due to the difference in the algorithm itself but the difference
in implementation also had a relatively large effect. In the
current implementation using FP-growth, although the system
using Apriori exchanges with the server multiple times, the
portion of the processing entrusted to the server is small. The
amount of the process dealing with cyphertext is generally

large, so when the number of processes used to manipulate
the ciphertext is reduced, a large difference is observed in the
execution time.

VIII. CONCLUSION AND FUTURE PLANS

A system doing frequent pattern mining by the FP-growth
algorithm using a FHE was implemented. Then, the execution
time and the amount of resource usage of this system were
measured, and they were compared with previous system using
the Apriori algorithm. In the comparison of the execution
time, the system using FP-growth was approximately 100-fold
faster than the system of the previous research. This result is
considered to be the reason for much of the difference between
the implementation of the system, rather than the algorithm
itself. In the future, to improve the FP-growth system, it is
considered necessary to reduce the number of times of the
transmission and reception of the ciphertext data between the
client and the server when increasing the ratio of processing
on the server.
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