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Abstract—Malware detection is a very challenging task.
Over the years, numerous approaches have been proposed:
signature-based, anomaly-based, application-based, host-based
and network-based solutions. One avenue that has been less con-
sidered is detecting malware by monitoring of low-level resources
consumption (e.g., CPU, memory, network bandwidth, etc.). This
can be considered as a last-line of defense. When everything else
has failed, the monitoring of resources consumption may detect
abnormal behaviors in realtime. This paper presents a context-
aware malware detection approach that use semi-supervised
machine learning and time-series analysis techniques in order to
inspect the impact of ongoing events on the low-level indicators.
In order to improve the systems automation and adaptability
with various contexts, we have designed a context ontology that
facilitates information representation, storage and retrieval. The
proposed malware detection approach is complementary to the
current malware detectors.

Keywords–Malware Detection; Low-level Indicators; Context-
Aware; Machine Learning; Time-Series Analysis; Ontologies.

I. INTRODUCTION

Today, the emergence of complex heterogeneous infrastruc-
tures has led to the evolution of various applications, services,
and systems within these computer networks. At the same
time, there is an increasing trend of malware exploiting the
vulnerabilities of these infrastructures. Hence, technologies
and defensive systems aiming to support the efforts of Infor-
mation Technology (IT) personnel to improve the reliability of
their organizations IT assets (i.e., network infrastructure and
computer systems) continue to be paramount.

Anomaly-based and signature-based malware detection
systems are among the most popular front line tools to protect
network infrastructures against malicious attackers. Various
approaches have been proposed in the past two decades and
commercial off-the-shelf (COTS) malware detection products
have found their way into Security Operations Centers (SOC)
of most organizations. Nonetheless, the usefulness of these
solutions has remained relatively limited due to two main
factors: their inability to detect new types of malware (for
which new detection rules or training data are unavailable)
or simply their high rate of false negative detection and their
often very high rate of false positive detection. Due to the
increasing prevalence of complex multi-pronged malware, the
necessity for organizations to deploy reliable defense systems
is undeniable. This is especially important with respect to

targeted malware that tries to avoid detection by conventional
security products.

One of the essential shortcomings of existing malware
detection approaches is that they mostly inspect events on
the higher layers of multilayered software or network ar-
chitectures. Due to the increasing use of metamorphic and
polymorphic malware [1], dynamic anomaly-based detection
techniques that concentrate on the execution layer or hardware
layer are needed more than ever before. The main reason is
that attackers do not have control over low-level hardware
indicators as they have over higher level features. For example,
it is easier for attackers to modify system calls or access
control rules than the cache hit rate or the CPU usage rate.
As shown in some of the recent works [2], malware events
can be differentiated from normal events via their impacts on
the low-level feature spaces, such as hardware events collected
by performance counters on modern CPUs. Such features
have been called sub-semantic because they do not rely on
a semantic model of the monitored programs. We believe that
sub-semantic features or hardware low-level indicators, such
as CPU usage, CPU temperature, memory usage, etc., can be
very useful to identify anomalous events in a real-time mode.

Malware detection systems mostly perform offline event
analysis. Usually, a dataset of captured events is prepared as
an input for these systems to be analyzed. Moreover, they
are not easily adaptable with various contexts because a time-
consuming configuration process is required. One solution is
to propose a real-time, dynamic and highly adaptable malware
detection system using ontologies and ontological engineering
tools to represent the relevant information [3]. Ontologies
provide powerful knowledge representations of the information
structure in an unified format [4].

The work presented in this paper strives to address the
problems described above, and provide a comprehensive so-
lution to improve the effectiveness of malware detection ap-
proaches in real environments. For this purpose, we present a
context-aware real-time malware detection approach that relies
on ontologies and ontology description logic to accomplish its
goals:

1) Analyze impacts on several heterogeneous low-level
hardware indicators

2) Identify anomalies using semi-supervised machine
learning and time-series analysis techniques
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Such a system can be seen as the last line of defense.
Whenever the higher level detection mechanisms fail to detect
abnormal behaviors, our proposed hardware level system may
have the last chance to catch them.

