
On the Compositionality of Dynamic Leakage
and Its Application to the Quantification Problem

Bao Trung Chu, Kenji Hashimoto, Hiroyuki Seki
Nagoya University, Japan

Email: trungchubao@sqlab.jp, {k-hasimt, seki}@i.nagoya-u.ac.jp

Abstract—Quantitative Information Flow (QIF), as summed up by
Smith (2019), is traditionally defined as the expected value of in-
formation leakage over all feasible program runs. The traditional
QIF fails to identify vulnerable programs where only a limited
number of runs leak large amount of information. As discussed
in Bielova (2016), a good notion for dynamic leakage and an
efficient way of computing the leakage are needed. To address
this problem, the authors have already proposed two notions for
dynamic leakage and a method of quantifying dynamic leakage
based on model counting. Inspired by the work of Kawamoto
et al. (2017), this paper proposes two efficient methods for
computing dynamic leakage, a compositional method along with
the sequential structure of a program and a parallel computation
based on the disjoint value domain decomposition. For the former,
we investigate both exact and approximated calculations. For
implementation, we utilize Binary Decision Diagrams (BDDs) and
deterministic Decomposable Negation Normal Forms (d-DNNFs)
to represent Boolean formulas in model counting. Finally, we
show experimental results on several examples.

Keywords–Dynamic leakage; Composition; Quantitative Infor-
mation Flow; BDD; d-DNNF.

I. INTRODUCTION

Since first coined by [15] in 1982, the noninterference
property has become one of the main criteria for software secu-
rity [1][5]. A program is said to satisfy noninterference if any
change in confidential information does not affect a publicly
observable output of that program. However, noninterference is
so strict that it blocks many useful, yet practically safe systems
and protocols, such as password checkers, anonymous voting
protocols, recommendation systems and so forth. Quantitative
Information Flow (QIF) was introduced to loosen the security
criterion in the sense that, instead of seeking if there is a case
that a confidential input affects a public output, computing
how large that effect is. That is, if the QIF of a program is
insignificant, the program is still judged as secure. Because of
its flexibility, QIF has gained much attention in recent years.
However, it has an inherent shortcoming, as shown in the
example below.

Example 1.1: Consider the following program taken from
[10].

if source < 16 then output← 8 + source
else output← 8

Assume source to be a non-negative 32-bits integer which
is uniformly distributed on that domain. Then, there are 16
possible values of output, ranging from 8 to 23. Observing
any number between 9 and 23 as an output reveals every-
thing about the confidential source, whilst observing 8 leaks
small information; there are many possible values of source
(0, 16, 17, 18, . . . , 232−1), which produce 8 as the output. QIF

is defined as the average of the leakage over all possible cases.
So, it fails to capture the above situation because we cannot
distinguish vulnerable and secure cases if we take the average.
Hence, as argued in [4], a notion for dynamic leakage should
reflect individual leakage caused by observing an output.

As illustrated in Figure 1, there are two different scenarios
of quantifying dynamic leakage. We call the first scenario,
which corresponds to diagram (A), Compute-on-Demand
(CoD), and the second, which corresponds to diagram (B),
Construct-in-Advance (CiA). A box surrounded by bold lines
represents a heavy-weighted process, which requires extensive
computing resources. The main difference between (A) and
(B) is the relative position of the heavy-weighted process, i.e.,
in (A), the process is put after augmenting an observed output
and then the process is run each time we need (on demand) to
compute dynamic leakage, or, in (B) the process is put before
augmenting an observed output (in advance) so that we run
the process only once for one program. In CoD, the heavy-
weighted process is a projected model counting, for which
off-the-shelf tools, such as SharpCDCL [32], DSharp-p [27]
and GPMC [28] can be used. In CiA, the heavy-weighted
process is the one that generates BDD [22] or d-DNNF
[13], which are data structures to represent Boolean formulas
given in Conjunctive Normal Form (CNF). Generally, it takes
time to generate BDD or d-DNNF but counting all solutions
(models) by using them is easy. CiA takes full advantage of
this characteristic. Consider again Example 1.1 above. The
set of all feasible pairs of (source, output) is 232. Even for
such a simple program, using BDD or d-DNNF to store all
those pairs is quite daunting in terms of both memory space
and speed. Therefore, for programs with simple structure but
a large number of input and output pairs, CoD works better
than CiA. On the other hand, CiA is preferable to CoD when
quantifying dynamic leakage is required many times on the
same program. However, CoD or CiA alone is not a solution
to the problem of scalability.

In this paper, we introduce two compositional methods for
computing dynamic leakage inspired by the work of Kawamoto
et al. [16] on the compositionality of static leakage. One
method is to utilize the sequential structure of a given program
P = P1;P2. We first analyze P2 and then compute the leakage
of P by analyzing P1 based on the result on P2. For the
sequential composition, besides the benign yet time-consuming
exact counting based on Breadth-First-Search (BFS), we also
investigate an approximated approach. For an upper bound of
the count, we leverage the results on each sub-program by
Max#SAT in [14]. For a lower bound of the count, we simply
use Depth-First-Search (DFS) with timeout, i.e., DFS will stop
when the execution time exceeds the predetermined timeout.

