
Towards Protected Firmware Verification in Low-power Devices

Yong-Hyuk Moon and Jeong-Nyeo Kim

Hyper-connected Communication Research Laboratory

Electronics and Telecommunication Research Institute (ETRI)

Daejeon, Republic of Korea

email: {yhmoon, jnkim}@etri.re.kr

Abstract—It is barely conceivable to ensure the security state of

a device without a trusted computing base. However, a

hardware security module is not provided in most low-power

devices. This paper presents a new design approach, which can

securely verify a current state of firmware at a booting time

utilizing untrusted components. We discuss a Memory

Protection Unit (MPU) enabled memory access control to

ensure that memory regions of a bootloader are not

accidentally compromised from unintended access. Further

extensions of the suggested approach are also addressed for

achieving the enhanced security confirmation.

Keywords-firmware verification; memory protection; device

security.

I. INTRODUCTION

Secure booting is a fundamental security technique of
computing devices and recently become a mandatory option
for protection of computing tasks and resources. However,
most Microcontroller Units (MCUs) of low-power devices
do not contain a hardware security module functioning as a
Trusted Computing Base (TCB). The commodity MCUs
may not provide sufficient chip-level protection. It is
difficult to validate if a device is correctly programmed as
intended. Further, devices are highly vulnerable to a simple
piece of exploits since run-time verification of code and data
is performed on the uncertain assumption that a verification
process may be trustable.

To tackle this limitation, we discuss a feasible design
approach, which can confirm a current security state of a
device with the existing untrusted components. Our primary
contributions can be summarized as two aspects: i) we first
suggest how firmware verification can be performed by a
custom bootloader; and ii) we then discuss an MPU-enabled
memory protection scheme, which guarantees the reliability
of firmware verification by controlling code and data access
to the bootloader. In addition, the proposed design approach
has been partially implemented and tested as a prototype
software modules on devices working with Advanced RISC
Machine (ARM) Cortex M3/M4 for checking its validation.

The remainder of this paper is organized as follows.
Section II briefly reviews the conventional approaches for
maintaining device security. We discuss a new design
approach for firmware verification and bootloader protection
in Section III. Section IV provides further extensions on the
proposed design. Finally, we conclude the paper in Section V.

II. RELATED WORK

Recent lines of research related to device security are

reviewed and their issues are discussed in this section.

A. Secure Booting

A built-in Read Only Memory (ROM) is a minimal
requirement for designing and implementing secure booting
at small-footprint devices. Once some ROMs of MCUs are
masked during manufacturing, further modifications are not
allowed for bootloader protection [1]. Alternatively, a
custom bootloader can be loaded from some blocks of flash
memory. However, it is difficult to prevent an accidental
erasure or modification of the bootloader and its related
configurations and secure materials from unintended access.
This directly implies that the genuine of firmware or
operating system working at a device cannot be guaranteed.

B. Remote Attestation

To revalidate a programmed firmware at a device,

software attestation schemes have been widely proposed [2].

One common assumption is that a remote verifier is trustable

and secure communication is established between a prover

and a verifier [3]. However, a prover’s trustworthiness

remains unclear and manipulated checksum functions may

not be complicated enough against a guessing attack.

Another limitation is that this approach tends to focus on

verifying the integrity of working codes only [4]. Moreover,

code verification is performed at a pre-defined interval of

time in a verifier-driven manner. Therefore, attackers may

have more chances to compromise devices.

C. Memory Protection

Sancus [5] is a memory access control scheme based on

program counter, so that a new hardware implementation is

required as an extension of MCUs. This approach also

depends on a specifically modified C compiler and a TCB.

Similarly, Smart [6] uses a special hardware-controlled

memory for a secure key storage and allows that ROM-

resident code only access to the keys. For execution-aware

memory protection, TrustLite [7] uses an MPU built in a

secure System on a Chip (SoC) and the on-chip memory is

required to store MPU configurations. One critical drawback

of this scheme is that authenticity and integrity of a secure

loader cannot be verified at a booting time.

177Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

III. PROTECTED FIRMWARE VERIFICATION

We suggest one feasible design approach to security
designers and system programmers for ensuring firmware
protection without any hardware modifications.

A. Memory Construction

Figure 1 shows an example of memory layout, which is
used in the proposed protected firmware verification. In this
approach, we assume that the cryptographic computations,
such as key derivation, firmware encryption, key wrapping,
and signature creation can be completed prior to loading a
custom bootloader and a firmware to a flash memory.

