
Comparison and Analysis of System Designs for

Privacy-Preserving Genome Sequences Search

Yuki Yamada

Dept. of Information Sciences
Ochanomizu University

Tokyo, Japan
Email: yuki@ogl.is.ocha.ac.jp

Masato Oguchi

Dept. of Information Sciences
Ochanomizu University

Tokyo, Japan
Email: oguchi@is.ocha.ac.jp

Abstract—Genome sequences search is useful, for example,
in clinical applications where a care provider needs to select
a treatment option for a patient based on the exact kind of
cancer the patient might have. However, privacy protection for
genome analysis is one of the most important issues in the area
of medical genomics. In such a situation, only homomorphic
encryption is a desirable technology to be used for this application
because it is non-interactive. Privacy-preserving genome sequence
search using homomorphic encryption has been a practical
challenge because of the scalability issues driven by the depth of
computations that need to be supported for privacy-preserving
genome sequence search. Comparison and analysis of system
designs for such a system are important for us to put them
in practical use. Therefore, in this work, we build off of earlier
researches for genome sequence search to design, then implement
and compare each approach. We particularly focus on the
differences in the main calculation time on the server and the
data transfer overhead. Our results show that each design has
different trade-offs and characteristics.

Keywords— Homomorphic Encryption; Genome Sequence;
Secure Search; Privacy; Cloud Computing.

I. Introduction

Ever since the Human Genome Project [1] and the 1000
Genomes Project [2] have begun publishing catalogs of
human variation and genotype data, genomic data analytics
have found increasingly practical and important use in
various fields. Privacy challenges associated with analytics on
genomic data have been exacerbated by recent innovations that
made it much less expensive to handle genetic information.
Furthermore, it is difficult for hospitals or research institutes
that have genome databases to publish the complete data
because of the privacy issues, and also it is not desirable
for researchers to make their work-in-progress work public.
Therefore, it is needed to keep both genome database contents
and the user’s query in private. However, because genomic
data is potentially voluminous, making scalability challenges
are important when analyzing genetic data, especially when
needed to be done in a privacy-preserving manner.

Of particular interest, genomic search applications look
for some specific sub-strings, thus driving the need for a
system that can conduct privacy-preserving string searches

on vast amounts of genome data. Generic cloud computing
environments are not feasible to address this need due to
security and privacy concerns engendered by multi-tenancy,
and the cloud may be managed by unknown and un-trusted
individuals. A simple solution to the cloud-based storage of
privacy-sensitive genomic information is to use encryption. If
this system is built with common symmetric- or public-key
encryption, the decryption key would be passed to the cloud
to enable analytics, thus creating a privacy concern. Only
homomorphic encryption techniques enable non-interactive
computation on the data when it is encrypted. Fully
Homomorphic Encryption (FHE) supports non-interactive
computation on encrypted data. Hence, FHE allows a client
to upload a corpus of genomic data to a high-performance
off-premise computation environment and then search on that
genomic data without leaking its private information to the
computation host. However, search operations are considered
to be ”deep”, meaning they are not efficient when running on
homomorphically encrypted data.

Prior efforts show some methods that use FHE to protect
privacy [3][4]. In these methods, encrypted data is uploaded
to a cloud for privacy-preserving non-interactive computation
without decryption. Although there have been attempts
to accelerate these systems by introducing decentralized
computing, such as in [5] as well, the calculation costs on
the cloud are still too large to put into practice.

In this paper, we implement the privacy-preserving genome
sequences search system in multiple designs based on the
previous work [3][4] and compare their performance to explore
design trade-offs. In Section II we introduce the motivating
application of privacy-preserving genome sequences search. In
Section III, we introduce relevant features of FHE techniques.
In Section IV, we provide a broad overview of relevant
prior work. In Section V, we discuss designs trade-offs and
approaches that we build on and explore. In Section VI, we
discuss our implementation and experimental settings and then
show experimental results. In Section VII, we analyze the
results of our experimentation. In Section VIII, we conclude
this research and discuss future directions.

78Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

II. Genome Sequence Search Application

The goal of an application for the privacy-preserving
genome sequences search is for clients to query if there are
matches between a query string and the data in a genome
database stored on an off-site server [6]. Genomic data are
composed of sequences of 4 different kinds of nucleotides
– A, G, C, and T –, therefore, we can regard this genome
sequences search as a 4-kind character search [5].

