
Implementation of MQTT/CoAP Honeypots and Analysis of Observed Data

Hajime Shimada

Information Technology Center, Nagoya University
Nagoya-shi, Japan

Email: shimada@itc.nagoya-u.ac.jp

Katsutaka Ito

Meitetsucom Co., LTD
Nagoya-shi, Japan,

Email: itokatu@net.itc.nagoya-u.ac.jp

Hirokazu Hasegawa

Information Strategy Office, Nagoya University
Nagoya-shi, Japan

Email: hasegawa@icts.nagoya-u.ac.jp

Yukiko Yamaguchi

Information Technology Center, Nagoya University
Nagoya-shi, Japan

Email: yamaguchi@itc.nagoya-u.ac.jp

Abstract—Recently, there are many systems that utilize Internet
of Things (IoT) effectively. Those systems often use simple IoT-
aimed protocols, such as Message Queue Telemetry Transport
(MQTT) or Constrained Application Protocol (CoAP). However,
recent cyber-attacks have been targeting IoT systems (e.g., the
“Mirai” malware) so we are concerned that malicious persons
could also exploit IoT-aimed protocols in cyber-attacks. Thus,
we proposed MQTT/CoAP honeypots to observe possible cyber-
attack or scouting activities related to cyber-attack. To imitate
real IoT systems, the proposed honeypots hold imitated sensing
data which is updated periodically. Also, to avoid ill use by
attackers, the proposed honeypot accepts update requests from
the Internet, but the updated value is only visible to the same
request source IP (Internet Protocol) address. The proposed
honeypots were deployed in December 2016 (MQTT) and August
2017 (CoAP) and requests were observed from the Internet
continuously. We observed several mysterious requests to both
MQTT and CoAP honeypots. We observed that the MQTT
honeypot received some non-MQTT protocol based requests to
1883/tcp and some of them are wrongly interpreted as MQTT
protocol. We determined that an effective MQTT server must be
robustly implemented to handle there types of requests.

Keywords–Honeypot; Internet of Things; MQTT; CoAP.

I. INTRODUCTION

In recent years, there are many systems that utilize Inter-
net of Things (IoT) effectively. Many of those systems use
common protocol to transfer data, such as HTTP (Hyper-Text
Transfer Protocol), however, such protocols were developed
for transferring comparatively rich content that include a large
amount of overhead even when sending small amounts of data.
In some cases, the size of the protocol header becomes larger
than the size of the sending data. As a result, some systems use
simple IoT-aimed protocols, such as Message Queue Teleme-
try Transport (MQTT) and Constrained Application Protocol
(CoAP) to reduce overhead [1][2].

However, recent cyber-attacks have been targeting IoT
systems so we are concerned that malicious persons could
also exploit IoT-aimed protocols in cyber-attacks. The use of
those protocols is comparatively small, so there may exist
many insecure servers which use those protocols. A number

of services gather the opened ports and services of a server
and list them via a Web service for security notice (e.g.,
Shodan [3]). However, such services can also be used by an
attacker to explore servers, including the servers using IoT-
aimed protocols.

In this paper, we report on the results of our previously
proposed MQTT/CoAP honeypots to observe possible cyber-
attacks or scouting activities related to cyber-attacks. To imitate
real IoT systems, the proposed honeypots hold fake sensing
data that are updated periodically. To avoid ill use by attackers,
the proposed honeypot accepts update requests from the Inter-
net but the updated value is only visible to the same IP (Internet
Protocol) address that sent the updating request. This function
can avoid ill use for a malware’s Command and Control server.
Also, we set the data transfer limit per hour to prevent DoS
(Denial of Service) attacks (registering attack destinations as
subscribers).

The MQTT version of the proposed honeypot was deployed
in December 2016, and we presented our initial report at a
domestic meeting in March 2017 [4]. We deployed our CoAP
version in August 2017 and continuously observed requests
from the Internet. Unfortunately, we lost data recorded after
November 15, 2017 due to both system failure and careless
backup treatment. So, the data that we could analyze are
from December 1, 2016 to October 30, 2017 from the MQTT
honeypot and from August 1, 2017 to October 30, 2017 from
the CoAP honeypot. The analyzed results show that requests
for MQTT were several times larger than those of CoAP in
a month, but many of them came from security companies.
We observed mysterious requests originating from 3 different
countries with the same payload in around 2000 second
intervals without following the standards of the protocol. We
considered these requests to be attempts for unauthorized
access or to attack the server.