The other method we propose is based on the decomposi-

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

Augmenting

output value o

Boolean

formula �

(CNF)

�'

(CNF)
Size of

o's preimage

Augmenting

output value o

Boolean

formula �

(CNF)

�'

(BDD/

d-DNNF)

Generating

BDD/d-DNNF

�

(BDD/

d-DNNF)

BDD/d-DNNF

based projected

counting

Size of

o's preimage

(A)

(B)

Projected model counting

Figure 1. (A): Compute-on-Demand, (B): Construct-in-Advance.

tion of the value domain of a program. For example, we divide
the input domain as I = I1 ∪ I2 and the output domain as
O = O1 ∪O2 of a program P (I,O), compute the leakages of
P (Ii, Oj) for i = 1, 2 and j = 1, 2, then use them to compute
the leakage of the whole program P (I,O). This value domain
based decomposition has two merits. First, it is flexible yet
simple to adjust the components. Secondly, the exact dynamic
leakage of the composed program can be simply derived by
taking the sum of those of its components. Despite the fact
that the number of components can be large, this approach is
promising with parallel computing.

In summary, the contributions of this research are four-fold:

• We propose a compositional method for dynamic
leakage computation based on the sequential structure
inside a given program and the composability of the
leakage of the whole program from those of subpro-
grams.

• We propose another compositional method based on
value domains, which is suitable for parallel comput-
ing.

• We propose an approximated approach where we
upper bound the count using Max#SAT problem and
lower bound the count by DFS with predetermined
timeout.

• We prototype a tool that can do parallel computation
based on value domain decomposition and both exact
counting and approximated counting for the sequential
composition. By using the tool, we investigate feasi-
bility and advantages of the proposed compositional
methods for computing dynamic leakage of several
examples. The tool can be accessed freely via [26]. We
also consider to develop a more capable open source
analyzer based on this prototype in the future.

Related work Definitions of QIF: Smith [21] gives a com-
prehensive summary on entropy-based QIF, such as Shannon
entropy, guessing entropy and min entropy and compares them
in various scenarios. Clarkson et al. [11], on the other hand,
include the attacker’s belief into their model. Alvim et al. [3]
introduce a gain function to generalize information leakage
by separating the probability distribution and the impact of
individual information. Computational Complexity: Yasuoka
and Terauchi [24] prove complexity on computing QIF, in-
cluding PP -hardness of precisely quantifying QIF for loop-
free Boolean programs. Chadha and Ummels [8] show that
the QIF bounding problem of recursive Boolean programs is
EXPTIME-complete. Precise Calculation: In [17], Klebanov
et al. reduce the QIF calculation to #SAT problem projected
on a specific set of variables. On the other hand, Phan et al.

[20] reduce the QIF calculation to #SMT problem to leverage
existing Satisfiability Modulo Theory (SMT) solvers. Recently,
Val et al. [23] reported a SAT-based method that can scale to
programs of 10,000 lines of code. Approximated Calculation:
Approximation is a reasonable alternative for scalability. Köpf
and Rybalchenko [18] propose approximated QIF computa-
tion by sandwiching the precise QIF with lower and upper
bounds using randomization and abstraction, respectively, with
a provable confidence. LeakWatch, by Chothia et al. [9], also
gives an approximation with provable confidence by executing
a program multiple times. Its descendant, called HyLeak
[7], combines the randomization strategy of its ancestor with
precise analysis. Biondi et al. [6] utilize ApproxMC2, which
provides approximation on the number of models of a Boolean
formula in CNF by Markov Chain Monte Carlo method.
Composition of QIF: Another attempt to the scalability is
to break the system down into smaller fragments. In [16],
Kawamoto et al. introduce two parallel compositions: with
distinct inputs and with shared inputs, and give theoretical
bounds on the leakage of the main program using those of the
constituted sub-programs. Though our research was motivated
by [16], we focus on a sequential structure of a target program
and a decomposition of the value domain of the program while
[16] uses a parallel structure of the target. Dynamic Leakage:
Bielova [4] discusses the importance of dynamic leakage and
argues that any well-known QIF notion is not appropriate as
a notion for dynamic leakage. Recently, we proposed two
notions for dynamic leakage, QIF1 and QIF2 and gave some
results on computational complexity, as well as a quantifying
method based on model counting [10].

The rest of the paper is organized as follows. We review the
definition of dynamic leakage and describe our program model
in Section 2. Section 3 is dedicated to a method for computing
dynamic leakage based on the sequential composition and
also proposes approximation methods. Section 4 proposes a
parallel computation method based on value domain decompo-
sition. Section 5 evaluates the proposed compositional methods
including the comparison of CiA vs. CoD and exact vs.
approximated computation based on the experimental results.
Then, the paper is concluded in Section 6.

II. PRELIMINARIES

A. Dynamic leakage

The standard notion for static QIF is defined as the mutual
information between random variables S for secret input and
O for observable output:

QIF = H(S)−H(S|O) (1)

where H(S) is the entropy of S and H(S|O) is the expected
value of H(S|o), i.e., H(S|O) =

∑
o∈O p(o)H(S|o), and

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

H(S|o) is the conditional entropy of S when observing an out-
put o. Shannon entropy and min-entropy are often used as the
definition of entropy, and in either case, H(S)−H(S|O) ≥ 0
always holds by definition.

In [4], the author discusses the appropriateness of the exist-
ing measures for dynamic QIF and points out their drawbacks,
especially, each of these measures may become negative. For
example, if we adopt H(S)−H(S|o) as a measure of dynamic
QIF, the measure may become negative depending on an
observed output value o.

