
Strengthening Software Diversity Through Targeted
Diversification

Vipin Singh Sehrawat1 Yvo Desmedt1,2

VipinSingh.Sehrawat@utdallas.edu Yvo.Desmedt@utdallas.edu

1Department of Computer Science,
The University of Texas at Dallas, Richardson, USA

2Department of Computer Science,
University College London, London, UK

Abstract—Code reuse attacks use snippets of code (called gadgets)
from the target program. Software diversity aims to thwart code
reuse attacks by increasing the uncertainty regarding the target
program. The current practice is to quantify the security impact
of software diversity algorithms via the number/percentage of the
surviving gadgets. Recent attacks prove that only reducing the
number of surviving gadgets does not add any security against
code reuse attacks. We propose the use of the count/percentage of
usable and surviving gadgets as the metric to quantify the security
impact of software diversity algorithms. We present a novel
software diversity algorithm, named NOP4Gadgets, that leaves
0.012% and 14.35% surviving and usable gadgets, respectively.
NOP4Gadgets performs targeted diversification, concentrated
around the potential Return Oriented Programming (ROP) gad-
gets. The performance overhead of NOP4Gadgets is 1% for the
SPEC CPU2006 benchmark suite.

Keywords–Software diversity, Return Oriented Programming,
Code reuse attack, Targeted diversification.

I. INTRODUCTION

Code reuse attacks use snippets of code (called gadgets)
from the target program and libraries. They allow the attacker
to bypass the modern defence mechanisms like Data Execution
Prevention (DEP) and Address Space Layout Randomization
(ASLR). ROP [1] and Jump Oriented Programming (JOP) [2]
are two forms of code reuse attack. Since the introduction of
code reuse attack with return-to-libc [3], numerous defense
mechanisms and tools have been proposed for its detection
and/or prevention [4]–[12].

Code reuse attacks are facilitated by “Software Monocul-
ture”, that is the practice of running the same software on
a large number of machines. So, if an attack is successful
against the software then it can be used to compromise all
machines which run that software. Software monoculture and
the over-reliance on certain pieces of software, whether they
are operating systems or applications, have been cited [13],
[14] to increase the likelihood and severity of widespread
security compromises.

Cohen [15] proposed program evolution as a solution
to software monoculture. Program evolution implies that a
program should evolve into different but semantically similar
versions of itself. The primary goal of software diversity

techniques is to achieve efficient (with minimum overhead)
program evolution. Larsen et al. [16] provide a detailed survey
of the known software diversity techniques. The common
approach to quantify the security impact of software diversity
techniques is by counting the number of surviving gadgets,
which are the functionally similar gadgets present at the same
positions within the diversified copies of an executable. Recent
attack by Snow et al. [17] shows that only reducing the number
of surviving gadgets does not add any security against code
reuse attacks. In this paper, we propose a new metric to
quantify the security impact of software diversity techniques.
Our approach is to use the count/percentage of both, usable
(intended and unintended ROP gadgets that can be used in an
attack) and surviving gadgets to better quantify the security
impact. Section III explains our metric and its advantages in
detail.

In this paper, we present a novel software diversity al-
gorithm, called NOP4Gadgets, that performs targeted diver-
sification. Unlike existing no-op insertion implementations
[18]–[21] NOP4Gadgets decides the type(s) of no-op(s) and
the probability of no-op insertion based on the current and
previous machine instructions, written by the compiler. By
virtue of targeted diversification, NOP4Gadgets successfully
reduces the number of both surviving and usable gadgets. Note
that there are known techniques like G-Free [6] and Return
Less Kernels [7] that target usable gadgets, but those are not
software diversity techniques as they are not geared towards
producing large numbers of diverse versions of the given
executable. Existing no-op insertion based software diversity
techniques do not perform targeted diversification, instead they
all rely only on randomized no-op insertion. Also, none of
the known implementations provides any analysis about its
security impact in terms of the usable gadgets’ statistics.