The paper is organized as follows. In Section 2, we discuss
the related work. In Section 3, we present our proposed
anomaly detection approach in detail. We demonstrate in Sec-
tion 4 the effectiveness of our proposed approach by describing
a reference implementation and applying it to the analysis of
two different case studies. We conclude in Section 5 with some
insights for future research.

II. RELATED WORK

Anomaly detection, and more specifically, malware detec-
tion is one of the main challenges in computer security. A
summary of recent studies in anomaly and malware detection
is presented in this section.

Khasawneh et al. [2] proposed a dynamic malware detec-
tion approach based on low-level features, mainly opcodes,
to improve the work of Ozsoy et al. [5]. In this work,
they use a learning approach to perform an online detection
and improve detection accuracy. In a way, signatures of the
opcodes and similarity graphs of opcode sequences can be
considered as low-level features [6] [7] [8]. Abbasi et al. [9]
considered processor temperature and power consumption as
low-level indicators to detect malicious activities in embedded
systems. They use a K-means technique to cluster sequences
of actions done by processes. Tang et al. [10] proposed an
unsupervised anomaly-based malware detection using low-
level architectural and micro-architectural features available
from hardware performance counters.

Detecting anomalies with time-series and temporal se-
quences has been studied by several researchers [11] [12] [13].
Laptev et al. [11] proposed Extendable Generic Anomaly
Detection System (EGADS), an automated anomaly detection
system based on time-series. They try to detect three classes
of anomalies: outliers, change points and anomalous time-
series. Chandola et al. [12] studied sequence anomaly detection
from different perspectives. The authors believe that sequence
anomaly detection can be useful for various purposes, such as
OS system call analysis, biological sequences analysis (e.g.,
DNA sequences), and analyzing navigational click sequences
from web sites. Lane and Brodley [13] proposed an anomaly
detection approach based on Instance-Based Learning (IBL)
techniques wherein they transform temporal sequences of
discrete, unordered observations into a metric space via a
similarity measure that encodes intra-attribute dependencies.

Machine learning techniques, including supervised, semi-
supervised and unsupervised techniques, have been widely
employed within various anomaly and intrusion detection
approaches [14]. Farid et al. [15], proposed a learning al-
gorithm for adaptive Network Intrusion Detection Systems
(NIDS) based on Naive Bayes and decision trees. Wang et
al. [16], using feed forward Backward Propagation (BP) neural
networks, proposed an intrusion detection approach based on
workflow feature definition. Workflows allow to define new
attack sequences to assist BP neural networks in order to
detect new attack types. Teng et al. [17], proposed a cooper-
ative intrusion detection approach using fuzzy Support Vector
Machines (SVM), which consists of three detection agents for

Figure 1. The proposed malware detection framework

the Transmission Control Protocol (TCP), User Datagram Pro-
tocol (UDP), and Internet Control Message Protocol (ICMP)
connections.

In summary, most of these works concentrate on limited
aspects of a comprehensive malware detection procedure, such
as high-level behavior analysis, a very limited hardware-level
low-level indicator analysis, or offline event analysis. However,
none of them intends to provide a generic solution dynamically
analyzing malware impacts on the normal behavior of the un-
derlying system or network. Motivated by these shortcomings,
we propose a context-aware anomaly-based malware detection
approach that analyzes dynamically the impact of any event
on the hardware-level of the underlying system.

III. THE PROPOSED MALWARE DETECTION APPROACH

In this section, we give a high-level overview of our
context-aware malware detection framework as illustrated in
Figure 1, which takes full advantage of dynamic events hap-
pening within a specific environment. In the first step, the
event-integration unit gathers and normalizes the informa-
tion provided by the different monitoring tools. These tools
installed in different architectural layers of the underlying
environment provide a wide range of contextual information
which can be used to significantly improve the accuracy of the
final decisions of the detection framework.

In the second step, the context ontology is populated with
the information collected by the monitoring tools. This ontol-
ogy facilitates traversing (drilling down and rolling up) various
levels of the underlying environment to extract very generic
or very specific information. It provides dynamic information
on the underlying environment for real-time analysis. This
information is normalized in some way to ease the analysis.

In the third step, the feature extraction unit queries the
context ontology to retrieve useful information required for
its analysis. It retrieves top meaningful features that provide
useful data for a sophisticated malware detection system.

