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Abstract—Quantitative risk assessments are commonly based on
estimates of impacts and likelihoods regarding threats. Both
quantities are usually uncertain, subjective and therefore difficult
to estimate objectively and reliably. To ease the matter, assess-
ments are often done in categorical terms, which avoids the issue
of finding numeric figures where there is typically no accuracy,
but at the same time makes an expression of uncertainty more
difficult. If, for an impact or the likelihood, two categories apply
(not necessarily to an equal extent) or neither of the offered
options is a good match, how can an expert express this kind
of uncertainty or fuzzyness? Moreover, how should we deal with
multiple diverging opinions on the same risk? We propose a
graphical approach to tackle both issues on a single ground,
by casting a common visual risk representation form into a
visual risk specification system. The proposed method aids the
specification of risk parameters under uncertainty, as well as
opinion pooling based on the so-obtained results.

Keywords–uncertainty representation; expert elicitation; risk
assessment; opinion pooling.

I. INTRODUCTION

The quantitative specification of risks typically involves
stating beliefs about impact and likelihood of a given incident.
Both such specifications strongly depend on domain expertise
and can usually not be described in fixed terms. Instead, the
recommended way of quantifying likelihoods and impacts is
based on a few (commonly three to six) categories whose
textual description is matched against the current incident or
threat description. Treating impact and likelihood categories as
defining a cartesian coordinate system, we arrive at the well-
known risk matrices, which help prioritizing risks along the
+45 degrees diagonal from lower risks (events with low impact
and low likelihood) up to high priority risks with significant
impact and large likelihood. An example of this technique is
displayed in Figure 1.

Mostly, these pictures appear in later stages of a risk
management process, at the risk evaluation stage when the
relevant threats have been identified and classified in both
dimensions. The specification of impacts and likelihood is done
a priori, and not regulated to happen in any particular form by
any standard (as ISO31000 [2], or its relatives [3] [4]). Neither
are matters of consensus finding and opinion pooling subject
of a deeper discussion or detailed recommendations. A suitable
method for such data aggregation is the second contribution of
this work.

While using an illustration like Figure 1 as an output
format, why not use the same form of graphical display to
input the same values in first place? In other words, when
an expert is polled regarding its opinion about a given threat,
this person will see which category describes best the threat
regarding its impact and likelihood, and utter the respective
categories as the risk assessment. It can hardly be expected

that the ultimate choice is perfect, and there may be an almost
equally good alternative category to describe the matter. The
idea put forth in this work is letting the domain expert not
point to a single category, but rather allow marking a whole
range along both axes, to express uncertainty, or (in a different
view), an “overlapping” membership to the categories at hand.

Such a flexible specification appears beneficial for several
reasons:

• The expert is not forced to choose a specific category,
possibly issuing a caveat regarding other alternative
choices,

• The expert has an intuitive way of expressing uncer-
tainty in the overall opinion, regarding both dimen-
sions.

Organisation of this work: Section II puts this work
in the context of selected existing risk management literature.
Section III describes the visual method to specify risks, and
Section IV develops an algorithm to compile several assess-
ments (based on the previous input method) into a single risk
estimate. Conclusions and an outlook to future work are given
in Section V.

II. RELATED WORK

Though purely quantitative risk assessment is sometimes
discouraged [5], an assessment in qualitative (categorical)
terms is nevertheless standard in almost all risk management
approaches (as [3] [2] [4] and many more). A typical issue
with any such assessment is the specific domain [6] [7],
different a priori knowledge of the involved experts as well
as their risk attitudes, incentives [8] and personal history that
all play a strong role in how risk is perceived (and hence
assessed). Interestingly (though perhaps not too surprisingly),

Figure 1. Example of Risk Bubble Chart [1]
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the personality itself has only a relatively minor impact on
how risk is assessed, as some empirical studies investigated [9].
Designing good questionnaires for empirical investigations is a
challenging issue on its own, but left mostly unconstrained and
without much explicit recommendations in risk management
applications and standards. Likewise, the problem of consensus
finding and compiling multiple opinions into a representative
value received interest as an isolated problem [10] [11] [12],
but should be an intrinsic part of the risk management process
[13]. This is the gap that this work aims to fill, by proposing
a first step towards a graphical way of risk specification as
an alternative to existing textual and discussion based ways of
getting these values. This step is mostly left open and a degree
of freedom in the instantiation of various risk management
methods [14] [15] [2]. Our work is intended as an auxiliary
tool when using such standards.