A representation of this operation is seen in Figure 1.

Figure 1. Genome sequences search

We assume a secure model of a privacy-preserving
genome search system with a cloud environment, where the
outsourcing system is implemented in the client-server style.
Its representation is shown in Figure 2.

Figure 2. Application overview

A server holds a set of genome sequences data aligned
by each sample in a database. This means that it is possible
to search every sample in a specific position of the genome
sequence. Clients send the inquiry to a server to calculate
the matches between the query and the database held by the
server. The query sent by the client includes not only the
encrypted string that the client wants to search the genome
sequence for but also some other parameters such as a public
key for calculations and multiple starting points of the search
for genome data strings (search positions). By designating
multiple positions including dummy ones, clients can hide the
actual one the clients use from the server. On receiving an
inquiry from a client, the server conducts match searching on
the data with FHE calculations, and then transmits the result
to the client. The result transmitted by the server indicates
whether there are any matches between the query string and
genome sequences or not.

III. Fully Homomorphic Encryption (FHE)

As discussed in Section I, we leverage FHE to provide
privacy-preserving genome sequences search. As seen
respectively in (1) and (2), these homomorphisms are called
the Additive Homomorphism (which supports addition over
encrypted data), and the Multiplicative Homomorphism (which
supports multiplication over encrypted data.)

Additive/Multiplicative Homomorphism� �
Encrypt(m) ⊕ Encrypt(n) = Encrypt(m + n) (1)
Encrypt(m) ⊗ Encrypt(n) = Encrypt(m × n) (2)� �

FHE supports both of these homomorphism properties. By
leveraging these properties, users can support the evaluation
of polynomial circuits over ciphertexts analogous to how they
would support similar circuits evaluated on plaintexts.

FHE was first proposed by Rivest et al. in 1987 [7] but
was not known to be feasible until a candidate scheme was
discovered by Gentry in 2009 [8]. This first scheme leverages
polynomial rings and ideal lattices, and the encrypted text is
constructed by encrypted data and random noise to guarantee
its difficulty to decrypt without the appropriate secret key. This
early scheme was computationally inefficient, for example,
the ciphertext of this implementation would be 1 GB on
encrypting 1 bit data. There have been tremendous recent
strides in developing increasingly more efficient schemes and
their implementations. For example, Lu et al. [9] show a
scheme that supports a comparison homomorphism in addition
to addition and multiplication homomorphisms.

There are still many large challenges with FHE. For
example, noise accumulates in ciphertexts when computations
are performed on them. As this noise grows, the ciphertexts
eventually cannot be decrypted correctly after too many
computations are performed. The random noise in ciphertexts
grow additively with additive operations and multiplicatively
with every multiplication operation. This noise growth would
normally limit the size of computations that could be
performed with FHE. However, there is a special method
called bootstrapping, which reduces the noise embedded in a
ciphertext, with the drawback that the bootstrapping operations
are extremely computationally intensive.

Note that many practical applications of FHE schemes
use a limited version of FHE without bootstrapping. The
”reduced” version of FHE is called Somewhat Homomorphic
Encryption (SHE or SwHE) [10]. This is the ability to conduct
some simple calculations that can be derived with one-time
multiplication and multiple times addition, such as the inner
product of the vector, distribution, and correlation.

79Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

IV. PreviousWork

A. PBWT-sec

Several previous attempts have been made to realize
practical privacy-preserving genome sequences search.
PBWT-sec [6] is an efficient two-party prefix much-counting
protocol that combines Additive Homomorphic Encryption
(AHE) and an efficient data structure for much searching
called Positional-Burrows Wheeler Transform (PBWT)
[11]. The server of PBWT-sec has a genome sequences
database as PBWT style, that is transformed from an original
aligned genome sequences database. In its searching phase,
the server access to a look-up vector that is derived from
PBWT recursively. This is named Recursive Oblivious
Transfer (ROT) [11]. When the query string length is l, ROT
consists of l times vector-lookups, which needs l rounds of
communication between the client and the server. PBWT-sec
also devises the idea that the client passes multiple amounts
of search positions, which includes dummy ones, to a server
to preserve the privacy of clients with hiding the positions that
the client uses. Although AHE can be used as an encryption
method, according to this work [6], it is considered that
preventing genome data leakage with AHE is difficult because
we cannot conduct complex calculations with it.