NOP4Gadgets leaves less than 0.80% surviving gadgets,
and incurs a negligible overhead of 1% for the SPEC CPU2006
benchmark suite. Unlike existing no-op insertion implementa-
tions NOP4Gadgets focuses only on the potential ROP gadgets,
thus avoiding unnecessary work. Goktas et al. [22] showed that
gadgets with more than 30 instructions are also usable. So,
while measuring the security impact of NOP4Gadgets we fixed
the maximum gadget length to 200 bytes. We also developed
a stronger version of NOP4Gadgets, which on average leaves

185Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

0.012% surviving gadgets and 14.35% usable gadgets, and
incurs a negligible additional overhead of 0.651%. A drawback
of software diversity is that it offers multiple attack surfaces.
This provides the attacker with the option to attack the more
vulnerable version(s). NOP4Gadgets leaves similar number of
surviving and usable gadgets in each diverse version of an
executable. Hence, no version is ‘weaker’ than the other.

The rest of the paper is organized as follows. Section II
gives a background on code reuse attacks and no-op insertion.
In Section III, we present and discuss our metric for quan-
tifying the security impact of software diversity algorithms.
In Section IV, we present our software diversity algorithm,
named NOP4Gadgets, that performs targeted diversification,
concentrated around the potential ROP gadgets. Section V
gives the detailed security impact and performance overhead
analysis of NOP4Gadgets. Section VI and Section VII give the
future work and conclusion, respectively.

II. BACKGROUND

A. Code Reuse Attack

Code reuse attacks use snippets of code (called gadgets)
from the target executable/library. Return-to-libc [3] is the
early form of code reuse attack in which the attacker reuses
entire functions of libc. Code reuse attacks allow the attacker
to defeat DEP by avoiding direct code injection. ROP and
JOP are the two classes of code reuse attack. The gadgets
used in ROP and JOP end with return and jump instructions,
respectively.

Checkoway et al. [23] demonstrated the effectiveness of
code reuse attack by successfully compromising a Direct
Recording Electronic (DRE) voting machine by using ROP
gadgets. An ROP attack uses buffer overflow to overwrite the
stack with a series of return addresses that point to known ROP
gadgets. By carefully positioning data on the stack the attacker
can execute the gadgets in any desired order. A sequence of
ROP gadgets that are executed in a predetermined order is
called ROP chain. Table I shows an example ROP chain that
adds the contents of two memory addresses and stores the
result at a third memory address.

TABLE I. ROP CHAIN EXAMPLE

Address ROP Gadget
0x00401077 pop eax

pop ebx
ret

0x00400795 mov eax, [eax]
ret

0x00400ef6 mov ebx, [ebx]
ret

0x0040136c add eax, ebx
pop ecx
ret

0x004011ad mov [ecx], eax
ret

The general steps of an ROP attack are:

1) Analyze the code of the target executable and re-
lated libraries for aligned or unaligned instruction
sequences, that end with a return instruction.

2) Filter the discovered ROP gadgets according to the
desired attack.

3) Use buffer overflow to inject the starting addresses of
the gadgets, as well as the addresses of any required
data onto the stack.

4) Overwrite the return address with the address of the
first gadget of the ROP chain.

Once the return instruction of the first gadget gets executed,
the value stored in the instruction pointer, eip, is updated
to the address of the first gadget. After the initial gadget is
executed, its return instruction updates the value of eip to
the address of the second gadget in the chain. In this manner,
each gadget returns control to the next gadget in the chain.
Automated tools like “Return-Oriented toolkits” [24] can be
used to construct arbitrary attack codes using ROP gadgets.

JOP is more subtle than ROP, a jump instruction only
performs an unidirectional control flow transfer. To manipulate
the control flow the attacker uses a special gadget called the
dispatcher gadget. To initiate the attack, a buffer overflow is
used to jump to the dispatcher gadget. After executing, each
gadget returns the control back to the dispatcher gadget which
forces a jump to the next gadget in the JOP chain.

Code reuse gadgets can be divided into two broad classes,
intended and unintended. Intended gadgets are the ones that
consist of proper, aligned instructions, generated by the com-
piler. On the other hand, the instructions in unintended gadgets
start somewhere within the proper instructions. On x86, the
number of unintended gadgets always exceeds the number of
intended gadgets. But it is harder to use the unintended gadgets
because they may include infrequently used instructions and
complicated addressing modes. Therefore, only the unintended
gadgets of short lengths are considered usable.

B. No-op Insertion

No-ops are short code sequences that when executed have
no effect on the registers or the memory. The processor fetches
and executes these instructions without any change in the
program state. Compilers insert no-ops in the object code
to fulfill alignment constraints, and to add timing delays to
code fragments [25]. No-op insertion has also been used as a
software diversity technique with the aim to reduce the number
of surviving gadgets [18]–[21].