III. VISUAL RISK SPECIFICATION

To put this idea to work, we directly cast Figure 1 into an
input system for risks, where the expert – upon speaking about
a given threat – can simply draw a rectangle within 2D-area
spanned by the categorical axes, where the projections onto
the horizontal and vertical axis mark the matching categories.
The extent of coverage expresses the degree of match, and the
width/height of the rectangle corresponds to the uncertainty
in the assessment (in both dimensions). Figure 2 shows an
example of this technique.

Naturally, this process results in not only two but
four values, which we denote as impactmin, impactmax

and likelihoodmin, likelihoodmax, and abbreviate as
imin, imax, `min, `max. Both define ranges in which the expert
considers the respective quantity to fall into. Constructing
a statistical model from this information is straightforward:
for analytic convenience, let us suppose that the expert’s
assessment and uncertainty is expressible by a Gaussian
distribution, then based on these four values, the risk
assessment would come to two Gaussians, denoted as XI for
the impact, and XL for the likelihood, with distributions

XI ∼ N
(

1

2
(imax + imin),

1

3
(imax + imin)

)
, (1)

XL ∼ N
(

1

2
(`max + `min),

1

3
(`max + `min)

)
, (2)

where X ∼ N (µ, σ) denotes the distribution of the random
variable with mean µ and standard deviation σ. Our choice
makes the well-known 99.73% of probability mass of the
Gaussian distribution fall into the given range, leaving a small
residual inaccuracy allowance in the assessment. The overall
uncertainty in the risk assessment is reflected in the area of the
specified box; the larger the box, the less certain is the risk
assessment.

Outlier Elimination
When compiling a risk picture, it is often useful to apply

occasional corrections when risks are implausibly assessed
relative to each other. Manually, this can be done by placing
all boxes into the same picture to see outliers or do a fine-
correction of risks in light of one another. Figure 3 shows an
example.

IV. POOLING SEVERAL EXPERT OPINIONS

When considering several domain experts’ opinions it can
be a complex and tiresome task to agree upon a common risk
quantity. Especially when data are sparse and risk assessments
do not coincide, aggregating the final risk parameters can
be challenging. Communicative methods, such as the Delphi
technique or time-consuming meetings with discussion often
do not lead to a consensus. Instead, mathematical pooling
functions and formulas are employed to merge the opinions
to a single value. This method called mathematical opinion
pooling has a long tradition in statistics concerning forecast
combination as well as decision making. There exist a large
number of approaches and opinion pooling formulas, which
can be found in [10] [11].

The easiest and most straight forward way of opinion
pooling is done by simply averaging over all values, i.e., by
computing the arithmetic mean. This approach is widespread
and in practice often implemented blindly, as many decision
makers are not aware there exist severe drawbacks of the
arithmetic mean when dealing with expert opinions.

First of all, the arithmetic mean is very sensitive to outliers
– especially when the sample size is small. A single extreme
data point might cause a remarkable shift in the aggregated
value and hence might distort the final result. Therefore, de-
pending on the data, robust approaches and/or outlier detection
and correction prior to risk aggregation should be considered.
Secondly, when data are sparse smoothing might lead to
more stable estimates and should thus not be neglected when
aggregating data. Thirdly, the different levels of expertise and
knowledge of the individual experts and their level of assurance
or uncertainty regarding their risk quantity statements need
to be taken into account. The arithmetic mean lacks all of
the above points, yet they are crucial to the validity of the
pooled result and thus need to be considered when aggregating
individual expert opinions.

We, therefore, propose an intuitive iterative opinion pooling
scheme that considers all aspects mentioned before. We remark
that opinion pooling is generally a lossy form of data aggrega-
tion, in opposition to lossless aggregation, where the full data
defines a whole distribution object. Decision theory in this
generalized setting rests on stochastic orders, and comes with
the appeal of inherently avoiding the aforementioned problems
of consensus finding. Expanding this alternative branch of
theory is, however, beyond the scope of this work (see [16]
[17] for example).

A. Iterative Opinion Pooling Method
The input system for risk assessment described in Section

III serves to specify the parameters of two Gaussian distribu-
tions – one for the impact XI , and one for the likelihood XL

– with parameters µi = 1
2 (imax + imin), σi = 1

3 (imax + imin),
and µ` = 1

2 (`max + `min), σ` = 1
3 (`max + `min) respectively.