B. Genome sequences search with FHE

While FHE engenders a much longer computation time
than that of AHE, we can extend the PBWT-sec approach
to use computation methods that search with wildcards and
compute statistics based on the search result by building
genome sequences search with FHE.

There are two relevant prior attempts by Ishimaki et al.
[3][4]. First, one [3] proposes multi-round privacy-preserving
genome sequence searches with FHE based on PBWT-sec
[6]. This approach replaces additive homomorphic methods
in PBWT-sec with fully homomorphic methods and also
introduces the packing technique proposed by Smart et al.
[12]. The other [4] propose an efficient approach for one-round
search with FHE by introducing bootstrapping and reducing
the runtime of the system by optimizing the calculation
procedure. These two work use HElib [13] and its BGV
implementation as a software library for FHE calculations.
The detail of the system design that is proposed by each work
is discussed in Section V.

C. FHE scheme comparison for genome sequences search

There is another work we have done for privacy-preserving
genome sequences search [14]. In the paper, we implemented
multiple designs of genome search systems in two schemes,
BFV [15] in PALISADE [16] and BGV [17] in HElib [13],
and then compared their calculation time on the server. There
is a myriad of options and design trade-offs associated with the
application of homomorphic encryption in this domain-driven,
not only design trade-offs but also scheme selection, choices
in data encoding, even encryption software library.

V. Design and Trade-offs

A. Design 1

First, we introduce the Design 1, proposed by [3], shown
in Figure 3 below.

Figure 3. Application Design 1

(1) The client encrypts one character of the query string and
then passes the resulting ciphertext to the server with
other parameters.

(2) The server then performs FHE computations and then
returns the result to the client.

(3) The client decrypts the intermediate result.
(4) The client encrypts the next character of the query using

the result and sends it to the server.
(5) Repeat (2)-(4) as many times as the length of the query.

There are two approaches to support the needed depth of
computation to avoid incorrect decryption: limiting the depth
of FHE computations to keep the noise in ciphertexts less than
noise threshold for correct decryption, or adopting bootstrap to
reduce noise in ciphertexts. In this design, the server operates
over a single character at a time, and thus the client gains the
final result by comparing the results for all query characters.
This reduces the depth of computation on the server and
enables reduced noise to remove the need for bootstrapping.
However, computation costs on the clients and communication
costs between the client and the server increase as the length of
the query increases. Since each communication involves large
data transfer, this design is inappropriate for the clients with
limited communication resources and requires that the clients
both be available and have appropriate computation resources
for repeated encryption and decryption.

B. Design 2-1 and Design 2-2

Next, we introduce Design 2-1 and Design 2-2. The server
in both Design 2-1 and Design 2-2 supports the whole string
search to address the issues Design 1 has. Thus Design 2-1
and Design 2-2 are more appropriate for the client with limited
computation power as compared to Design 1. However, the
data size of ciphertexts as welll as FHE calculation costs on
the server of Design 2-1 and Design 2-2 are much greater than
that of Design 1.

80Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

There are two general approaches to support the large
computation depth needed on the server of Design 2. Design
2-1, proposed by [4], reduces the noise by bootstrapping as
shown in Figure 4.

Figure 4. Application Design 2-1

(1) The client encrypts the whole query string and then
passes the encrypted query string with supporting
parameters to the server.

(2) The server performs FHE computations and reset noise
with bootstrap accordingly.

(3) The server transmits the encrypted result to the client.
(4) The client gains a result by decrypting the received data.

The server in Design 2-1 can operate the whole string search
by adopting the method called bootstrap. Bootstrap can reset
the noise in the ciphertexts while each bootstrapping operation
causes expensive overhead. Previous work [4] proposed the
approach to minimize the number of bootstrapping with the
parameters for a reduced number of calculations.

Alternatively, Design 2-2 sets sufficiently large parameters
to ensure correct decryption within a limited (but large)
number of operations as shown in Figure 5.