No-op insertion can also break existing ROP gadgets,
especially the unintended ones. The x86 instruction set is
very irregular and the lengths and formats of the instructions
depend on the first byte (opcode). Even a single byte inserted
inside the byte array of a gadget can significantly alter it. Our
algorithm, NOP4Gadgets, uses this property of no-op insertion
and targets all potential ROP gadgets. NOP4Gadgets performs
targeted diversification, the bulk of which is done within
the potential ROP gadgets. Therefore, even if the attacker
jumps into the binary at an arbitrary point and executes some
unaligned instructions, before reaching the return instruction
she encounters the no-ops inserted by NOP4Gadgets. Hence,
the execution is forced to realign with the actual code. Figure
1 shows how inserting a no-op instruction at the right position
can break an existing ROP gadget.

186Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

ROP gadget before no-op insertion:
03 3B | 89 E1 | 89 C3

ADD edi, [ebx] | MOV ecx, esp | MOV ebx, eax
Gadget removed after no-op insertion:

03 3B | 89 E1 | 90 | 89 C3
ADD edi, [ebx] | MOV ecx, esp | NOP | MOV ebx, eax

Figure 1. Removing ROP gadget by using no-op insertion

1) Why was the gadget removed: Inserting no-op before
the return instruction changes the length and decoding of the
instruction. For example, the no-op(s) inserted before a return
opcode ‘C3’ may cause it to be decoded as an operand of
the preceding instruction. This removes the gadget as now
the sequence of instructions does not end with the return
instruction. This gadget removing effect is more profound
with the x86 instruction set because of the higher number of
unintended gadgets.

III. OUR APPROACH TO QUANTIFY THE SECURITY IMPACT

All known software diversity techniques quantify their
security impact via the number/percentage of surviving gadgets
present in the diverse versions. The purpose of software
diversity is to produce diverse versions of the given program.
The diversity achieved by any technique can be measured by
recording the disparities in the diverse versions. Thus, counting
the number of surviving gadgets is the correct method of
quantifying the diversity. But when it comes to measuring
the security impact against specific class(es) of attack(s), it is
pivotal that we take into account the nature and various compo-
nents of the attack. Snow et al. [17] showed that concentrating
only on reducing the number of surviving gadgets does not
add any security against ROP attacks. Therefore, using only
the number of surviving gadgets is not the right method to
quantify the security impact against code reuse attacks.

We propose the count/percentage of usable and surviving
gadgets as the metric to quantify the security impact of
software diversity algorithms. The following list gives the
various advantages of our approach over the current approach.

1) Sophisticated attacks [17] do not make any assump-
tions about the surviving gadgets, but all attacks need
some minimum number of usable gadgets. Therefore,
the number of remaining usable gadgets must be
a prime criterion in measuring the security impact
against code reuse attacks.

2) We know that surviving gadgets are a good measure
of diversity, but the count of the usable gadgets gives
the exact number of gadgets available to the attacker.

IV. OUR ALGORITHM (NOP4GADGETS)

We present a novel software diversity algorithm, named
NOP4Gadgets, that performs targeted diversification, focused
on the potential ROP gadgets. Unlike existing no-op insertion
implementations [18]–[21] NOP4Gadgets decides the type
and number of no-op(s), along with the probability of no-
op insertion, based on the current and previous machine
instructions, written by the compiler. Any set of harmless
(which do not create new gadgets) no-op instructions can be

- I: MachineBasicBlock Iterator
- BB: MachineFunction Iterator
- MI: MachineInstr pointer to I
- NopTable: Table of candidate no-ops (Table II)
- bool pre1 ← false, pre2 ← false

1: procedure NOP4Gadgets
2: if (MI->getOpcode() == ret) then
3: call PrecedingInstNOP(BB, I)
4: call CandidateInstNOP(BB, I)
5: else
6: call RandomInstNOP(BB, I)
7: procedure PrecedingInstNOP (BB, I)
8: if (I > BB->begin()) then
9: I ← I-1