Thus, after all N experts contibuted with their risk assessment,
four vectors of length N are obtained: µi = (µi1, . . . , µiN ),
σi = (σi1, . . . , σiN ) regarding the impact, and µ`, σ` for
the likelihood respectively. For simplicity reasons, we will
now drop the subscripts i or `, as impact and likelihood will
be pooled separately. The aim is to separately aggregate the
impact and likelihood estimates, i.e., to obtain two Gaussian
distributions representing the final risk distribution for the
impact and the likelihood of a certain threat.
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Figure 2. Graphical Risk Specification
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Figure 3. Manual Corrections
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A possible solution to this is to consider the situation in
a Bayesian framework: each expert j ∈ 1, . . . , N regards
his estimates of the parameter of interest (e.g., impact) as
prior knowledge of the parameter. Thus, the prior distribution
hyperparameters are µ

prior∼ N (µj , σj). Expert j interprets
the remaining experts distributions (µk, σk) , k ∈ {1, . . . , j −
1, j + 1, . . . N} as independent observations which make up
the likelihood function. Applying Bayes rule, the posterior
distribution of µ has the parameters

σp =
1

σj
+
∑
k 6=j

1

σk
, (3)

µp = µj ·
σp

σj
+
∑
k 6=j

µk ·
σp

σk
, (4)

and µ
posterior∼ N (µp, σp). Note that for symmetry reasons all

σp and µp are the same, no matter which expert rating j ∈
{1, . . . , N} is chosen as prior distribution. Thus, the expert’s
posterior distribution represents the aggregated distribution for
the quantity of interest. This way, each expert’s (un)certainty
regarding their risk assessment is incorporated in the pooling
process. Hence, it is ensured that risk estimates with very high
levels of assurance are given more weight than those having
very low levels of assurance.

Although this method is quite intuitive and possesses many
convenient mathematical properties, it does not incorporate any
kind of smoothing to the data.

An alternative method, which is described as consensual
opinion pooling in [12], iteratively smooths the data with
a discrete inverse distance kernel until convergence to the
same value. Epistemically, their procedure can be interpreted
in the following way: in every iteration, each expert updates
their belief about the unknown parameter by incorporating
information of all experts (including themselves). Therefore,
in every iteration t, each expert j ∈ {1, . . . , N} updates their
belief µj on µ as a linear combination of all risk assessments:
µ
(t)
j =

∑N
k=1 c

(t)
kj · µ

(t−1)
k with c

(t)
kj inversely proportional to

the distance of µ(t−1)
k and µ(t−1)

j ,

c
(t)
kj =

α
(t)
j

ε+ d(µ
(t−1)
k , µ

(t−1)
j )

with α
(t)
j =

1∑N
k=1 c

(t)
kj

(5)

and ε > 0. This way, each expert assigns more weight to
those experts, whose risk assessment are close to their own,
than to experts whose risk assessments deviate strongly from
their own. After a number of iterations a “consensus” among
all experts is reached. While this method is very intuitive,
it does not include any weighting of the experts’ estimates
regarding their assurance. Therefore, we suggest an adapted
iterative method, which interpolates between the two above
mentioned methods.

In the algorithm shown in Figure 4, in each step the
risk statements are smoothed based on a discrete inverse-
distance kernel and updated according to Bayes rule. This
way, the data are not only smoothed, but the assurance of
each expert about their risk judgement is considered too. The
Bayes update ensures that risk estimates with very high levels
of assurance are given more weight than those having very
low certainty, while smoothing gives more weight to expert

Data: µ(0) = (µ
(0)
1 , . . . , µ

(0)
N ), σ(0) = (σ

(0)
1 , . . . , σ

(0)
N ),

ε > 0, δ > 0
Result: µp – the pooled value for µ; σp – the pooled

value for the standard deviation; w – the vector
of weights assigned to each expert.

W ← IN ;
while ‖µ‖max > δ do

for j = 1 to N do
for k = 1 to N do

c
(t)
kj ←

α
(t)
j

ε+d(µ
(t−1)
j ,µ

(t−1)
k )

;

end

σ2(t)

j ←
(
N ·

∑N
k=1

c
(t)
kj

σ2(t−1)

k

)−1
;

µ
(t)
j ← σ2(t)

j ·N ·
∑N
k=1 µ

(t−1)
k

c
(t)
kj

σ2(t−1)

k

;

end

W̃ (t) ←
(
σ2(t)

j ·N · c
(t)
kj

σ2(t−1)

k

)
j=1,...N, k=1,...,N

;

W ← W̃ (t) ·W ;

σ2(t) ← σ2(t)∑N
j=1 σ

2(t+1)

k

;

t← t+ 1;
end

µp ← µ
(t)
1 ; w ←W1; σp ←

√∑N
k=1 σ

2(0)
k · w2

k;