The rest of the paper is organized as follows. Section II
introduces related works about honeypots for IoT systems. Sec-
tion III introduces the characteristics of IoT-aimed protocols
that we cover in our proposed honeypot. We introduce our
proposal and implementations in Section IV. Section V shows

35Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

gathered accesses with the proposed honeypot and analysis
results. Finally, we conclude and introduce future works in
Section VI.

II. RELATED WORKS

Some honeypots implement IoT-aimed protocols as a part
of their functions. A honeypot named Dionaea[5][6] has a
MQTT module as a third party implementation. A generic
low-interaction honeypot named glutton [7] also has a MQTT
module. However, these honeypots only gather requests arrived
to opened ports and cannot imitate a real IoT system.

Some studies have focused on honeypots that mimic IoT
devices. Some of those honeypots gather information from at-
tacks via telnet (23/tcp). Pa et al. proposed IoTPot[8][9] which
analyze attacks by emulating telnet connection of various IoT
devices. They detected 106 distinct types of malware from
5 malware families. Their observations were only limited to
telnet so that our research differs in that we cover multiple IoT-
aimed protocols. Wang et al. proposed ThingPot [10] which
emulates multiple protocol servers including several IoT-aimed
protocols, such as MQTT, CoAP, and Advanced Message
Queuing Protocol (AMQP). But their emulation is limited to
the server level and not the system level so that attackers can
easily determine that it is a honeypot by checking the topics
in the honeypot. Luo et al. proposed IoTCandyJar [11] which
emulates multiple protocol servers including several IoT-aimed
protocols, similar to ThingPot.

In this paper, we introduce a proposal of IoT honeypot
system that imitates real IoT systems by registering fake sens-
ing values periodically. We operated the systems over a long
period to gather data on MQTT and CoAP connections, which
were treated as being in the “minor connection category” in
prior studies.

III. INTRODUCTION OF IOT-AIMED PROTOCOLS

A. MQTT: Message Queue Telemetry Protocol
Message Queue Telemetry Transport (MQTT) [12] is a

broker-based publish/subscribe-type messaging protocol. It can
use both 1883/tcp and 1883/udp for implementation, but TCP
is widely used. A fixed header of MQTT is only 2 bytes so
that it is suitable for IoT devices and networks with limitations
on processor and network performance.

An outline of MQTT usage is shown in Figure 1. The
MQTT server is called a broker and clients are separated into
publishers and subscribers. A subscriber sends a request to the
broker by indicating the topic, and the broker sends the topic
to all subscribers when a publisher sends a corresponding topic
to the broker. Topics in a MQTT system are organized with
a hierarchical structure similar to a directory in a file system
(e.g., /8F/room806/temperature). The subscriber can use the
wildcard “+” to represent a hierarchy to indicate multiple
topics (e.g., /7F/+/humidity). The wildcard “#” can be used
to represent all lower hierarchies to indicate multiple topics
(e.g., /6F/#) or by itself to obtain all topics. The published
message is discarded after distribution to the subscriber in
the MQTT basic configuration. However, the MQTT has a
retaining function that keeps the latest published topic in the
broker and sends it to a new subscriber if they request the
topic.

MQTT has 3 levels of QoS (Quality of Service) which
are described as at most once, at least once, and exactly

Broker

Publisher 1 Publisher 2 Publisher M.....
.....

(1) Subscribe request

(2) Publish message

(3) Send message
Subscriber 1 Subscriber 2 Subscriber N

.....

.....

Figure 1. Outline of MQTT usage

TABLE I. METHODS OF CoAP AND CORRESPONDING RESPONSES

Response from server
Method Resource exists Resource does not exists
GET 2.05 Content 4.04 Not Found
PUT 2.04 Changed 4.04 Not Found
POST 2.04 Content 4.03 Created
DELETE 2.02 Deleted 4.04 Not Found

once, respectively. The QoS is present on both the publisher’s
and the subscriber’s sides, and they are only valid between
publisher/subscriber and broker.