10: pre1 ← true
11: if (I > BB->begin()) then
12: I ← I-1
13: pre2 ← true
14: call PrecedingNOPs(pre1, pre2, BB, I)
15: procedure PrecedingNOPs(pre1, pre 2, BB, I)
16: if pre2 == true then
17: With probability p2 call insertRandom(BB, I)
18: I ← I+1
19: if pre1 == true then
20: With probability p1 call insertSpecific(BB, I)
21: I ← I+1
22: procedure CandidateInstNOP (BB, I)
23: with probability q1 call insertSpecific(BB, I) once

OR
24: with probability q2 call insertSpecific(BB, I) twice

OR
25: with probability q3 call insertSpecific(BB, I) thrice
26: I ← I+1
27: procedure RandomInstNOP (BB, I)
28: with probability p call insertRandom(BB, I)
29: procedure insertSpecific(BB, I)
30: insert a random 2 byte no-op instruction
31: procedure insertRandom(BB, I)
32: insert a random no-op instruction

Figure 2. NOP4Gadgets as an LLVM pass

used to implement NOP4Gadgets. But as we compare the
performance overhead of our algorithm with “Profile-guided
NOP insertion” (PNOP) [18], we used the same set of no-ops
as used in the PNOP implementation. Table II lists the no-op
instructions used in the implementation.

We implemented NOP4Gadgets as a MachineFunctionPass
of Low Level Virtual Machine (LLVM 3.5). Our backend
pass identifies the return instructions as they are being written
by the compiler and invokes the appropriate no-op insertion
function(s) accordingly. Figure 2 gives the pseudocode of
NOP4Gadgets. NOP4Gadgets examines the two instructions
that immediately precede the return instruction. The user can
customize this process to examine any number of preceding
instructions. This feature of NOP4Gadgets can be used to iden-
tify the type of the potential ROP gadget and then configure the

187Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

43
3.m

ilc

48
2.s

ph
inx

3

44
4.n

am
d

44
7.d

ea
lII

45
0.s

op
lex

45
3.p

ov
ray

47
0.l

bm

47
3.a

sta
r

46
4.h

26
4re

f

46
2.l

ibq
ua

ntu
m

45
8.s

jen
g

45
6.h

mmer

44
5.g

ob
mk

42
9.m

cf

40
3.g

cc

40
1.b

zip
2

40
0.p

erl
be

nc
h

48
3.x

ala
nc

bm
k

47
1.o

mne
tpp

Avg
Ove

rhe
ad

0

5

10

15

20

25

Pe
rc

en
ta

ge
Sl

ow
do

w
n

NOP4Gadgets PNOPopt StrongNOPs PNOPmax

Figure 3. SPEC CPU2006 runtime overhead comparison of NOP4Gadgets with Profile-Guided NOP insertion (PNOP)

PNOPopt: Minimum overhead version of PNOP | PNOPmax: Maximum diversity/security version of PNOP

behaviour accordingly. For example, if the user wants to target
only the LOAD (gadgets that loads value to register) type ROP
gadgets then he can configure the algorithm to perform no-op
insertion only within the LOAD type gadgets, and ignore the
others. NOP4Gadgets uses two functions, insertSpecific, which
inserts a random two byte no-op and insertRandom, which
inserts a no-op instruction, randomly selected from Table II.
These features provide flexibility and control over the kind
and level of security, and enables the user to optimize the
performance overhead.

TABLE II. CANDIDATE NO-OP INSTRUCTIONS

Instruction Opcode
mov esp, esp 89 E4
mov ebp, ebp 89 ED
lea esi, [esi] 8D 36
lea edi, [edi] 8D 3F
no-op 90

Our test results showed that for removing/breaking the
existing ROP gadgets, 2 byte long no-ops are more effective
than 1 byte no-ops. Thus, if the current instruction is a return
instruction ret, then NOP4Gadgets inserts random 2 byte no-
op(s) before it and the preceding instruction. The number of
2 byte no-ops inserted before ret can be one, two or three,
and is governed by the probabilities q1, q2 and q3, respectively.
The instruction (pre) preceding ret gets one 2 byte no-op
inserted before it with probability p1. A randomly selected
no-op is inserted with probability p2 before the instruction
that precedes pre. A randomly chosen no-op is inserted
with probability p before the rest of the instructions. The
(security impact)/(performance overhead) ratio can be altered
by adjusting the various probabilities. For NOP4Gadgets, the
probabilities governing no-op insertion are set as: q1 = .85,
q2 = .05, q3 = 0, p1 = .05, p2 = .05, p = .04.