Let P be a program with secret input variable S and
observable output variable O. For notational convenience, we
identify the names of program variables with the corresponding
random variables. Throughout the paper, we assume that a
program always terminates. The syntax and semantics of pro-
grams assumed in this paper will be given in the next section.
Hereafter, let S and O denote the finite sets of input values
and output values, respectively. For s ∈ S and o ∈ O, let
pSO(s, o), pO|S(o|s), pS|O(s|o), pS(s), pO(o) denote the joint
probability of s ∈ S and o ∈ O, the conditional probability
of o ∈ O given s ∈ S (the likelihood), the conditional
probability of s ∈ S given o ∈ O (the posterior probability),
the marginal probability of s ∈ S (the prior probability) and
the marginal probability of o ∈ O, respectively. We often omit
the subscripts as p(s, o) and p(o|s) if they are clear from the
context. By definition, p(s, o) = p(s|o)p(o) = p(o|s)p(s),
p(o) =

∑
s∈S p(s, o), p(s) =

∑
o∈O p(s, o).

We assume that (the source code of) P and the prior
probability p(s) (s ∈ S) are known to an attacker. For o ∈ O,
let preP (o) = {s ∈ S | p(s|o) > 0}, which is called the
preimage of o (by the program P).

Considering the discussions in the literature, we define new
notions for dynamic QIF that satisfy the following require-
ments [10]:

(R1) Dynamic QIF should always be non-negative because
an attacker obtains some information (although some-
times very small or even zero) when he observes an
output of the program.

(R2) It is desirable that dynamic QIF is independent of a
secret input s ∈ S . Otherwise, the controller of the
system may change the behavior for protection based
on the estimated amount of the leakage that depends
on s, which may be a side channel for an attacker.

(R3) The new notion should be compatible with the ex-
isting notions when we restrict ourselves to special
cases, such as deterministic programs, uniformly dis-
tributed inputs, and taking the expected value.

The first notion is the self-information of the secret inputs
consistent with an observed output o ∈ O. Equivalently, the
attacker can narrow down the possible secret inputs after
observing o to the preimage of o by the program. We consider
the self-information of s ∈ S after the observation as the
logarithm of the probability of s divided by the sum of the
probabilities of the inputs in the preimage of o (see the
upper part of Figure 2, where bold lines indicate the mapping
between S and O that are taken into consideration when
defining QIF1/QIF2).

QIFP
1 (o) = − log(

∑
s′∈pre

P
(o)

p(s′)). (2)

The second notion is the self-information of the joint events
s′ ∈ S and an observed output o ∈ O (see the lower part of
Figure 2). This is equal to the self-information of o.

QIFP
2 (o) =− log(

∑
s′∈S

p(s′, o)) = − log p(o)

=− log p(s, o) + log p(s|o).
(3)

�� � � �� �� ��

� �′

���������

�� � � �� ��

� �′

�� � � �� �� ��

� �′

���������

�� � � �� ��

�

Figure 2. QIF1 (the upper) and QIF2 (the lower)

Both notions are defined by considering how much self-
information values are reduced by observing an output. We
propose these two notions because there is a trade-off between
the easiness of calculation and the appropriateness [10].

Theorem 2.1 ([10]): If a program P is deterministic, for
every o ∈ O and s ∈ S,

QIFP
1 (o) = QIFP

2 (o) = − log p(o).

If input values are uniformly distributed, QIFP
1 (o) =

log |S|
|pre

P
(o)| for every o ∈ O. 2

B. Program model

We assume probabilistic programs where every vari-
able stores a natural number and the syntactical constructs
are assignment statement, conditional statement, probabilistic
choice, while loop and concatenation:

b ::= ⊥ | > | ¬b | b ∨ b | e < e

e ::= X | n | e+ e

c ::= skip | X ← e | if b then c else c end
| c r[]1−r c | while b do c end | c; c

where <,X, n,+ stand for a binary relation on natural num-
bers, a program variable, a constant natural number and a bi-
nary operation on natural numbers, respectively, and r is a con-
stant rational number representing the branching probability
for a choice command where 0 ≤ r ≤ 1. In the above BNFs,
objects derived from the syntactical categories b, e and c are
called conditions, expressions and commands, respectively. A
command X ← e assigns the value of expression e to variable
X . A command c1 r[]1−r c2 means that the program chooses
c1 with probability r and c2 with probability 1− r. Note that
this is the only probabilistic command. The semantics of the
other constructs are defined in the usual way.

A program P has the following syntax:

P ::= in ~S; out ~O; local ~Z; c | P ;P

where ~S, ~O, ~Z are sequences of variables which are dis-
joint from one another. A program is required to sat-
isfy the following constraints on variables. We first define
In(P), Out(P), Local(P) for a program P as follows.

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

• If P = in ~S; out ~O; local ~Z; c, we
define In(P) = {V | V appears in ~S},
Out(P) = {V | V appears in ~O} and
Local(P) = {V | V appears in ~Z}. In this
case, we say P is a simple program. We require that
no varible in In(P) appears on the left-hand side of
an assignment command in P , i.e., no input variable
is updated.

• If P = P1;P2, we define In(P) = In(P1),
Out(P) = Out(P2) where we require that In(P2) =
Out(P1) holds. We also define Local(P) =
Local(P1) ∪ Local(P2) ∪Out(P1).

A program P is also written as P (S,O) where S and O are
enumerations of In(P) and Out(P), respectively. A program
P1;P2 represents the sequential composition of P1 and P2.
Note that the semantics of P1;P2 is defined in the same way
as that of the concatenation of commands c1; c2 except that
the input and output variables are not always shared by P1

and P2 in the sequential composition. If a program does not
have a probabilistic choice, it is deterministic.