B. CoAP: Constrained Application Protocol
Constrained Application Protocol (CoAP) [13] is a simpli-

fied HTTP protocol based on UDP. Similar to MQTT, CoAP
prepares a server to share messages between clients. Table
I shows usable methods for CoAP clients and corresponding
responses from the server. The client can manipulate resources
by using both a URI (Uniform Resource Identifier) and
method.

The client can obtain all resources with a “GET /.well-
known/core” request. By adding the “observe” option to the
GET method, the server automatically sends any updated data.

IV. PROPOSAL OF HONEYPOTS

A. Concept of Implementation
Both MQTT and CoAP utilizes the server layer to gather

data. So, a server with a fixed IP address becomes the target
of a cyber-attack.

Figure 2 shows the concept of a honeypot implementation.
The honeypot imitates a server using IoT-aimed protocols
and accepts arbitrary requests from the Internet. To capture
all requests received by the server, including out of standard
requests (e.g., requests with other protocols), we capture whole
packets that come to the honeypot at the layer 4 (TCP/UDP)
level and send them to the analyzer module. To imitate a real
IoT system, we prepare a fake data registration module that
periodically registers fake IoT sensor node data (e.g., temper-
ature, barometric pressure, CO2 cardinality) to the honeypot.

The honeypot system also has to consider ill use of the
honeypot by smart attackers. Possible malicious usages of the
honeypot server and countermeasures are listed below.

a) Exploit honeypot process vulnerability to occupy
server: By exploiting vulnerabilities in a server’s processes
and utilizing privilege escalation methods, an attacker can
sometimes occupy servers. To limit the occupation range and
stop the occupied server easily, we executed the honeypot on a
Virtual Machine (VM) that can easily be stopped from a VM
host. The packet capture module is placed on another VM
host to achieve continuous capture even if the honeypot VM
has been occupied by the attacker.

36Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

The Internet

Packet capture Analyzer

MQTT/CoAp
honeypot

Fake data
registration module

Send traffic including
malicious requests

Malicious requests
from the Internet

Publish fake data to honeypot
(to imitate real IoT system)

Porposal of
IoT imitating honeypot

Figure 2. Concept of Implementation

b) Utilize as Command and Control server of malware:
Command and Control server is the core server of a Botnet
or Remote Administration Trojan type malware in which an
attacker can use versatile servers for it even social networking
services (e.g., Twitter, Slack). To avoid this type of ill use, we
add a limitation to the server that an updated value is only
visible from an IP address that sent the update request.

c) DoS attack to other host: Both MQTT and CoAP
have a “distribute newly registered data to subscribers” mode
which an attacker can use for DoS attacks by registering
attack destinations as subscribers. To avoid this type of ill
use, we modified the server source code to not distribute
newly registered data even if those options have been enabled.
Furthermore, we limit the outbound traffic rate at the VM host
side.

d) Malicious message to IoT clients: There is possi-
bility that some attacker may exploit other clients (fake data
publisher module) by registering some malicious data to the
honeypot. We implemented a fake data publisher module as an
independent VM and only execute registration actions to the
broker VM (no read action).

B. Detailed implementation of MQTT Honeypot

Figure 3 shows a detailed implementation of the MQTT
honeypot. As discussed in Section IV-A, we separated the
honeypot VM and fake data publisher VM. Furthermore,
captured traffic is sent to the other host, to avoid suffering from
VM host aiming attacks. Thus, we utilized 3 network domains,
such as an Internet connection domain (133.x.x.x/26), fake data
publisher connection domain (192.168.10.0/24), and analysis
host connection domain (192.168.5.0/24).

We utilized mosquitto [14] which is a famous open source
MQTT broker implementation, with the modifications de-
scribed in Section IV-A. The fake data publisher and analyzer
were implemented as a Python script with the paho-mqtt [15]
module. We used tcpdump for the packet capture module.