TABLE III. PERCENTAGE OF SURVIVING GADGETS IN THE SPEC
CPU2006 BINARIES BUILT BY NOP4Gadgets COMPILER

Benchmark Original binary Surviving %
483.xalancbmk 522681 0.31%

401.bzip2 1425 2.38%
403.gcc 90056 0.58%
429.mcf 1421 4.22%
433.milc 11729 0.86%
444.namd 10487 0.68%

445.gobmk 38927 0.30%
447.dealII 37432 0.89%
450.soplex 28612 0.37%
473.astar 4340 3.68%

482.sphinx3 6509 1.46%
464.h264ref 33763 0.25%

470.lbm 816 6.7%
400.perlbench 39699 0.27%
471.omnetpp 27918 0.49%
456.hmmer 17881 4.25%
458.sjeng 28612 1.29%

462.libquantum 3096 2.90%
453.povray 57208 1.08%

Average - 0.78%

V. EVALUATION OF NOP4GADGETS

We also developed a stronger version of NOP4Gadgets,
named StrongNOPs. The various no-op insertion probabilities
for StrongNOPs are: p = 0.05 , p1 = 0.5, q1 = 0.10, q2 =
0.55, q3 = 0.35. This section gives a detailed analysis of the
performance overhead and security impact of NOP4Gadgets
and StrongNOPs.

188Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

TABLE V. USABLE AND SURVIVING GADGETS PRESENT IN THE BINARIES BUILT BY StrongNOPs COMPILER

Program Usable Gadgets Surviving Gadgets Size Increase

Advancemame-1.2 12.96% 0.011% 7.8%

Inkscape-0.48.5 34.68% 0% 2.1%

Scummvm-1.7.0 7.915% 0.033% 5.1%

Ghostscript-9.09 27.56% 0% 6.21%

Wesnoth-1.12.1 17.49% 0% 3.2%

Average Usable Gadgets Average Surviving Gadgets Average Size Increase

14.35% 0.012% 4.81%

A. Performance Evaluation

We used SPEC CPU2006 benchmark suite to compute the
performance overhead of NOP4Gadgets and StrongNOPs. The
average performance overhead of NOP4Gadgets is 1.069%,
which is similar to the performance overhead of the minimum
overhead version of PNOP [18]. Average performance over-
head of StrongNOPs is 1.72%, which much smaller than the
9.5% performance overhead of the maximum diversity/security
version of PNOP. Figure 3 shows a comparison of PNOPopt
(minimum overhead version of PNOP), NOP4Gadgets, PNOP-
max (maximum security/diversity version of PNOP) and
StrongNOPs in terms of the percentage slowdown for the
SPEC CPU2006 benchmarks.

B. Security impact

We quantified the security impact of NOP4Gadgets and
StrongNOPs by using our new metric, that is by using the
count/percentage of both usable and surviving gadgets. Goktas
et al. [22] showed that ROP gadgets with more than 30
instructions are also usable. So, we set the maximum gadget
length to 200 bytes. To count the number of surviving gadgets
we wrote a program called Discoverer, that uses ROPgadget
[26] to discover ROP gadgets within the .text section of
the given executable. It then removes all the no-op instructions
from the discovered gadgets and searches for identical gadgets
present at the same location within different binaries.

We built 20 copies of the SPEC CPU2006 benchmarks
using the NOP4Gadgets compiler. For each benchmark we
took the two copies that share the maximum number of
surviving gadgets between them. The average percentage of
surviving gadgets found in the SPEC CPU2006 binaries was
0.78%. Table III shows the percentage surviving gadgets for
each benchmark.

We built five popular open source programs using our
StrongNOPs compiler. Table V gives the statistics about the
surviving and usable gadgets found in the diversified ver-
sions of the programs. Note that in three out of the five
programs StrongNOPs left no surviving gadgets. On average,
StrongNOPs left only 0.012% surviving gadgets and removed
over 85% of the usable ROP gadgets.