Figure 5. Applicatin Design 2-2

(1) The client encrypts the whole query string and then
passes the encrypted query string with supporting
parameters to the server.

(2) The server performs FHE computations with large
parameters.

(3) The server transmits the encrypted result to the client.
(4) The client gains a result by decrypting the received data.

Design 2-2 is a more naive approach that sets sufficiently
large parameters so that no bootstrap is needed. Using the
parameters for the larger number of operations deteriorates
the performance of all the arithmetic operations, while each
bootstrapping operation costs expensive overhead.

VI. Experimentation

Based on previous work, we implement Design 1, Design
2-1 and Design 2-2 discussed in Section V and then compare
them on real-world data.

A. Problem settings

The genomic data used for this experiment are
Single-Nucleotide Polymorphism (SNP) [18] sequences
from the 1,000 Genomes Project [2]. This data provide
the representation of where variations from a reference
genome are likely to appear, without showing entire genome
sequences. In our experimental setting, the number of
genomic data samples is 2185 and the number of characters
per sample is 10,000. The range of the query length is 1–6,
and clients designate just one search position.

B. System overview

We implemented the privacy-preserving genome sequences
search system in multiple designs discussed in Section V in
C++. As a software library for homomorphic encryption, we
adopted HElib [13]. Both systems adopt the Chinese Reminder
Theorem (CRT) packing technique by Smart et al. [12] as well.
Experiments were conducted on the machines that have the
specification shown in Table I and parameters used for these
experiments are summarized in Table II.

TABLE I. EXPERIMENTAL ENVIRONMENT

OS CentOS 6.9

Server CPU Intel®Xeon®Processor E5-2643 v3 (3.4GHz)
6 Cores × 2 Sockets

Main Memory 512GB
SSD 80GB
HDD 2TB

TABLE II. PARAMETERS FOR THE EXPERIMENTS

Design Parameter L

Design 1 8

Design 2-1 23

Design 2-2 9 * (query length)

C. Experimentation Results

We ran each experiment three times and calculated the
average of results.

Figures 6-7 show each graph of the average client-to-server
and server-to-client data transfer overhead (volume of data) of
Design 1, Design 2-1 and Design 2-2 shown in Figures 3-5,
based on the length of the query. Figure 8 shows the average
execution time on the server of Design 2-1 and Design 2-2
based on the length of the query.

81Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

Figure 6. Client-to-server data transfer overhead

Figure 7. Server-to-client data transfer overhead

Figure 8. Average execution time of the main calculation on the server of
Design 2-1 and Design 2-2 by the length of query

VII. Analysis of Experimental Results

A. Data transfer overhead

First, we compare client-to-server and server-to-client data
transfer overhead (volume of data) by each application design.
According to the result, Figures 6-7 show the opposite things:
the smallest client-to-server data transfer overhead and the
largest server-to-client data transfer overhead are those of
Design 1.

We can regard server-to-client data transfer overhead as
a more important one because it is assumed that the server
has plenty of resources while the clients have poor ones,
meaning that Design 2 would be more suitable for the client
with less computation resource. However, it is needed to
evaluate more kinds of values from more points of view
to examine the best application design for the client with
particular specification; we should compare not only the
client-to-server and server-to-client data transfer overheads but
also data transfer time between clients and server and the
homomorphic calculation time on clients.

B. Execution time

Next, to compare Design 2-1 and Design 2-2 in detail, we
compare the execution time of the main calculation on the
server. Figure 8 shows the result for this comparison. It can be
observed that the main calculation time on the server of Design
2-1 increases linearly while that of Design 2-2 increases in the
multiplier.

This result is because of the parameters used for this
experimentation shown in Table II. Although we can use
the same parameters for FHE calculation in Design 2-1, the
parameters for that in Design 2-2 need to get larger as the
length of query increases to guarantee correct decryption
without using bootstrap nor the noise in the ciphertext of FHE
exceeding the threshold. However, it is also indicated that the
calculation time on Design 2-2 is faster than that on Design
2-1 with a shorter length of the query. This means that it is
better to switch the design to use according to the query and
some other parameters.