The fake data publisher module publishes data to im-
itate a sensor network for a building energy management
system. The topic format is organized as “/floor number/
room number/sensing data.” The floor number has 5 varia-
tions as represented by the “8F” notation. The room number
has 17 variations as represented by the “708” notation. The
sensing data has 3 variations, such as temperature, humid-
ity, and pressure. An example topic is represented by the

Honeypot
VM host

Analysis
host

MQTT
honeypot
VM

Packet capture
(tcpdump) pcap file storage

MQTT broker
(mosquito)

Fake data publisher
(Python with paho-mqtt)

Fake
data
publish
VM

Analyzer
(Python with paho-mqtt)

133.x.x.x/26 192.168.5.0/24

192.168.10.0/24

Move pcap file (includes
malicious MQTT requests)

Malicious MQTT requests
from the Internet

Publish fake data
to honeypot

The Internet

Figure 3. Detailed implementation of MQTT honeypot

TABLE II. HONEYPOT HOSTS

Host name Type Deployment day
IBmonitor.net.... MQTT December 1, 2016
freezermonitor.net.... CoAP August 1, 2017
co2monitor.net.... CoAP August 1, 2017
furnacemonitor.net.... CoAP August 1, 2017

“/8F/708/temperature” notation. All published data are regis-
tered with a retaining notification so that the attacker can see
the fake data anytime.

C. Detailed implementation of CoAP Honeypot

The implementation of the CoAP honeypot is very similar
to that of the MQTT honeypot so that the basic organization is
identical to the one shown in Figure 3. We implemented “one
topic to one CoAP server” so that the number of honeypot
VMs and fake date register VMs are multiplied from those
shown in Figure 3. This enable us to increase the number
of honeypots to capture requests from different IP addresses.
Note that either “multiple topic to one server” or “one topic to
one server” can be selected from both the MQTT and CoAP
honeypot. Instead of using the paho-mqtt module, as shown in
Figure 3, we utilized Python with the aiocoap [16] module in
the CoAP server, fake data registration client, and analyzer.

V. ANALYSIS

A. Honeypot Setup

We created 1 MQTT honeypot and 3 CoAP honeypots,
as shown in Table II. The MQTT honeypot utilized topics of
the MQTT server to aggregate several fake sensor results into
one MQTT server. Detailed topics on the MQTT server are
shown in Section IV-B. We placed one topic on each CoAP
server so that we prepared 3 CoAP servers. We added the
word “monitor” to a part of the hostname, as shown in Table II.
These hostnames emphasises that the hosts are monitor servers
of an IoT system. The hostnames are registered to DNS before
the observation term.

We deployed the MQTT and CoAP honeypots on different
dates. This is why the deployment days differ. Unfortunately,
due to both honeypot VM host failure and careless initializa-
tion of the backup host, we lost data after November 15, 2017
so that the following analysis was performed with data up until
October 30, 2017.

37Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

0

20

40

60

80

100

120

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

C
on

.
Su

b.
Pi

n.

Dec.
2016

Jan.
2017

Feb.
2017

Mar.
2017

Apr.
2017

May
2017

Jun.
2017

Jul.
2017

Aug.
2017

Sep.
2017

Oct.
2017

Switzerland Co. Shodan German Univ. Others 121

Figure 4. Number of MQTT requests per month

TABLE III. MQTT ACCESS SOURCES AT TCP SYN LEVEL (MORE THAN 3 TIMES)

Rank IP address block or domain Num of access Organization
1 185.35.63.0/24 274 Security research team of Switzerland company
2 185.35.6.0/24 264 Security research team of Switzerland company
3 census.shodan.io 79 Shodan
4 134.147.202.0/24 76 Security research team of German university
5 members.linode.com 43 Hosting service A
6 zare.com 27 Hosting service B
7 180.149.126.0/24 20 Mongolian ISP A
8 180.149.125.0/24 15 Mongolian ISP B
9 research-scanner-dfn86.syssec.rub.de 12 Security research team of German university
10 150.100.253.0/24 10 Academic Network
11 188.166.165.0/24 6 Cloud service A
12 106.75.81.0/24 4 Cloud service B
13 182.86.142.0/24 3 Chinese ISP A
13 vmobile.jp 3 Japanese ISP A

B. Analysis of MQTT
We analyzed gathered MQTT requests minutely with net-

mqtt-trace version 1.14 and Wireshark version 2.4.1.
1) Number of Requests: Figure 4 shows the number of

the MQTT requests per month. The vertical axis shows the
number of requests and the horizontal axis shows the months
and types of request, such as MQTT connect requests (Con.),
MQTT subscribe requests (Sub.), and MQTT ping requests
(Pin.), respectively. The four layers per bar graph show a
breakdown of the top 3 access sources shown in Section V-B2
and others. As shown in Figure 4, the request counts increased
largely in August 2017. This is a result of a sudden large
amount of requests from a German university, which is also
described in Section V-B2. However, those request counts
suddenly decreases in September 2017 including from other
sources. This is possibly as result of the honeypots suddenly
being omitted from Shodan’s search result.