III. SEQUENTIAL COMPOSITION

This section proposes a method of computing both exact
and approximated dynamic leakage by using sequential com-
position. For making the idea behind the proposed method
understandable, we first assume the programs under analysis
are deterministic with uniformly distributed input, so that the
problem of quantifying dynamic leakage is reduced to model
counting. Then, in the later part of this section, we will dis-
cuss the extensibility of the proposed method to probabilistic
programs with input of an arbitrary distribution.

A. Exact calculation

For a program P (S,O), an input value s ∈ S and a subset
S ′ of input values, let

postP (s) = {o | p(o|s) > 0},
postP (S ′) =

⋃
s∈S′

postP (s).

If P is deterministic and postP (s) = {o}, we write postP (s) =
o.

Let P = P1;P2 be a program. We assume that
In(P1), Out(P1), In(P2), Out(P2) are all singleton sets for
simplicity. This assumption does not lose generality; for exam-
ple, if In(P1) contains more than one variables, we instead in-
troduce a new input variable that stores the tuple consisting of a
value of each variable in In(P1). Let In(P) = In(P1) = {S},
Out(P1) = In(P2) = {T}, Out(P) = Out(P2) = {O}, and
let S, T ,O be the corresponding sets of values, respectively.
For a given o ∈ O, preP (o) and p(o), which are needed
to compute QIFP

1 (o) and QIFP
2 (o) (see (2) and (3)), can be

represented in terms of those of P1 and P2 as follows.

preP (o) =
⋃

t∈(pre
P2

(o)∩post
P1

(S))

preP1
(t), (4)

p(o) =
∑

s∈S,t∈T
p(s)p1(t|s)p2(o|t). (5)

1: Pre[2..n]← empty
2: Stack ← empty
3: level← n
4: acc count← 0
5: Push(Stack, o)
6: Pre[n]← EnumeratePre(Pn, o)
7: while not Stack.empty and execution time < timeout

do
8: if level = 1 then
9: acc count← acc count+ CntPre(P1, Stack.top)

10: level← level + 1
11: Pop(Stack)
12: else
13: v ← PickNotSelected(Pre[level])
14: if v = AllSelected then
15: level← level + 1
16: Pop(Stack)
17: else
18: Push(Stack, v)
19: level← level − 1
20: if level > 1 then
21: Pre[level]← EnumeratePre(Plevel, v)

22: return acc count

Figure 3. LowerBound(P1, · · · , Pn, o, timeout)

If p(s) is given, we can compute (4) by enumerating preP1
(t)

for t ∈ (preP2
(o) ∩ postP1

(S)) and also for (5). In practice,
preP (o) is computed by augmenting the information about
an observed output value to the CNF that represents P , as
illustrated in the flow of CiA and CoD in Figure 1. Then,
the preimage can be either enumerated or counted, up to
what is needed for the calculation. This approach can easily
be generalized to the sequential composition of more than
two programs, in which the enumeration is proceeded in
a Breadth-First-Search fashion. However, in this approach,
search space will often explode rapidly and lose the advantage
of composition. Therefore, we come up with an approximation,
which is explained in the next subsection, as an alternative.

B. Approximation

Let us assume that P (S,O) is deterministic and S is
uniformly distributed. In this subsection, we will derive both
upper-bound and lower-bound of |preP (o)|, which provide
lower-bound and upper-bound of QIFP

1 (o) = QIFP
2 (o) respec-

tively. In general, our method can be applied to the sequential
composition of more than two sub-programs.

1) Lower bound: To infer a lower bound of |preP (o)|, we
leverage Depth-First-Search (DFS) with a predefined timeout
such that the algorithm will stop when the execution time
exceeds the timeout and output the current result as the lower
bound. The method is illustrated in Figure 3. For a program
P = P1;P2; · · · ;Pn, an observable output o of the last sub-
program Pn and a predetermined timeout, the algorithm in
Figure 3 derives a lower bound of |preP (o)| by those n sub-
programs.

In Figure 3, CntPre(Q, o) counts |preQ(o)|, PickNotSe-
lected(Pre[i]) selects an element of Pre[i] that has not been
traversed yet or returns AllSelected if there is no such element,
and EnumeratePre(Pi, v) lists all elements in prePi

(v). Pre[i]
stores prePi

(oi) for some oi. For P1, it is not necessary to store

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

1: Result← CntPre(Pn, o)
2: for i← 1 to n do
3: Result← Result ∗MaxCount(Pi)

4: return Result

Figure 4. UpperBound(P1, · · · , Pn, o)

its preimage because we need only the size of the preimage.
Lines 1 to 5 are for initialization. Line 6 enumerates prePn

(o).
Lines 7 to 21 constitute the main loop of the algorithm, which
is stopped either when the counting is done or when time is
up. When level = 1, lines 8 to 11 are executed and CntPre
will return preP1

(Stack.top) in which Stack.top is the input
of P2 that leads to output o of Pn, then back-propagate; lines
13 to 16 check if all elements in the preimage set of the current
level is already considered and if so, back-propagate, otherwise
push the next element onto the top of Stack and go to the next
level.

Theorem 3.1: In Figure 3, if P1, · · · , Pn are deterministic,
acc count, which is returned at line 22, is a lower bound of
the preimage size of o by P1, · · · , Pn. 2

2) Upper bound: For an upper bound of |preP (o)| we use
Max#SAT problem [14], which is defined as follows.