The last step consists of detecting anomalous events hap-
pening in the underlying environment. For this purpose, semi-
supervised machine learning and time-series analysis tech-
niques are employed in this phase.

A. Event Monitoring Tools
In order to track the impact of any event happening

within a network, we need monitoring tools to oversee the
behavior of the main components based on various low-level
indicators, such as CPU usages, memory usage, disk usage,
incoming/outgoing traffic rates, etc. Some of the main compo-
nents that attackers usually try to bypass or compromise are:
network firewall, web server, email server, Intrusion Detection
System (IDS), etc. Hence, monitoring the behavior of low-level
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TABLE I. AN EXAMPLE LIST OF LOW-LEVEL INDICATORS

indicators in these components provides useful information to
detect various malware.

Table I lists the low-level indicators that we monitor.
Thus, anomaly-based monitoring tools should take advantage
to monitor the behavior of such indicators. They would look for
any significant changes, such as an abrupt increase or decrease
over a short period of time (a burst).

B. Event Integration Unit
In general, monitoring tools provide reports in various

formats that might not be natively interpretable by the context
ontology and the malware detection engines. Hence, it is
necessary to preprocess these reports and export them in a
format that is understandable by both engines. In produc-
tion environments, this would be done by specific drivers
that would match monitoring fields with class attributes at
the appropriate abstraction level. In the proposed framework,
the event integration unit converts the collected events from
monitoring tools to a unified format which can be understood
by the next units. The other major tasks of the event integration
unit are as follows:

• The monitoring tools may generate attributes in differ-
ent types (string, integer, etc.). The event integration
unit transforms all the received information (attribute
values) to a unified type for the ontology engine.

• Some of the monitoring tools may not support partic-
ular class attributes. The event integration unit com-
pletes the missing data and attributes.

• The event integration unit removes noises and mean-
ingless values in the collected data from monitoring
tools.

Once the integration process has been completed by the
event integration unit, the context ontology is populated using
the normalized information.

C. Context Ontology
Ontologies provide a powerful knowledge representation

in a unified format which is understandable by both machines
and humans [4]. Ontologies allow the use of reasoning logic
formalisms that can be used to retrieve information in a
generic structure-agnostic fashion. We use these formalisms to
design our real-time malware detection algorithms. Our main

TABLE II. THE LIST OF ATTRIBUTES OF THE CONTEXT
ONTOLOGY CLASSES

objective is to detect complex and challenging malware that
bypasses current security solutions. The use of ontologies and
ontology description logic enables us to fully automate the
dynamic contextual information retrieval that is typically done
manually by the analysts.

In our malware detection framework, we have designed
a context ontology easily adaptable to various environments,
indicating its flexibility and power of abstraction. Additionally,
it is highly extensible to include more contextual classes and
attributes depending on the level of abstraction.

The context ontology is populated using the information
integrated by the event integration unit. Figure 2 illustrates
our designed context ontology, which has been implemented
using the popular open-source ontology editor Protégé (as
shown in Figure 11 of Appendix C). The context ontology
includes a Context base class and User, Host, Network and
Service associated classes with their corresponding attributes.
Each of these classes has both static (above the line) and
dynamic (below the line) attributes (as listed in Table II). These
attributes are provided either by network fingerprinting tools
or network administrators.

In order to navigate among various levels of class hierar-
chies within the context ontology, we use the following two
operators in the form of a set of logic rules expressed in Se-
mantic Query-Enhanced Web Rule Language (SQWRL) [18]:

• Drill-Down allows to navigate among levels of data
ranging from the most summarized to the most de-
tailed concepts.

• Roll-Up allows to navigate among levels of data rang-
ing from the most detailed to the most summarized
concepts.

D. Feature Selection Unit
Once the context ontology has been populated with the

dynamic events of the underlying monitored system, this
information can be used to detect potential anomalous events.

The first step is therefore to query the context ontology to
extract dynamic information on the environment and to prepare
them for analysis. We use a set of logic rules expressed in
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Figure 2. Class diagram relationship of the context ontology

SQWRL to query the context ontology. These rules facilitate
the traversing of the ontology class hierarchy to retrieve the
important attributes for the anomaly detection algorithms.
Some examples are given in the appendix. These queries
extract events, which are represented as follows: ei is a feature
vector xi = (xi,1, xi,2, · · ·, xi,m).