2) Source of Accesses: Table III shows slightly anonymized
access sources attempting to access the MQTT honeypots at
the TCP (Transmission Control Protocol) level more than 3
times. We counted TCP SYN packets from the Internet so
that the counts listed in Table III include non-MQTT requests
(e.g., send data of other protocols after the TCP handshake has
been established). Thus, the sum of requests is a larger number
than that shown in Figure 4. As shown at ranks 1, 2, 3, 4,
and 9, security companies, services, and researchers frequently
accessed the honeypot. We also plotted a breakdown of the
top 3 access sources in Figure 4. As shown in the figure, the
German university frequently accessed in August 2017, but did
not access them at any other time. A Switzerland company sent

continuous MQTT connect requests, but finished in September
2017 when the honeypots were omitted from Shodan. Shodan
sent both continuous connect and subscribe requests.

However, as shown from lower ranks, tens of accesses
came from ISPs (Internet Service Provider), hosting services,
and cloud services. We also received mysterious accesses to
the CoAP honeypots from ISPs (see Section V-C) so that
those accesses may contain accesses from persons interested
in exploiting MQTT or having a remotely dominated PC or
server. There are 7 sources that accessed the honeypots twice
and 28 sources that accessed them only once. Most of them
were ISPs and so on, which indicates that a number of them
were possible malicious sources.

3) Notable Accesses in MQTT: Below, we present the no-
table accesses to MQTT including minor visitors. As described
below, a MQTT server that is exposed to the Internet receives
non-MQTT requests to the 1883/tcp port and some of them
were wrongly interpreted as MQTT requests. An effective
MQTT server must be robustly implemented to handle these
types of requests.

a) HTTP request after TCP establishment: We ob-
served sent HTTP requests (starts from “GET HTTP/1.x...”)
after TCP establishment 7 times. 3 of them came from the
vmobile.jp domain and the remaining 4 came from mem-
bers.linode.com domain. In this case, character “G (0x47)” of
“GET” word is treated as “MQTT Publish Ack Flag (0x47)”
on the MQTT server so that we wrongly interpreted it as a
mysterious MQTT connection.

b) SOAP request with MQTT Publish flag: We observed
the following SOAP (Simple Object Access Protocol) request

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

with the MQTT publish flag from the members.linode.com
domain 3 times and from Cloud service A once. In this case,
the character “<(0x3c)” of the “<soap:” notation is treated
as “MQTT Publish Message Flag (0x3c)” on the MQTT
server. This request also causes “crash at decode module
in Publish.pm” error under the net-mqtt-trace program based
analysis. Similar problems are likely to occur on the server
side if the MQTT server has the same vulnerability.

<soap:Envelope
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Header>
<operationID>00000001-00000001</operationID>
</soap:Header><soap:Body>
<RetrieveServiceContent xmlns="urn:internalvim25">
<_this xsi:type="ManagedObjectReference"
type="ServiceInstance">ServiceInstance</_this>
</RetrieveServiceContent>
</soap:Body></soap:Envelope>

c) Multiple different protocol based requests recorded
simultaneously: We observed the arrival of multiple different
TCP-based protocol requests to 1883/tcp port from same IP
address (zare.com) in the same day. The requests consisted of
at least the following requests.

• HTTP protocols that started with “GET HTTP/1.0”
or“GET /nice ports,/Tri\nity.txt.bak HTTP/1.0”.

• SMB protocol that started with “PC NETWORK PRO-
GRAM 1.0...”.

• SIP protocol that started with “OPTIONS sip:nm
SIP/2.0 Via: SIP/2.0/TCP nm;branch=foo...”.

• Possible streaming protocol that started with “MM-
SNSPlayer/9.0.0.2980;...”.