Definition 3.1: Given a propositional formula ϕ(X,Y, Z)
over sets of variables X , Y and Z, the Max#SAT problem is
to determine maxX#Y.∃Z.ϕ(X,Y, Z).

If we consider a program Q, In(Q), Out(Q) and Local(Q)
as ϕ, Y , X and Z respectively, then, the solution X to the
Max#SAT problem can be interpreted as the output value,
which has the biggest size of its preimage set. In other
words, maxX#Y.∃Z.ϕ(X,Y, Z) is an upper bound of the
size of preQ over all feasible outputs. Therefore, the product
of those upper bounds of |prePi

| over all i (1 ≤ i ≤ n) is
obviously an upper bound of |preP |. The algorithm in Figure
4 computes this upper bound where CntPre(Pn, o) returns
the size of the preimage of o by Pn. Notice that, to avoid
enumerating the preimages, which costs much computation
time, we count only |prePn

(o)|. For i = 1, ...n−1, we compute
MaxCount(Pi) as an upper bound for prePi

, regardless of the
corresponding output value. For prototyping, we used the tool
developed by the authors of [14], which produces estimated
bounds of Max#SAT with tunable confidence and precision.
As explained in [14], the tool samples output values of k-fold
self-composition of the original program. The greater k is, the
more precise the estimation is, but also the more complicated
the calculation of each sampling is. Note that MaxCount(Pi)
can be computed in advance only once. Though the precision
is not always good in general, this approach provides a rather
simple computation method. Also, note that the leakage is the
logarithm of the model count.

Theorem 3.2: In Figure 4, if P1, · · · , Pn are deterministic,
then Result, which is returned at line 4, is an upper bound of
the preimage size of o by P1, · · · , Pn. 2

C. Extensibility to Probablistic Programs

When a program is probabilistic, a single input value may
produce more than one output values. Therefore, when we
count the preimage set of a specific output value, an input
value may be counted multiple times, which results in an upper
approximation. Though this does not invalidate our proposed

algorithm, which computes an upper bound using Max#SAT,
it could degrade the precision.

For the algorithms of exact counting and lower bounding,
the following modifications will retain both their validity and
precision as presented above when analyzing probabilistic
programs. Notice that the algorithm in Figure 3 gives exact
count when timeout is sufficiently long.

• Maintain a list of distinct input values that produce
the observed output value o′. In line 9 of Figure
3, instead of only counting models, enumerate all
feasible input values, then update that list by adding
the new input values. As the result, the final set is
exactly the preimage set of o′.

• Provided the input distribution, i.e., the prior prob-
ability p(s) of each input value s, QIF1 can be
calculated by taking the logarithm of the sum of p(s)
for s belonging to the preimage set, which is already
computed by the above modification.

• Provided the channel matrix representing the condi-
tional probability p(o|s) of each output value o given
an input value s, QIF2 can be calculated by computing
the probability p(o′) that the observed output value o′

is produced.

IV. VALUE DOMAIN DECOMPOSITION

Another effective method for computing the dynamic leak-
age in a compositional way is to decompose the sets of
input values and output values into several subsets, compute
the leakage for the subprograms restricted to those subsets,
and compose the results to obtain the leakage of the whole
program. The difference between the parallel composition in
[16] and the proposed method is that in the former case, a
program under analysis itself is divided into two subprograms
that run in parallel, and in the latter case, the computation of
dynamic leakage is conducted in parallel by decomposing the
sets of input and output values.

Let P (S,O) be a program. Assume that the sets of input
values and output values, S and O, are decomposed into
mutually disjoint subsets as

S = S1] · · ·] Sk,
O = O1] · · ·] Ol.

For 1 ≤ i ≤ k and 1 ≤ j ≤ l, let Pij be the program
obtained from P by restricting the set of input values to Si
and the set of output values to Oj where if the output value
o of P for an input value s ∈ Si does not belong to Oj , the
output value of Pij for input s is undefined. In practice, this
disjoint decomposition can be done simply by augmenting the
program under analysis with appropriate constraints on input
and output.

By definition, for a given o ∈ Oj ,

preP (o) =
⋃

1≤i≤k

prePi,j
(o). (6)

By (2) and (3), we can compute QIF1 and QIF2 in a
compositional way.

By Theorem 2.1, if P is deterministic and the prior
probability of S is uniformly distributed, what we have to

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

compute is |preP (o)|, which can be obtained by summing up
each |prePi,j

(o)| by (6):

|preP (o)| =
∑

1≤i≤k

|prePi,j
(o)|.

Otherwise, probabilistic programs with arbitrary input distri-
bution can be handled in a manner similar to the one described
in the last paragraph of the previous section.

V. EXPERIMENTS

This section will investigate answers for the following
questions: (1) How well does parallel computing based on
the value domain decomposition improve the performance? (2)
How well does sequential composition help improve the per-
formance? (3) How well does approximation in the sequential
composition work in terms of precision and speed? and (4) Is
CiA always better than CoD or vice versa? We will examine
those questions through a few examples: Grade protocol is for
question (1), Bit shuffle and Population count are for (2) and
(3), while (4) is considered based on both the former and the
latter. The benchmarks and prototype are public in [26].