Several attributes of the context ontology can be used as in-
put features for machine learning techniques to detect anoma-
lous events. Using various feature analysis algorithms [19],
the most useful features can be selected for the analysis
by the decision-making unit. Principal Component Analysis
(PCA) [19] and parallel coordinates [20] have been used for
this paper. PCA is a statistical procedure that transforms a
set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
components. On the other hand, parallel coordinates is a
way of visualizing high-dimensional geometry and analyzing
multivariate data. It eases feature selections by analysts.

In order to have a real-time malware detection system,
the feature selection unit consists of a number of pre-defined
triggers for the most critical features (e.g., CPU usage, memory
usage). When one of these triggers is activated, it starts
extracting contextual information from the context ontology as
machine learning features, and selects those features providing
meaningful information.

E. Decision Making Unit
In this section, we provide a detailed picture of the pro-

posed malware detection approach. Two different approaches
are used: machine learning techniques and time-series analysis.
Semi-supervised machine learning techniques [21] (e.g., One-
Class Support Vector Machine (OC-SVM)) have been chosen
because the cost associated with the event labeling process in
supervised machine learning techniques is significantly high,
whereas acquisition of unlabeled or partly labeled data is
significantly inexpensive. Time-series analysis techniques [22]

(e.g., Cumulative Sum (CUSUM) [23]) try to extract mean-
ingful statistics and internal structure of the input data. These
two techniques complement each other considering that OC-
SVM does not take into account internal correlation of events,
while time-series analysis accounts for the fact that data points
taken over time may have an internal structure, such as auto-
correlation, trend or seasonal variation. Time series reflect
also the stochastic nature of events over time. Hence, data
may be skewed, with fluctuating mean and variation, non-
normally distributed, and not randomly sampled. The pseudo-
code for the proposed malware detection approach is presented
in Figure 10 (Appendix A).

1) Detecting Anomalous Events Using OC-SVM: The One-
Class Support Vector Machine (OC-SVM) has been used since
it can be trained with only normal events. OC-SVM can be
viewed as a regular two-class SVM where all the training data
lies in the first class, and the origin is taken as the only member
of the second class. Then, in the testing phase, any abnormal
event is considered as an outlier in theory. This removes the
need to gather attacks or abnormal traffic. Hence, the main
idea is to classify the training data as positive, and classify
testing data as negative only if it is sufficiently different from
the training data.

A One-Class SVM is a linear classifier in a multi-
dimensional feature space [21]. It maps a hyper-sphere to the
input data in order to separate normal events from the origin.
These points lying inside the hyper-sphere are classified as
outliers. This can be formulated as an optimization problem
as follows:

min
R,b,ξ

R2 +
1

vn

n∑
i=1

ξi

subject to :
(
‖φ(xi)− b‖2 ≤ R2 − ξi and ξi ≥ 0

) (1)

where, b and R are the center and radius of the hyper-sphere,
and ξ is the slack variable. When v is small, we try to put
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more data into the ball. On the other hand, when v is larger,
we try to squeeze the size of the ball. This optimization can
be solved by Lagrangian multipliers.

2) Malware Detection Based on Time-Series Analysis:
Detecting anomalous event sequences is one of the most
important requirements of any malware detection system to
prevent potential disasters. Sometimes, a single event does
not sound anomalous, whereas, a sequence of such events
can represent malicious behavior. Sending a few emails per
hour sounds normal for a trusted computer system. However,
sending thousands of emails per hour may demonstrate that
the system has been compromised by spammers.

A time-series consists of a sequence of events obtained over
repeated measurements of time [24]. An anomalous time-series
is defined as a time-series whose average deviation from the
other time-series is significant. In order to detect anomalous
time-series, we use the CUSUM technique.