• Mysterious protocol that started with “dobjectClass0”.
• Mysterious protocol that started with “(CON-

NECT DATA=(COMMAND=version))”.
• Mysterious protocol that started with

“random1random2random3random4/”.

d) Simultaneous requests from 2 domains: We observed
that several domain pairs sent simultaneous requests. The detail
of the requests is as follows. First, a part of the domain pair
executes a TCP level observation that only sends SYN (does
not reply to ACK even if the honeypot sends SYN/ACK) or
sends SYN and RST (sends RST after SYN/ACK has arrived).
Then, around 2000 seconds later, the other domain of the
domain pair establishes a TCP connection and sends a MQTT
connection request. Below, we present the pair of request
sources. Source 3) achieved short intervals between requests,
such as 7 or 8 seconds.

1) 185.35.62.0/24 and 185.35.63.0/24: 257 times
2) Mongolian ISP A and Mongolian ISP B: 13 times
3) amazonaws.com and 71.6.216.0/24: 2 times
4) 106.75.5.0/24 and sendclould.org: 1 time
5) 112.193.170.0/24 and 125.76.61.0/24: 1 time
6) 163data.com.cn and 175.152.30.0/24: 1 time

e) UDP MQTT request: Although MQTT permits UDP
(User Datagram Protocol) requests, we recorded very few of
them. We received 2 UDP MQTT requests from Chinese ISP
A domain. The content of both requests are the same 41 bytes

TABLE IV. NUMBER OF CoAP REQUESTS PER MONTH

Month Number of requests
August 2017 42
September 2017 45
October 2017 51

but we could not understand their purpose. The requested IP
address also sent a TCP request on the same day.

30:27:02:01:00:04:06:70:75:62:6c:69:63:a0:1a:02:02:
6f:0c:02:01:00:02:01:00:30:0e:30:0c:06:08:2b:06:01:
02:01:01:01:00:05:00)

f) QoS of MQTT: MQTT has 3 levels of QoS which
are described as at most once, at least once, and exactly once,
respectively. In observation, all connections and MQTT ping
requests came with at most once and all subscribe requests
came at least one.

g) Read topics of MQTT: We observed read-all requests
which are the simplest request, 70 times. However, we also
observed some cross topic type requests indicating that some
access source recognized a topic and sent requests about
corresponding topic. The number of cross topic type requests
for /humidity, /pressure, and /temperature were 6, 19, and 7,
respectively. Such a MQTT interaction based analysis is cannot
obtain prior works listed in Section II.

C. Analysis of CoAP

We analyzed gathered CoAP requests minutely with Wire-
shark version 2.4.1.

1) Number of Requests: Table IV shows the number of
requests to the 3 CoAP honeypots. The number of requests
are the aggregated result of the 3 CoAP honeypots because the
number of requests were limited. Thus, the average number of
requests to one honeypot becomes one-third of the recorded
value. The number of requests are also limited because the
observation term was only 3 months.

2) Source of Accesses and Request Pattern: Table V shows
slightly shaded all access sources to CoAP honeypots. They
are separated into 3 large amount ones and 3 small amount
ones. In large amount ones, Shodan is also seen in MQTT
honeypot, but the left 2 access source were not seen in MQTT
honeypot.

Table VI shows the request patterns in CoAP request pack-
ets from the analysis result of Wireshark. The large amount
access sources have the same characteristics to the observed
data on the MQTT honeypot, in which attempts were made
to read data on the server. However, the last row of Table VI
shows quite strange requests. We could not analyze the content
of those requests, and their sizes were 542 bytes, which is
comparatively larger than that of the frequent requests shown
in large amount accesses.

Figure 5 shows the detail of the requests categorized as
“Unknown 127” by Wireshark. There are three requests from
different IP addresses to different CoAP honeypots. These 3
source IP addresses are also listed as rank 4, 5 and 6 in Table
V. As shown in Table V, the IP addresses are existing ISPs
of different countries so that this series of requests are quite
dubious. We estimated that those accesses were attempting to
exploit vulnerabilities of some devices.