To construct such memory layout, two offline processes,
such as i) encrypting a firmware and ii) signing a firmware
are required as depicted in Figure 2. In the first phase, a
symmetric key generator creates a Firmware Encryption Key
(FEK) and we derive a Confidentiality Root Key (CRK)
from a given Production Unique Key (PUK). We then
encrypt an original firmware image with the FEK and using
the derived CRK, we also wrap the FEK based on the
Advanced Encryption Standard (AES) [8] for containing the
integrity information of FEK. In the latter, an authenticity
key generator creates a key pair and compute a firmware
signature based on the Elliptical Curve Digital Signature
Algorithm (ECDSA) [9]. Through the above steps, we have
the encrypted firmware, AES-wrapped FEK, ECDSA public
key, and firmware signature as security materials for
firmware protection. Those data are finally allocated to flash
memory regions.

B. Bootloader Protection

Immediately after power-on or reset, the booting code
performs an initial system configuration by referring to its
header. We assume that a Custom Bootloader (CBL) resides
on some memory regions of flash and its code and security
materials can be protected by setting lock bits at a flash
register. However, locking the booting related memory
blocks may not be a strong method of ensuring code and data
isolation of the CBL. To mitigate this problem, we adopt a
MPU-enabled memory access control to prevent
unauthorized access to those memory regions during booting.
Moreover, this approach can be applied in protecting code
and data memory even after the firmware (i.e., kernel)
loading. Due to this reason, the CBL then initializes a MPU
according to a predefined policy to protect itself and its
related data sections, which are colored in grey during
booting sequences and firmware verification as illustrated in
Figure 3.

When a Central Processing Unit (CPU) tries to execute a
code (i.e., instruction pointer) or access read/write a memory
region (e.g., stack), an MPU [10] can enforce these accesses
to code and data memory with pre-configured settings. For
example, the header, keys, signature, and flash registers can
be only accessed by instructions defined in the CBL with a
read permission. Moreover, addresses of currently fetched
instructions by a CPU core are also checked for validating
code regions. It is necessary to define what interrupt handlers
can perform hardware processing for booting code; an MPU
needs to know which addresses of Static Random Access

Memory (SRAM) are allocated to the CBL. These
considerations can be made as MPU rules.

.

Locked Blocks Locked Blocks

Figure 1. Memory construction for firmware verification

Confidentiality
Root Key (CRK)

Production
Unique Key (PUK)

1) Derivation

Firmware
Encryption Key (FEK)

Symmetric
Key Generator

5) Encryption

AES-wrapped FEK

F/W

F/W

2) Creation

3) Wrapping key

4) Wrapping

Authenticity
Key Generator

Signature
Generator

6) An ECDSA
Key Pair

7) Signing

8) A ECDSA Public Key

Figure 2. Generation of security materials

C. Firmware Verification

If it is confirmed that a CBL is not compromised and an
MPU is activated as intended, a CBL can verify a firmware’s
security state in terms of confidentiality, authenticity, and
integrity. The following phases describe how a CBL verifies
a firmware only using a One-Time Programmable (OTP)
memory under the monitoring of MPU as shown in Figure 3.

i) The CBL tries to obtain a CRK from an OTP memory.
An illegal access to a CRK in the OTP memory violates the
MPU rules, so that a memory fault can be detected by an
MPU. After that the CBL unwraps a FEK based on the AES
cryptographic algorithm with the CRK. If the FEK turns out
to be available, the CBL can decrypt the protected firmware.
The above process is effective to avert firmware cloning.

ii) The CBL calculates a digest value of firmware, which
can be compared to the original one in an OTP memory for
checking the integrity of decrypted firmware. Further, the
firmware digest and an ECDSA public key are utilized to
compute a new signature of the decrypted firmware
according to the ECDSA. If the generated signature is equal
to the contained one (see an ECDSA signature in Figure 1),
the CBL accepts that the decrypted firmware is authentic. As
a result, the CBL can copy the decrypted firmware to a
particular memory space for a working firmware and
delegates its control to the working firmware.

In the aforementioned phases, validation of CRK, FEK,
and ECDSA public key can be confirmed by a simple hash
comparison using an OTP memory. Moreover, the security
state of updated firmware can be verified in the same way as
above by adding a newly computed ECDSA signature of a
new version of firmware into a differencing data package
encoded by the VCDIFF standard [11].

178Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

Bootloader

MPUInitialize with a predefined policy

System
Configuration

System
BUS

Memory access control

CPU

Access to
Code/data

Fetched
instructions

Self verification

H(Bootloader) H(FEK)

H(ECDSA
Public Key)

CRK

OTP

H(CRK)

CRK acquisition

AES-wrapped
FEK

Flash memory regions

ECDSA
public key

ECDSA
signature

FEK Unwrapping

Acquisition of ECDSA public key

Firmware decryption

Flash memory regions

Working firmware

Check authenticity and integrity

Copy
firmware

Control take-over

SRAM

Bootloader stack

Monitored memory space

Figure 3. Firmware verification with MPU-enabled bootloader protection

IV. DESIGN EXTENSIONS

This section describes architectural extensions of the
proposed protected firmware verification in the following
three perspectives.