CUSUM is a standard sequential analysis technique used
for online changepoint detection [23]. In the following, we
describe the procedure of calculating CUSUM for a sequence
of events (x0...xn). For each event, a probability density func-
tion (PDF) p(xi, θ) depending on a deterministic parameter
θ is defined. In the case of a changepoint at time tc, we
define θ = θ0 before tc and θ = θ1 after tc. CUSUM uses a
likelihood ratio test as its changepoint detection theory. Thus,
the instantaneous log − likelihood ratio at time i is
defined as follows:

s[i] = Lx[i, i] = ln

(
p(xi, θ1)

p(xi, θ0)

)
(2)

and CUSUM from 0 to k: S[k] =
∑k

i=0 s[i]. Accordingly, the
decision function Gx[k] and change time estimate î will be
defined as follows:

Gx[k] = S[k]− min
1≤i≤k

S[i− 1] (3)

î = arg min
1≤i≤k

S[i− 1] (4)

Equation (4) shows that the change time estimate is the
time following the current minimum of the cumulative sum.
The value of decision function Gx[k] is zero before the
changepoint and increasing afterwards. When the value of
Gx[k] exceeds a certain threshold, an anomalous event or event
sequence is detected.

Thus, our approach to detect anomalous event sequences
consists of the following phases:

1) Concentrate on the training dataset to find the thresh-
olds describing the normal behaviors of the system,
such as the decision interval and the shift decision.
We first calculate CUSUM of the training dataset. As
a result, we find the threshold interval of the CUSUM
approach for the training dataset.

2) Analyze the testing dataset to list potential anomalies.
For this purpose, first, the CUSUM of the testing
dataset is calculated. Next, all the events or event
sequences having CUSUM greater than the highest
threshold or less than the lowest threshold will be
reported as anomalous event sequences.

Figure 3. The experiments test-bed

IV. IMPLEMENTATION AND EVALUATION

In order to illustrate and validate our approach, we have
developed a reference implementation using a collection of
tools including network monitoring tools, ontology represen-
tation and reasoning tools, as well as machine learning and
time-series platforms.

We used this collection of tools to conduct two experiments
in a real network as our field test-bed. Figure 3 illustrates our
test-bed for the experiments. The normal users of this network
are mostly programmers and researchers. A Zabbix server is
used to monitor the behavior of the low-level indicators (CPU
usage, memory usage, CPU temperature, network traffic, etc.)
of the critical components, such as the network gateway and
the email server, during the experiments. The network gateway
(192.168.68.54) provides several services, such as network
firewall, routing, Virtual Private Network (VPN), Voice over
IP Private Branch Exchange (VoIP PBX), WIFI and NIDS.

In this section, we describe the reference implementation of
our malware detection framework and present two case studies
to demonstrate how it can detect various types of anomalous
events happening in a real computer network.

A. Reference Implementation
Our event monitoring solution relies on the open source

monitoring software Zabbix [25], and our event integration
tool relies on the agent-less universal Security Information
Management System (SIEM) Prelude [26].

As mentioned earlier, the Protégé ontology editor and
knowledge acquisition system [27] has been used to design
and implement our context ontology using the Ontology Web
Language Description Logic (OWL-DL). The context ontology
is instantiated with the normalized information coming from
Prelude. Furthermore, the Pellet plug-in [28] is used as a
reasoner for OWL-DL, and SQWRL to query the ontologies
for various purposes.

For feature selection and machine learning-based decision
making, we use scikit-learn [29], pyplot NumPy [30] and
SciPy [31] Python libraries. Finally, we use CUSUM (a library
in R) for time series-based decision making.

B. Case Study 1: Detecting TorrentLocker Ransomware
Our first case study is to detect TorrentLocker ransomware.

TorrentLocker is a ransomware that encrypts private data of
infected computer systems, and asks users to pay a ransom
(usually, in Bitcoins) to re-gain access to their data. Once Tor-
rentLocker infects a system, it encrypts the first two megabytes
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Figure 4. Low-level indicators during the ransomware detection experiment

of all the existing files found on that system. Encrypting
partially the files is sufficient to conceal the information and
is more efficient for the malware. Unfortunately, currently,
antiviruses and intrusion detection systems have difficulties to
detect such polymorphic malware.

In this case study, we simulate TorrentLocker behavior
wherein once the ransomware infects the network gateway
(Figure 3), it starts encrypting all the existing files. For this
purpose, in a similar way as TorrentLocker, we launch multiple
suspicious processes (multi-threaded Python scripts) accessing
a large number of structured files, encrypting them using the
AES-256 encryption algorithm in CBC mode, and overwriting
them with encrypted files. Our dataset includes 6000 JPEG
files (1MB each).