A. Setting up

The experiments were conducted on Intel(R) Xeon(R) CPU
ES-1620 v3 @ 3.5GHz x 8 (4 cores x 2 threads), 32GB RAM,
CentOS Linux 7. For parallel computation, we use OpenMP
[12] library. At the very first phase, to transform C programs
into CNFs, we leveraged the well-known CBMC [25]. For the
construction of a BDD from a CNF and the model counting
and enumeration of the constructed BDD, we use an off-the-
shell tool PC2BDD [30]. We use PC2DDNNF [31] for the
d-DNNF counterpart. Both of the tools are developed by one
of the authors in another project. Besides, as the ordering of
Boolean variables of a CNF greatly affects the BDD generation
performance, we utilize FORCE [2] to optimize the ordering
before transforming a CNF into a BDD. We use MaxCount
[29] for estimating the answer of Max#SAT problem. We
implemented a tool for algorithms in Figure 3 and Figure 4,
as well as the exact count in sequential compositions in Java.

B. Grade protocol

This benchmark is taken from [19]. By this experiment, we
investigated how well parallel computation improves the per-
formance of counting models, hence of quantifying dynamic
leakage, in value domain decomposition. This benchmark sums
up (then takes the average of) the grades of a group of students
without revealing the grade of each student. We used the
benchmark with 4 students and 5 grades, and all variables
are of 16 bits. For model counting, we suppose the observed
output (the sum of students’ grades) to be 1, and hence the
number of models is 4. GPMC [28], one of the fastest tools
for quantifying dynamic leakage as shown in [10], was chosen
as the representative tool for CoD approach. We manually
decompose the original program into 4, 8 and 32 sub-programs
by adding constraints on input and output of the program
based on the value domain decomposition (the set of output
values is divided into 2 and the set of input values is divided
into 2, 4 or 16 disjoint subsets). Table I is divided into sub-
divisions corresponding to specific tasks: BDD construction,
d-DNNF construction and model counting based on different

approaches. In each sub-division, the bold number represents
the shortest execution time in each column (i.e., the same
number of decomposed sub-programs, but different numbers
of threads). ‘−’ represents cases when the number of threads is
greater than the number of sub-programs, which are obviously
meaningless to do experiments.

TABLE I. TIME FOR CONSTRUCTING DATA STRUCTURE AND
COUNTING MODEL.

n = 32 n = 8 n = 4 n = 1

BDD Construction

t = 32 218.53s − − −
t = 16 222.27s − − −
t = 8 237.54s 137.74s − −
t = 4 254.88s 144.55s 155.90s −
t = 2 376.21s 233.34s 214.65s −
t = 1 736.74s 450.85s 391.99s 243.85s

d-DNNF Construction

t = 32 93.17s − − −
t = 16 91.49s − − −
t = 8 107.31s 123.48s − −
t = 4 141.27s 147.79s 175.34s −
t = 2 215.92s 226.93s 247.45s −
t = 1 398.99s 391.67s 457.38s 304.88s

Model Counting
(CiA - BDD based)

t = 32 0.21s − − −
t = 16 0.22s − − −
t = 8 0.25s 0.13s − −
t = 4 0.30s 0.16s 0.16s −
t = 2 0.65s 0.31s 0.24s −
t = 1 0.86s 0.36s 0.31s 0.30s

Model Counting
(CiA - d-DNNF based)

t = 32 0.05s − − −
t = 16 0.05s − − −
t = 8 0.05s 0.01s − −
t = 4 0.07s 0.01s 0.01s −
t = 2 0.12s 0.02s 0.02s −
t = 1 0.18s 0.04s 0.03s 0.25s

Model Counting
(CoD - using GPMC) t = 1 − − − 44.69s

In Table I, n: number of sub-programs decomposed from
the original program; t: number of threads specified by
num thread compiling directive of OpenMP. Note that n = 1
means non-decomposition, t = 1 means a sequential execution
and the number of physical CPUs is 8. From Table I, we can
make the following inferences:

• As for the answer to question (1), parallel computing
speeds up the calculation several times
BDD Construction: 137.74s vs. 243.85s;
d-DNNF Construction: 91.49s vs. 304.88s;
Model Counting (CiA - BDD based): 0.13s vs. 0.30s.
to tens times
Model Counting (CiA - d-DNNF): 0.01s vs. 0.25s.

• In general, increasing the number of threads (up to the
number of sub-programs) does improve the execution
time in both the construction of BDD, d-DNNF and
the model counting.

• When the number of sub-programs is close to the num-
ber of physical CPUs, which is eight, the execution
time is among the best if not the best.

The performance with d-DNNF is better than that with BDD
in this example, but this seems due to the implementation of
the tools.
C. Bit shuffle and Population count

population count is the 16-bit version of the benchmark
of the same name given in [19]. In this experiment, the
original program is decomposed into three sub-programs in
such a way that each sub-program performs one bit operation

6Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

of the original. Inspired by population count, we created the
benchmark bit shuffle, which consists of two steps: firstly it
counts the number of bit-ones in a given secret number (by
population count, actually we took the count modulo 6 to
increase the preimage size by the first part), then it shuffles
those bits to produce an output value. This original program
is divided into two sub-programs corresponding to the above-
mentioned two steps. Though bit shuffle is probabilistic (i.e.,
the shuffling part), the algorithm in Figure 3 still works,
because there is always only one possible input value (i.e.,
the number of bit-ones) for an output of the sub-program
corresponding to the latter step.