A. Kernel Level Support

Any privileged task can unexpectedly unlock the
memory-mapped registers including flash, MPU, etc. Despite
this weakness, some operating systems allow that every task
is executed with a privileged mode only. For this reason, it is
required that kernel separates user mode tasks from system
modules and interrupt service routines (ISR). This required
feature can be new to some operating systems but is effective
to prevent user mode tasks from accessing privileged
instructions. Besides, code and stack regions of each task,
interrupt handler, and kernel modules must be monitored by
an MPU and memory access violation must be handled as
well in an appropriate manner. This MPU-enabled memory
protection mechanism can guarantee that, a privileged/user
task and an interrupt handler can be restricted from removing
or modifying boot related memory regions, even after a
firmware is loaded.

B. Secure Memory Loader

Booting codes can be built and activated in a dedicated
mask ROM. In this case, we can replace the custom
bootloader on flash with special codes, which is called a
Secure Memory Loader (SML). One effective way to
improve the execution reliability of security-sensitive codes
for the protected firmware verification is to reduce the size of
the CBL by excluding booting functionalities. If the SML
can be precisely defined and limited, more secure and correct
invocation of SML and cryptographic computations are
within the realm of possibility. Removing or overwriting a
SML is beyond the scope of this paper. However, an external
verifier would be a better option rather than using an OTP
memory for coping with this vulnerable situation.

C. Trustworthy Remote Entity

Custom bootloader’s code and data can be attested by a
remote verifier to provide an extension option for increased
security confirmation if bootstrapping a device must be

completed through a trusted server. Besides, a CRK can be
received via an end-to-end encrypted network session
between a device and a server but this alternative approach
would cause more delays than using an OTP memory. After
the firmware are loaded, if a memory access violation occurs
against the MPU policy, a remote server can exclusively
handle such system fault by taking some countermeasures
such as remote wipe, network isolation, device recovery, and
firmware update.

V. CONCLUSIONS

In this paper, we have suggested a new design approach
for protected firmware verification with respect to memory
construction, its cryptographic operations, and memory
access control. Further extensions as discussed in Section IV
will be addressed with respect to implementation and
feasibility in our future work.

ACKNOWLEDGMENT

This work was supported by Institute for Information and
communications Technology Promotion (IITP) grant funded
by the Korea government (MSIT) [2015-0-00508,
Development of Operating System Security Core
Technology for the Smart Lightweight IoT Devices].

REFERENCES

[1] ATMEL, Application Note, “Atmel AT02333: Safe and
Secure Bootloader Implementation for SAM3/4,” June, 2013.

[2] Arvind Seshadri et al., “Pioneer: Verifying Code Integrity and
Enforcing Untampered Code Execution on Legacy Systems,”
SOSP’05, pp. 1-16, October 23-26, 2005, United Kingdom.

[3] Y.-H. Moon and Y.-S. Jeon, “A Functional Relationship
Based Attestation Scheme for Detecting Compromised Nodes
in Large IoT Networks,” CUTE’15, vol. 373, pp. 713-721,
December 2015.

[4] N. Asokan et al., “SEDA: Scalable Embedded Device
Attestation,” CCS’15, pp. 964-975, October 12–16, 2015.

[5] J. Noorman et al., “Sancus: Low-cost Trustworthy Extensible
Networked Devices with a Zero-software Trusted Computing
Base,” In USENIX Security Symposium. USENIX, pp. 479-
494, 2013.

[6] E. Karim, F. Aurélien, P. Daniele, and T. Gene, “SMART:
Secure and Minimal Architecture for (Establishing a
Dynamic) Root of Trust,“ NDSS’12, February 5-8, USA.

[7] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan,
“TrustLite: A Security Architecture for Tiny Embedded
Devices,” EuroSys’14, April 13-16, 2014.

[8] J. Schaad and R. Housley, “Advanced Encryption Standard
(AES) Key Wrap Algorithm,” Internet Engineering Task
Force (IETF), Network Working Group, RFC 3394,
September, 2002.

[9] National Institue of Standards and Technology (NIST), FIPS
PUB 186-4, Digital Signature Standard (DSS), July 2013.

[10] ATMEL, Application Note, “Atmel AT02346: Using the
MPU on Atmel Cortex-M3 / Cortex-M4 Based
Microcontrollers,” April, 2013.

[11] D. Korn, J. MacDonald, J. Mogul, and K. Vo, “The VCDIFF
Generic Differencing and Compression Data Format,”
Internet Engineering Task Force (IETF), Network Working
Group, RFC 3284, June 2002.

179Copyright (c) IARIA, 2017. ISBN: 978-1-61208-582-1

SECURWARE 2017 : The Eleventh International Conference on Emerging Security Information, Systems and Technologies