We conducted a one-week (work-days from 10:00 to
17:00) experiment in a real network. During the first five
days of the experiment, we captured the normal behavior of
the network gateway and prepared the training dataset. The
training dataset includes low-level hardware indicators (e.g.,
CPU usage, memory usage, disk usage, etc.) of the normal
events. The last two days was used to test our solution.
To simulate TorrentLocker ransomware behavior, we ran the
ransomware in several steps (Table III). In each step, we ran
the ransomware with different number of threads and files. To
discover which low-level indicators have been affected during
the experiment, we queried the context ontology (Rule 2 in
Appendix B) and visualized them using parallel coordinates.
Figure 4 illustrates the extracted features. Each feature has
been shown by a separate coordinate. Different colors have
been used to visualize normal and abnormal events. Horizontal
lines indicates how each event affects the extracted features. As
shown, the main features affected during the simulated attack
are: CPU Temperature, CPU Usage, CPU Load and Memory
Free. As Figure 5 illustrates, CPU Usage is the key feature
targeted by the attack.

In order to start analyzing this suspicious event using our
proposed approach, we applied PCA algorithm to the extracted
feature list to reduce data dimension. As Table IV shows,
features like CPU Temp, CPU Load, Memory Available and
CPU Usage have been mainly affected during this experiment.
In the rest of this section, we explain how the decision-making
unit of our malware detection framework employs the final
feature list to detect the anomalous activities.

Figure 5. CPU usage during the test-day

Figure 6. Time-series analysis of test data in Case Study 1

The decision-making unit has been developed based on two
main techniques: OC-SVM and time-series analysis. First, OC-
SVM was trained using the training dataset. Next, OC-SVM
was applied to the test dataset that contains the anomalous
event sequences. Table V shows the results. The amount of
False Positive (FP), True Positive (TP), False Negative (FN)
and True Negative (TN) are given. These statistics can be used
to compute the accuracy = (TP+TN)

(TP+TN+FN+FP ) . Except for
Step 6, all the anomalous steps were detected by OC-SVM.
Step 6 was not detected because its impact on the low-level
indicators is significantly low.

In the second phase, we used the time-series analysis
technique to detect anomalous event sequences. Thus, the time-
series analysis module was trained using event sequences to
learn normal thresholds, such as the decision interval and the
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TABLE III. RANSOMWARE EXPERIMENT STEPS

Steps 1 2 3 4 5 6 7 8 9 10
Day-time F-13:42 F-13:52 F-14:02 F-14:12 F-14:42 F-14:52 S-14:14 S-14:24 S-14:34 S-14:44

File # 200 200 400 600 100 50 2000 2000 4000 6000
Thread # 10 5 10 10 10 10 50 100 100 100

TABLE IV. THE RESULT OF APPLYING PCA TO THE EXTRACTED
FEATURES

Attribute PC 1 PC 2 PC 3
CPU Fan -0.258 0.652
CPU Volt 0.375 -0.342
CPU Temp -0.226 -0.207 -0.555
CPU Load -0.555 0.231 0.18
CPU Usage -0.538 0.21 0.197
Mem availability 0.158 0.651
Mem Free 0.307 0.449 0.28

TABLE V. RESULTS FOR CASE STUDY 1

Alarms OC-SVM Time-Series
FP 21 146
TP 46 9
FN 19 56
TN 1474 1349
Accuracy 0.97 0.87

shift. Next, the time-series analysis module was applied to the
test dataset. The results (Table V) show that using time-series
analysis, we were able to detect only step 10. The main reason
is that the number of events generated during the first 9 steps
is less than the considered time-series window size. Figure 6
illustrates how time-series analysis processes the data to detect
anomalous event sequences.

Consequently, overall, our proposed anomaly detection
approach succeeded to detect all the abnormal activities of this
experiment except the abnormal activity of Step 6 that very
lightly affected the system low-level indicators. This means,
our proposed approach was able to detect TorrentLocker ran-
somware by sacrificing only 100 files of the infected system.