VI. FUTURE WORK

Current software diversity mechanisms primarily focus
only on reducing the number of surviving gadgets. With
NOP4Gadgets, we presented a novel approach of combining
software diversity with gadget removal. Concentrating on
removing/breaking the gadgets naturally reduces the number
of surviving gadgets. Table VI lists the five broad categories
of ROP gadgets. We plan to extend NOP4Gadgets or devise a
similar software diversity technique that removes all gadgets
of some specific type(s).

TABLE VI. TYPES OF GADGETS

Gadget type Semantic Example
ADJUST adjust reg./mem. add eax, 2
CALL call a function call [esi]
LOAD load value to reg. mov eax, [ebx]
STORE store to mem. mov [eax], ebx
SYSCALL systemcall sysenter

VII. CONCLUSION

The current approach to quantify the security impact
of software diversity algorithms relies only on the num-
ber/percentage of the surviving gadgets. Recent attack by
Snow et al. [17] shows that only reducing the number of
surviving gadgets does not add any security against code
reuse attacks. Hence, the current approach of measuring the
security impact is flawed. In this paper, we proposed the
use of the count/percentage of usable and surviving gadgets
as the metric to quantify the security impact of software
diversity algorithms. We argued that the proposed metric has
several advantages over the current practice. We also presented
a novel software diversity algorithm, named NOP4Gadgets,
that performs targeted diversification, concentrated around the
potential ROP gadgets.

NOP4Gadgets performs the bulk of the diversification
within the potential ROP gadgets. It allows the user to target
specific class(es) of ROP gadgets, and ignore the others.
NOP4Gadgets uses different no-op insertion functions, that
are configured to use specific type(s) of no-op instructions.
NOP4Gadgets leaves less than 0.80% surviving gadgets, and
incurs 1% performance overhead for the SPEC CPU2006
benchmark suite. The stronger version of NOP4Gadgets,

189Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

named StrongNOPs, breaks more than 85% of the usable
ROP gadgets, and incurs a negligible additional performance
overhead of 0.651%. On average, StrongNOPs leaves only
0.012% surviving gadgets and 14.35% usable gadgets. We also
presented a detailed comparison of NOP4Gadgets with the
existing no-op insertion implementations [18]–[21]. Software
diversity algorithms that follow our approach of focusing on
both usable and surviving gadgets can prove to be a powerful
tool against code reuse attacks, especially when combined with
other defense mechanisms like G-Free [6] and Control Flow
Integrity [8].

REFERENCES

[1] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security, 2007, pp.
552–561.

[2] T. Bletsch, “Code-Reuse Attacks: New Frontiers and Defenses,” Ph.D.
dissertation, North Carolina State University, 2011.

[3] S. Designer, “Return-to-libc attack,” Bugtraq, 1997.

[4] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, “DROP: Detect-
ing Return-Oriented Programming Malicious Code,” in 5th International
Conference on Information Systems Security, 2009, pp. 163–177.

[5] L. Davi, A. R. Sadeghi, and M. Winandy, “Dynamic integrity measure-
ment and attestation: towards defense against return-oriented program-
ming attacks,” in ACM workshop on Scalable trusted computing, 2009,
pp. 49–54.

[6] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-Free:
Defeating Return-Oriented Programming through Gadget-less Binaries,”
in ACSAC, 2010, pp. 49–58.

[7] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating Return-
Oriented Rootkits with Return-less Kernels,” in EuroSys, 2010, pp. 195–
208.

[8] M. Abadi, M. Budiu, U. Erilingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” in ACM Trans-
actions on Information and System Security (TISSEC), Volume 13,
Issue 1, October 2009.

[9] M. Prasad and T. Chiueh, “A Binary Rewriting Defense against Stack-
based Buffer Overflow Attacks,” in USENIX Annual Technical Confer-
ence, 2003, pp. 211–224.

[10] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical Control Flow Integrity and Random-
ization for Binary Executables,” in Proceedings of IEEE Symposium
on Security and Privacy, 2013, pp. 559–573.

[11] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, Huijie, and R. Deng, “ROPecker:
A Generic and Practical Approach For Defending Against ROP Attack,”
in 21st Annual Network and Distributed System Security Symposium,
2014.

[12] I. Fratric. (2012, September) ROPGuard: Runtime Prevention of Return-
Oriented Programming Attacks. [retrieved: May, 2016]. [Online].
Available: http://www.ieee.hr/ download/repository/Ivan Fratric.pdf

[13] D. E. Geer, “Monopoly considered harmful,” in IEEE Security &
Privacy, 2003, pp. 14–17.