Table II shows execution times of constructing BDD and
d-DNNF for two sample programs. The last three columns:
non-decompose, decompose (serial) and decompose (parallel)
are execution time when computed for the original program,
computed sequentially and parallelly for the decomposed sub-
programs, respectively. Bold numbers are the best execution
times in those three.

For model counting, we let an output value be 3 (the
number of models is 13110) for bit shuffle and 7 (the num-
ber of models is 11440) for population count. Table III
presents the execution times for model counting where the
underlined numbers are the exact counts, the bold execution
times are the best results among approaches for the exact count
of each benchmark and the italic data are of approximated
calculations. The execution times for the lower bounds are
predetermined timeouts, which were designed to be 1/2, 1/5
and 1/10 of the time needed by the exact count, followed
by the time by CoD. In bit shuffle benchmark, lower bounds
based on d-DNNF were not improved (all are zero) even
when the timeout was increased. This happened because an
intermediate result of counting for one d-DNNF is unknown
until the counting completes while this benchmark contains
only two sub-programs and the size of the preimage by the
second sub-program is always one (i.e., the number of times
to count d-DNNFs is only two, one for the first sub-program
and one for the second one).

TABLE II. BDD AND d-DNNF CONSTRUCTION TIME FOR
DIFFERENT APPROACHES.

non-decompose decompose (serial) decompose (parallel)
BDD
Construction

bit shuffle >1 hour 33.90s 33.46s
population count 0.48s 0.66s 0.40s

d-DNNF
Construction

bit shuffle 424.64s 50.28s 48.39s
population count 1.19s 0.71s 0.69s

TABLE III. MODEL COUNTING: EXECUTION TIME AND THE
CHANGING OF APPROXIMATION PRECISION.

bit shuffle population count

CoD using GPMC (non-decompose) 0.49s 13110 0.09s 11440

CiA-BDD based
(decompose)

Exact count 1.47s 13110 10.98s 11440

Approximation Lower bound

0.75s 6243 5.5s 5776
0.30s 1918 2.2s 888
0.15s 574 1.1s 312
0.49s 3713 0.09s 0

Upper bound 0.02s 14025 0.07s 5898240

CiA-d-DNNF based
(decompose)

Exact count 0.27s 13110 3.50s 11440

Approximation Lower bound

0.13s 0 1.75s 4712
0.05s 0 0.70s 1314
0.03s 0 0.35s 52
0.49s 13110 0.09s 0

Upper bound 0.07s 14025 0.13s 5898240

From the experimental results, we obtain the following obser-
vations.

• As for the answer of question (2), in case of
bit shuffle, sequential composition helps speed up the
construction of BDD more than 100 times (33.46s vs.
> 1 hour) and d-DNNF more than 8 times (48.39s
vs. 424.64s). However, in case of population count,
the improvement is insignificant. For model counting,
in both of the samples, sequential composition either
helps just little or does not help.

• As for the answer of question (3), in case of upper
bound for bit shuffle, the precision is quite good.
However, it was extremely low for population count.
For both of the samples, the calculation was very fast.
For the lower bound, basically the precision gets better
with longer timeout. In addition, because leakage is
logarithm of model count, its upper bound and lower
bound are much tighter than those of model count.

Note that, when we compare CiA with CoD, it is reasonable
to ignore time of construction in CiA, because it happens only
at the first time, then the result can be reused. For the question
(4), in case of grade protocol, CiA shows a huge improvement
over CoD, which is more than 4000 times (0.01 s vs. 44.69
s). But in case of population count, CoD is superior to CiA
(0.09 s vs. 3.50 s). So, the answer is NO, i.e., sometimes CiA
is better and the other time CoD is.

VI. CONCLUSION

In this paper, we focused on the efficient computation of
dynamic leakage of a program and considered two approaches,
CoD and CiA. Then, we proposed two compositional methods,
namely, computation along with the sequential structure of
the program and parallel computation based on value do-
main decomposition. In the first method, we also proposed
approximations that give both lower bound and upper bound
of model counting. Our experimental results showed that: (1)
Parallel computation based on value domain decomposition
works well generally; (2) Sequential composition sometimes
helps significantly with construction of BDDs and d-DNNFs;
(3) The precision of upper bounds depends on the way of
decomposition while that of lower bound depends on the preset
timeout; and (4) Both CiA and CoD are important because
sometimes the former works better and the other times does
the latter. All decomposition in the experiments were done
manually. So, it is important to find a systematical way of
deciding and guiding to a good decomposition. This is left
as future work. One promising direction is to utilize static
analysis, such as symbolic execution and program invariant.
On the other hand, both BDD and d-DNNF have many
applications other than computing dynamic leakage, but there
is still a bottle neck at constructing them. The approach in this
paper, composition based on value domains, can be a hint to
speed up that process.

REFERENCES

[1] P. S. Aldous, “Noninterference in expressive low-level languages”, http:
//www.cs.utah.edu/∼peteya/papers/diss.pdf [retrieved: October, 2019],
PhD thesis, The University of Utah, 2017.

[2] F. Aloul, I. Markov, and K. Sakallah, “FORCE: a fast and easy-to-
implement variable-ordering heuristic”, Great Lakes Symposium on
VLSI (GLSVLSI), 2003, pp. 116–119.

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

[3] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith,
“Measuring information leakage using generalized gain functions”, 21st
Computer Security Foundations Symposium (CSF), 2012, pp. 265–279.

[4] N. Bielova, “Dynamic leakage - a need for a new quantitative informa-
tion flow measure”, ACM Workshop on Programming Languages and
Analysis for Security (PLAS), 2016, pp. 83–88.