C. Case Study 2: Spamming Bot
We evaluate here our malware detection approach using

a spamming bot scenario wherein a compromised machine
(192.168.68.45). inside the network sends a massive number of
spam emails that significantly affects incoming and outgoing
traffic rate within the network gateway. For this purpose, we
conducted a three day (work-days from 10:00 to 17:00) exper-
iment in our network. During the first two days, we captured
the normal behaviors of the network gateway and prepared the
training dataset, which includes low-level hardware indicators
(e.g., CPU, memory and disk usage, incoming and outgoing
traffic, etc.).

The last day was dedicated to prepare the testing dataset.
A bot machine started to send a massive number of spam
emails at time periods 14:41-15:11 (100 kb/s), 15:22-15:52
(400 kb/s), 16:03-16:33 (800 kb/s) and 16:43-17:13 (1.1 mb/s).
This produced a very large traffic rate on the network gateway
which affects a number of low-level indicators.

TABLE VI. RESULTS FOR CASE STUDY 2

Alarms OC-SVM Time-Series
FP 19 0
TP 35 186
FN 205 34
TN 1301 1340
Accuracy 0.87 0.98

In order to discover which low-level indicators have been
significantly affected during the experiment, we queried the
context ontology for a number of features and visualized them
using parallel coordinates (Figure 7). As we see, CPU Tem-
perature/Usage/Load and Free Memory are the main features
affected during this scenario. Figure 8 illustrates CPU Load
and CPU Temperature behaviors during the test-day. Next,
we applied the PCA algorithm to the extracted feature list
to reduce data dimension. In the following paragraphs, we
explain how the decision-making unit of our malware detection
framework is able to detect such abnormal activities.

We applied the two phases of the decision making process
(same as Case Study 1) to the training and test dataset.
Table VI shows the obtained results. Figure 9 illustrates
how time-series analysis processes the input data to detect
anomalous event sequences. The results indicate that both OC-
SVM and time-series analysis module ware able to detect the
anomalous events. Consequently, the proposed malware detec-
tion approach successfully detected the abnormal activities of
this experiment.

As the first phase of the decision making process, first,
OC-SVM was trained using the training dataset. The maximum
CPU load in the training dataset were 2.19. Next, it was applied
to the test dataset that contains four abnormal activities. Table
5 shows the results. The results indicate that OC-SVM detected
only one of the abnormal activities (the highest traffic) as its
CPU load was higher than maximum CPU load in the training
dataset.

In the second phase, first, we trained the time-series
analysis module using event sequences of training dataset to
learn normal thresholds. The time-series analysis module was
applied to the test dataset. The obtained results (Table VI)
show that using time-series analysis, we were able to detect
three of the anomalous abnormal activities. The first abnormal
activity was not detected as its impact on low-level indicators
was mostly similar to normal activities. Consequently, the
proposed anomaly detection approach successfully detected
three abnormal activities of this experiment.

V. CONCLUSIONS

In this paper, we discussed the shortcomings of malware
detection systems (e.g., inability to detect new types of attacks
and the often very high rate of false positives), and proposed a
new context-aware anomaly-based malware detection approach
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Figure 7. Low-level indicators behavior during the spamming bot experiment

Figure 8. CPU load and CPU temperature during the test-day

Figure 9. Time-series analysis of test data in Case Study 2

based on low level sensors as a last-line of defense to overcome
these shortcomings. If malicious attackers may be able to
deactivate firewall or IDS, they cannot alter the low level
sensors.

The main idea of our approach is to detect any anomaly
at the hardware layer by verifying legitimacy or maliciousness
of an event or an event sequence based on the impacts that
it enforces to the underlying monitoring low-level indicators
(e.g., CPU/memory usage, network traffic rate, etc.). For this
purpose, several monitoring tools are employed to collect and
analyze low-level indicators behavior in a real-time mode.
To do so in a manner that can be automated, but that yet
can be easily extended to new concepts (richer concepts
of context), we used ontologies and ontological engineering
tools to represent knowledge and information about contextual
information using the Ontology Web Language (OWL). We
proposed the ontology for contextual information accordingly,
considering the capability to import both explicit contextual
information from Configuration Management Systems (CMS)
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or implicit contextual information obtained from users and
system profiling techniques. In order to verify legitimacy or
maliciousness of ongoing events, we used semi-supervised
machine learning and time-series analysis techniques that
complement each other to identify both anomalous events and
sequences.