[14] M. Stamp, “Risks of monoculture,” Communications of the ACM -
Homeland security, 2004, vol. 47, p. 120.

[15] F. Cohen, “Operating system protection through program evolution,”
Computers and Security, 1993, vol. 12, pp. 565–584.

[16] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in SP ’14 Proceedings of the 2014 IEEE Symposium
on Security and Privacy, 2014, pp. 276–291.

[17] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A. R. Sadeghi, “Just-In-Time Code Reuse: On the Effectiveness of Fine-
Grained Address Space Layout Randomization,” IEEE Symposium on
Security and Privacy, pp. 574–588, 2013.

[18] A. Homescue, S. Neisius, P. Larsen, S. Brunthaler, and M. Franz,
“Profile-guided Automated Software Diversity,” in Proceedings of the
IEEE/ACM International Symposium on Code Generation and Opti-
mization, 2013, pp. 1–11.

[19] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner,
A. Gal, S. Brunthaler, C. Wimmer, and M. Franz, Moving Target
Defense. Springer New York, 2011, vol. 54, ch. Compiler-Generated
Software Diversity, pp. 77–98.

[20] T. Jackson, “On the Design, Implications, and Effects of Implementing
Software Diversity for Security,” Ph.D. dissertation, University of
California Irvine, 2012.

[21] T. Jackson, A. Homescu, S. Crane, P. Larsen, S. Brunthaler, and
M. Franz, Moving Target Defense II. Springer New York, 2013,
vol. 100, ch. Diversifying the Software Stack Using Randomized NOP
Insertion, pp. 151–173.

[22] E. Goktas, E. Athanasopoulos, M. Polychronakis, H. Bos, and G. Por-
tokalidis, “Size does matter: Why using gadget-chain length to prevent
code-reuse attacks is hard,” in USENIX, 2014.

[23] S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten,
and H. Shacham, “Can DREs provide long-lasting security? the case
of return-oriented programming and the AVC advantage,” in Electronic
voting technology/workshop on trustworthy elections, USENIX, 2009.

[24] R. Hundt, E. Raman, M. Thuresson, and N. V. Mao, “An extensible
micro-architectural optimizer,” in Proceedings of the 9th IEEE/ACM
International Symposium on Code Generation and Optimization, CGO,
2011, pp. 1–10.

[25] L. Tang, J. Mars, and M. L. Soffa, “Compiling for niceness:mitigating
contention for QoS in warehouse scale computers,” in Proceedings of
the 10th IEEE/ACM International Symposium on Code Generation and
Optimization, 2012, pp. 1–12.

[26] J. Salwan. (2012) ROPgadget - Gadgets finder and auto-
roper. [retrieved: May, 2016]. [Online]. Available: http://shell-
storm.org/project/ROPgadget/

APPENDIX A
LLVM BACKEND PASS IMPLEMENTATION

We implemented our algorithm as an LLVM MachineFunc-
tionPass. MachineFunctionPass is part of the LLVM code gen-
erator that executes on the machine dependent representation
of each LLVM function in the program. The next step was to
write two no-op insertion functions and add them to LLVM.
In the beginning of the MachinFunctionPass we inspect the
current machine instruction and depending on whether it is a
return instruction or not, we call different function(s). In order
to correctly identify the machine instructions the target archi-
tecture(s) must be fixed. As NOP4Gadgets is most effective
with x86 instruction set, we set x86 as the architecture.

Once it is verified that the current machine instruction is
a return instruction, we proceed to the next step that is to
move back by one or two instructions, if possible. This is
done by comparing the current value of “MachineBasicBlock
iterator” with the “MachineFunction iterator” and if possible
the MachineFunctionPass moves one or two steps back to
the previous instruction(s). Finally, we call one or both no-
op insertion functions (insertSpecific and insertRandom).

A. X86::Return Instructions

Below is the list of LLVM’s x86 return instructions, used
in the implementation of NOP4Gadgets.
RETQ, IRET64, IRET32, IRET16, LRETQ, RETW,
RETL, RETIL, RETIQ, RETIW, EH_RETURN,
EH_RETURN64, LRETIL, LRETIQ, LRETIW,
LRETL, LRETQ, LRETW

190Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