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

TABLE V. ALL CoAP ACCESS SOURCES

Rank IP address block or domain Num of access Request size (bytes) Organization
1 customer.tdc.net 93 63 Danish Telecommunication
2 census.shodan.io 30 65 Shodan
3 185.121.173.0/24 9 60 In & Datacenter service
4 jogjaringan.net.id 2 542 Indonesian ISP
5 115.78.226.0/24 2 542 Vietnamese ISP
6 78.164.12.0/24 2 542 Turkish ISP

TABLE VI. REQUEST PATTERN OF CoAP

Request Source domain
CON, GET, /.well-known/core Danish Telecommunication
CON, GET, End of Block #0, /.well-known/core Shodan
CON, GET, / In & Datacenter service
Unknown 127 3 ISPs

Figure 5. Mysterious CoAP requests from 3 different country ISPs to the 3
CoAP honeypots on the same day

VI. CONCLUSION

We introduced how to create and operate honeypots that ob-
serve IoT-aimed protocols in this paper. We also presented the
analysis result of 11 months of MQTT honeypot observations
and 3 months of CoAP honeypot observations. The observation
results show that MQTT seems to get greater interest than
CoAP on the basis of access count. However, we also observed
mysterious CoAP requests so that we believe that we have

to take care for both protocols. Furthermore, we observed
that the honeypot received some non-MQTT protocol based
requests to 1883/tcp and some of them are wrongly interpreted
as the MQTT protocol, which indicates that an effective MQTT
server must be robustly implemented to handle these types of
requests.

For future works, we first have to restart the observation
and continue them for the long term because we lost more than
a year’s worth of data, as explained in Section I. Second, there
are many other IoT-aimed protocols (e.g., Advanced Message
Queuing Protocol that uses 5672/TCP) so that we are planning
to implement them as honeypots.

ACKNOWLEDGMENT

This work was partially supported by JSPS KAKENHI
Grant Numbers 16K00071 and 19H04108.

REFERENCES
[1] D. H. Kim, J. B. Park, J. H. Shin, and J. D. Kim, “Design and

Implementation of Object Tracking System Based on LoRa,” ICOIN
2017, pp. 463–467, Jan. 2017.

[2] J. Joshi et al. “Performance Enhancement and IoT Based Monitoring for
Smart Home,” ICOIN 2017, pp. 468–473, Jan. 2017.

[3] https://shodan.io/ (Accessed on Sep. 10, 2019)
[4] K. Ito, H. Hasegawa, Y. Yamaguchi, and H. Shimada, “Primary Discus-

sion about a Honeypot System for IoT Aied Protocols (in Japanese),”
IEICE Tech. Rep., Vol. 116, No. 522, pp. 103–108, Mar. 2017.

[5] “DinoTools/dionaea: Home of the dionaea honeypot”
https://github.com/DinoTools/dionaea/ (Accessed on Sep. 10, 2019)

[6] “ysmal/dionaea: MQTT module”
https://github.com/ysmal/dionaea/tree/master/modules/python/dionaea/mqtt/
(Accessed on Sep. 10, 2019)

[7] “mushorg/glutton: Generic Low Interaction Honeypot”
https://github.com/mushorg/glutton/ (Accessed on Sep. 10, 2019)

[8] Y. M. P. Pa, S. Suzuki, K. Yoshioka, and T. Matsumoto, “IoTPOT:
Analysing the Rise of IoT Compromises,” WOOT 15, Aug. 2015.

[9] Y. M. P. Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama, and
C. Rossow, “IoTPOT: A Novel Honeypot for Revealing Current IoT
Threats,” Journal of Information Processing, Vol. 24, No. 3, pp. 522–533,
Mar. 2016.

[10] M. Wang, J. Santillan, and F. Kuipers, “ThingPot: an interactive
Internet-of-Things honeypot,” arXiv: 1807.04114, pp. 1-8, Jul. 2018.

[11] T. Luo, Z. Xu, X. Jin, Y. Jia, and X. Ouyang, “IoTCandyJar: Towards
an Intelligent-Interaction Honeypot for IoT Devices,” Black Hat 2017,
pp. 1-11, Aug. 2017.

[12] OASIS. “MQTT V3.1.1 OASIS Standard,” Oct. 2014.
[13] IETF. “The Constrained Application Protocol (CoAP),” RFC7252, Jun.

2014.
[14] “Eclipse MosquittoTM - An open source MQTT broker,”

https://mosquitto.org/ (Accessed on Sep. 10, 2019)
[15] “Eclipse Paho - MQTT and MQTT-SN software,”

https://www.eclipse.org/paho/ (Accessed on Sep. 10, 2019)
[16] “chrysn/aiocoap: The Python CoAP lirary,”

https://github.com/chrysn/aiocoap/ (Accessed on Sep. 10, 2019)

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