To illustrate our approach, we implemented our new ap-
proach on two distinct case studies (i.e., remote code execution
attack scenario and spamming bot scenario) designed based on
current challenging malware and attack scenarios, we success-
fully evaluated the proposed anomaly detection approach in a
real network environment. The results show that our proposed
approach can successfully detect abnormal behaviors at a very
low system level.

By 1) collecting more and more normal events from the
underlying context in order to appropriately train and adjust the
OC-SVM and time-series analysis module, and 2) adding more
low-level indicators of the underlying context to the context
ontology, both false positive and false negative rates will be
significantly reduced. Hence, the reliability of the proposed
malware detection approach will be improved. Consequently,
our approach can appropriately complement existing malware
detection approaches that mostly inspect events on the higher
layers of multilayered software or network architectures with-
out taking into account the execution layer or hardware layer.

As our future work, we intend to populate the context
ontology with more sophisticated context models, populated
with network fingerprinting and profiling tools. We also plan
to evaluate our proposed anomaly detection approach against
other complex attacks in order to reliably gauge its perfor-
mance and effectiveness in real-life situations.

ACKNOWLEDGMENT

We would like to thank Groupe Access which allows us to
develop our low-level sensors in their network. This research
was sponsored in part by Mitacs Canada and Groupe Access
Inc.

REFERENCES
[1] I. You and K. Yim, “Malware obfuscation techniques: A brief survey,”

in 2010 International conference on broadband, wireless computing,
communication and applications. IEEE, 2010, pp. 297–300.

[2] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, “Ensemble learning for low-level hardware-supported
malware detection,” in Research in Attacks, Intrusions, and Defenses.
Springer, 2015, pp. 3–25.

[3] A. Sadighian, J. M. Fernandez, A. Lemay, and S. T. Zargar, “Ontids:
A highly flexible context-aware and ontology-based alert correlation
framework,” in Foundations and Practice of Security. Springer, 2014,
pp. 161–177.

[4] A. Gomez-Perez, M. Fernández-López, and O. Corcho, Ontological
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APPENDIX

A. Malware Detection Pseudocode

Figure 10. The Proposed Malware Detection Pseudocode

B. Rule Examples
Rule 1 extracts all the events in the Web Server

(192.168.71.247) having CPU usage higher than 60%. The
outcome event list can be analyzed in order to discover any
potential cause of abnormal CPU usage.

Rule 1:

Event(?e1) ∧ Host(?h1) ∧ hasAddress(?h1,
"192.168.71.247") ∧

hasSource(?e1,?h1) ∧ hasCPUUsage(?e1,
?cpuusage) ∧

greaterThanOrEqual(?cpuusage, "60%") −→
sqwrl:select(?e1)

Rule 2 extracts values of a set of low-level hardware
indicators (i.e. Timestamp, CPU Usage, CPU Voltage, CPU
Temperature, CPU Fan, CPU Load, Network Input, Network
Output, Available Memory and Free Memory) in the Network
Gateway (192.168.68.54) to be analyzed in order to discover
major affected features.

Rule 2

Host(?h) ∧ hasAddress(?h, "192.168.68.54")
∧ hasTimeStamp(?h, ?timestamp) ∧
hasCPUUsage(?h, ?cpuusage) ∧

hasCPUVoltage(?h, ?cpuvoltage) ∧
hasCPUTemperature(?h, ?cputemperature) ∧
hasCPUFan(?h, ?cpufan) ∧ hasCPULoad(?h,

?cpuload) ∧ hasNetworkInput(?h,

?networkinput) ∧ hasNetworkOutput(?h,
?networkoutput) ∧ hasMemoryAvailable(?h,
?memoryavailable) ∧ hasMemoryFree(?h,

?memoryfree)
−→ sqwrl:select(?timestamp, ?cpuusage,
?cpuvoltage, ?cputemperature, ?cpufan,

?cpuload, ?networkinput, ?networkoutput,
?memoryavailable, ?memoryfree)

C. Ontology Implementation

Figure 11. Implementation of the context ontology using Protégé
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