VIII. Conclusion and Discussion

Comparison and analysis of system designs for systems
is important to put them in practical use. Therefore, in this
paper, we implemented and compared multiple designs for
the client-server style system for privacy-preserving genome
sequences search with BGV in HElib based on prior work. Our
results show three things: the calculation costs on the clients
in Design 1 increases more as the length of query increases,
the calculation costs on the server in Design 2 increases more
as the length of query increases, and it depends on the length
of query and some other parameters that decide which design
is the more suitable in Design 2-1 and Design 2-2. As future
work, we plan to compare the execution time on the clients and
data transfer time with a limited resource of clients, as well
as the execution time on the server and data transfer size.

82Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

Acknowledgement

This work was partly supported by JST CREST Grant
Number JPMJCR1503, Japan.

References
[1] NHGRI. (2019). The human genome project, [Online].

Available: https://www.genome.gov/human-genome-project
(visited on 9–2019).

[2] EMBL-EBI. (2018). The international
genome sample resource, [Online]. Available:
http://www.internationalgenome.org/ (visited on 9–2019).

[3] Y. Ishimaki, K. Shimizu, K. Nuida, and H. Yamana, “Poster:
Privacy-preserving string search for genome sequences using
fully homomorphic encryption,” in IEEE Symposium on
Security and Privacy, 2016.

[4] Y. Ishimaki, H. Imabayashi, K. Shimizu, and H. Yamana,
“Privacy-preserving string search for genome sequences
with fhe bootstrapping optimization,” in 2016 IEEE
International Conference on Big Data (Big Data), IEEE,
2016, pp. 3989–3991.

[5] Y. Yamamoto and M. Oguchi, “A decentralized system of
genome secret search implemented with fully homomorphic
encryption,” in the 1st IEEE International Workshop on Big
Data and IoT Security in Smart Computing (BITS2017), IEEE,
2017, pp. 1–6.

[6] K. Shimizu, K. Nuida, and G. Rätsch, “Efficient
privacy-preserving string search and an application in
genomics,” Bioinformatics, vol. 32, no. 11, pp. 1652–1661,
2016.

[7] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” Foundations of secure
computation, vol. 4, no. 11, pp. 169–180, 1978.

[8] C. Gentry, “Fully homomorphic encryption using ideal
lattices,” in Stoc, vol. 9, 2009, pp. 169–178.

[9] W. Lu, S. Kawasaki, and J. Sakuma, “Using fully
homomorphic encryption for statistical analysis of categorical,
ordinal and numerical data,” IACR Cryptology ePrint Archive,
(2016/1163).

[10] M. Naehrig, K. Lauter, and V. Vaikuntanathan, “Can
homomorphic encryption be practical?” In Proceedings of the
3rd ACM workshop on Cloud computing security workshop,
ACM, 2011, pp. 113–124.

[11] R. Durbin, “Efficient haplotype matching and storage using the
positional burrows–wheeler transform (pbwt),” Bioinformatics,
vol. 30, no. 9, pp. 1266–1272, 2014.

[12] N. P. Smart and F. Vercauteren, “Fully homomorphic simd
operations,” Designs, codes and cryptography, vol. 71, no. 1,
pp. 57–81, 2014.

[13] homenc. (2019). Helib: An implementation of
homomorphic encryption, [Online]. Available:
https://github.com/homenc/HElib (visited on 9–2019).

[14] Y. Yamada, K. Rohloff, and M. Oguchi, “Homomorphic
encryption for privacy-preserving genome sequences search,”
in The 3rd IEEE International Workshop on Big Data and IoT
Security in Smart Computing (BITS2019), 2019.

[15] J. Fan and F. Vercauteren, “Somewhat practical fully
homomorphic encryption,” IACR Cryptology ePrint Archive,
vol. 2012, p. 144, 2012.

[16] PALISADE. (2019). Palisade release, [Online]. Available:
https://gitlab.com/palisade/palisade-release (visited on
9–2019).

[17] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully
homomorphic encryption without bootstrapping,” IACR
Cryptology ePrint Archive, vol. 2011, p. 277, 2011.

[18] NIH. (2019). What are single nucleotide polymorphisms
(snps)? - genetics home reference - nih, [Online]. Available:
https://ghr.nlm.nih.gov/primer/genomicresearch/snp (visited
on 9–2019).

83Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