[5] N. Bielova and R. Rezk, “A taxonomy of information flow monitors”,
5th International Conference on Principles of Security and Trust (POST),
2016, pp. 46–67.

[6] F. Biondi et al., “Scalable approximation of quantitative information flow
in programs”, Verification, Model Checking, and Abstract Interpretation
(VMCAI), 2018, pp. 71–93.

[7] F. Biondi, Y. Kawamoto, A. Legay, and L. M. Traonouez, “HyLeak:
hybrid analysis tool for information leakage”, Automated Technology
for Verification and Analysis (ATVA), 2017, pp. 156–163.

[8] R. Chadha and M. Ummels, “The complexity of quantitative information
flow in recursive programs”, Research Report LSV-2012-15, Laboratoire
Spécification & Vérification, École Normale Supérieure de Cachan, 2012.

[9] T. Chothia, Y. Kawamoto, and C. Novakovic, “LeakWatch: estimating
information leakage from Java programs”, 19th European Symposium
on Research in Computer Security (ESORICS), 2014, pp. 219–236.

[10] B. T. Chu, K. Hashimoto, and H. Seki, “Quantifying dynamic leak-
age: complexity analysis and model counting-based calculation”, IEICE
Transactions on Information and Systems, Vol. E102-D, No. 10, Oct.
2019 (to appear), pre-print version: https://arxiv.org/abs/1903.03802.

[11] M. R. Clarkson, A. C. Myers, and F. B. Schneider, “Quantifying
information flow with beliefs”, 18th Computer Security Foundations
Symposium (CSF), 2009, pp. 655–701.

[12] L. Dagum and R. Menon, “OpenMP: an industry-standard API for
shared-memory programming”, IEEE Computational Science & Engi-
neering, Volume 5 Issue 1, Jan 1998, pp. 46–55.

[13] A. Darwiche, “On the tractability of counting theory models and its
application to belief revision and truth maintenance”, Jounal of Applied
Non-Classical Logics 11(1-2), 2001, pp. 11–34.

[14] D. J. Fremont, M. N. Rabe, and S. A. Seshia, “Maximum Model
Counting”, AAAI Conference on Artificial Intelligence, 2017, pp. 3885–
3892.

[15] J. A. Goguen and J. Meseguer, “Security policies and security models”,
IEEE Symposium on Security and Privacy (S&P), 1982, pp. 11–20.

[16] Y. Kawamoto, K. Chatzikokolakis, and C. Palamidessi, “On the com-
positionality of quantitative information flow”, Logical Methods in
Computer Science, Vol. 13(3:11) 2017, pp. 1–31.

[17] V. Klebanov, N. Manthey, and C. Muise, “SAT-based analysis and
quantification of information flow in programs”, Quantitative Evaluation
of Systems (QEST), 2013, pp. 177-192.

[18] B. Köpf and A. Rybalchenko, “Approximation and randomization
for quantitative information flow analysis”, 23rd Computer Security
Foundations Symposium (CSF), 2010, pp. 3–14.

[19] Q. S. Phan, “Model counting modulo theories”, PhD thesis, Queen
Mary University of London, 2015.

[20] Q. S. Phan and P. Malacaria, “All-solution satisfiability modulo theories:
applications, algorithms and benchmarks”, 10th International Confer-
ence on Availability, Reliability and Security (ARES), 2015, pp. 100–
109.

[21] G. Smith, “On the foundations of quantitative information flow”,
12th International Conference on Foundations of Software Science and
Computational Structures (FOSSACS), 2009, pp. 288–302.

[22] F. Somenzi, “Binary decision diagrams”, http://www.ecs.umass.edu/
ece/labs/vlsicad/ece667/reading/somenzi99bdd.pdf, 1999.

[23] C. G. Val, M. A. Enescu, S. Bayless, W. Aiello, and A. J. Hu, “Precisely
measuring quantitative information flow: 10k lines of code and beyond”,
IEEE European Symposium on Security and Privacy (EuroS&P), 2016,
pp. 31–46.

[24] H. Yasuoka and T. Terauchi, “On bounding problems of quantitative
information flow”, Journal of Computer Security (JCS), Vol. 19, 2011
November, pp. 1029–1082.

[25] C Bounded Model Checker, https://www.cprover.org/cbmc [retrieved:
September, 2019].

[26] Dynamic Leakage Analyzer, https://bitbucket.org/trungchubao-nu/dla-
composition/src/master/dla-composition/ [retrieved: September, 2019].

[27] DSharp-p, https://formal.iti.kit.edu/∼klebanov/software/ [retrieved:
September, 2019].

[28] GPMC, https://www.trs.css.i.nagoya-u.ac.jp/∼k-hasimt/tools/gpmc.
html [retrieved: September, 2019].

[29] MaxCount, https://github.com/dfremont/maxcount [retrieved: Septem-
ber, 2019].

[30] PC2BDD, https://git.trs.css.i.nagoya-u.ac.jp/t isogai/cnf2bdd [retrieved:
September, 2019].

[31] PC2DDNNF, https://git.trs.css.i.nagoya-u.ac.jp/k-hasimt/gpmc-dnnf
[retrieved: September, 2019].

[32] SharpCDCL, http://tools.computational-logic.org/content/sharpCDCL.
php [retrieved: September, 2019].

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-746-7

SECURWARE 2019 : The Thirteenth International Conference on Emerging Security Information, Systems and Technologies