Figure 4. Iterative Opinion Pooling method with weights

opinions that are located in the center than to extreme data
points. This procedure is iterated until all risk statements have
converged to one value, which yields the aggregated risk. Note
that the pooling algorithm (Figure 4) interpolates between
the two above mentioned methods: if ε → ∞ this method
coincides with the Bayes update, whereas equal variances, i.e.,
σ2
1 = · · · = σ2

N , yield the consensual opinion pooling.
Note that

(
σ2(t)

j

)
t∈N

is a monotonically decreasing null se-
quence for all j = 1, . . . , N , which may lead to numerical
instability in the computation process. To avoid this, we added
the command σ2(t+1) ← σ2(t+1)∑N

j=1 σ
2(t+1)

j

to normalize the sum of

the variances in each step. It can be shown that the procedure
converges and that limt→∞ µ

(t)
1 = · · · = limt→∞ µ

(t)
N holds.

In every iteration, the entry wjk in matrix of weights W
corresponds to the weights expert j has so far assigned to
all experts k = 1, . . . , N . Note that W converges to a matrix
with equal rows. Thus, the final weights of all experts coincide.
By default, we choose the first row of W , w = W1 as a final
weighting vector.

B. Numerical Example
Assume four experts were asked to quantify the likelihood

of a certain threat. Let µ(0) = (0.26, 0.255, 0.43, 0.315)T and
σ(0) = (0.03, 0.0183̇, 0.03̇, 0.0283̇)T respectively. In figure
5 the densities are depicted. By choosing ε = 1, we then
obtain µp = 0.2922 as pooled mean value for the likelihood,
σp = 0.0127 as standard deviation and the weight vector
w = (0.1798, 0.4804, 0.1386, 0.2012)T .
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Figure 5. Numerical Example – Opinion Pooling of four Opinions

TABLE I. POOLED VALUES DEPENDING ON THE CHOICE OF THE
TUNING PARAMETER

ε µp σp w1 w2 w3 w4

0.001 0.2792 0.0130 0.211 0.564 0.083 0.142
0.01 0.2833 0.0129 0.201 0.534 0.099 0.166
0.022 0.2852 0.0128 0.195 0.519 0.106 0.179
0.1 0.2887 0.0127 0.187 0.496 0.120 0.197
1 0.2922 0.0127 0.180 0.480 0.139 0.201
5 0.2929 0.0127 0.179 0.478 0.143 0.200
10 0.2931 0.0127 0.178 0.478 0.144 0.200

Note that the choice of the tuning parameter ε has a strong
impact on the result. Depending on the desired degree of
smoothness ε can be increased or decreased. Table I illus-
trates how different values for ε result in different outcomes
regarding the opinion pooling. We suggest, however, not to
oversmooth the data, and thus keep the size of ε reasonable.
A handy approach is to use a modified version of Silverman’s
rule of thumb, i.e., ε ≈ 1.06 · σ̄ · N−1/5, where σ̄ denotes
the arithmetic mean of σ. In the given numeric example
Silverman’s rule yields ε ≈ 0.02209.

We suggest the opinion pooling method to be implemented
in the visual risk specification. This way, the whole process
from data collection, data correction and smoothing, to risk
aggregation is combined in a single tool. In Figure 6 it is
depicted how the experts’ assessments are compiled into a
single value.

V. CONCLUSION AND FUTURE WORK

Specifying risks is in any case a matter of dealing with
subjectivity and uncertainty. The application of statistical
methods is especially challenging in this field, since “risk”
is not an observable property of some physical process (as
common elsewhere when statistics or probability theory is
applied). Nonetheless, the issue is one of reasoning under
uncertainty, and specifying this uncertainty in first place should

Figure 6. Graphical Risk Specification (top) and Aggregation (bottom)

be consistent with how the results are presented. This brings
us to the proposed method of turning a risk presentation
mechanism into an input system, and framing important tasks
like data correction and opinion pooling into this approach.
The techniques put forth here straightforwardly apply for one-
dimensional quantities, such as when only likelihood or only
impact should be elicited. Future steps mainly concern outlier
analysis and way to automate outlier elimination. This entails
in particular an analysis of bias and non-inferiority of the
outlier-corrected risk data sets, and a more detailed stochastic
model of risk estimation, where the risk is an unknown
quantity, about which only correlated (independent, yet not
necessarily identically distributed) random quantities can be
measured (i.e., the subjective estimates).
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