
Object Oriented Role-Based Access Control

Petr Stipek, Lukas Kralik, Roman Senkerik

Faculty of Applied Informatics
Tomas Bata University in Zlin

Zlin, Czech Republic
Email: stipek@fai.utb.cz, kralik@fai.utb.cz, senkerik@fai.utb.cz

Abstract — This paper focuses on issues related to Security
Design and Access Control in Object-Oriented Software
projects by pointing out some common implementation
problem sources, and their solutions. Further, the study
presents an innovative way of extending the Role-Based Access
Control (RBAC) Model for large and dynamically-growing
projects. Specifically, the emphasis is placed on Scalability
Allocation Rights to users, based on their roles. The proposed
approach seeks to minimize the bindings of Application Logic
from the Functional Logic Allocation and the Verification of
Individual Rights.

Keywords - software security; object-oriented programming;
weakly-typed languages; ACL;RBAC; CRUD; ORM/ODM

I. INTRODUCTION

Ensuring security against unauthorized access is an
integral part of nearly all systems. This is evident not only in
security demands on simple claims relating to displaying
selected parts of applications to user groups, but also in the
very sophisticated - and interdependent relationship between
the rights of users. Typically, the gradual expansion of
systems allows modifications, which are consistent with the
software evolution processes. Each phase of the evolution
presents advantages - as well as difficulties that might
potentially force developers to violate or abandon proven
concepts regarding the fulfillment of the requirements of a
final product. A common challenge that devlopers face is
dealing with an inconsistent design that leads to a complex
development and maintainance of the system. For example,
while the maximum utilization of Integrated Development
Environment (IDE) tools can perform code-refactoring, this
is only effective in cases when careful documentation, via
annotations, is adopted. This way, one avoids writing control
symbols via primitive data types - which inherently may
cause needless financial expenses.

There are many ways to design an Access Control List
(ACL) [3]. Different combinations also exist for approaches
- including RBAC [1][8]; Attribute Based Access Control
(ABAC)[9]; or approaches based on the Create, Read,
Update and Delete (CRUD) Operations [2][5][6]. Basically,
it is either a user - or a group of users with allocated roles
who can be assigned, or have permission to, or be withdrawn
access to a part of a system.

In Section 1, the basic principles regarding what should
be followed or held in the design of ACL are described. This
is followed by a comparison between generally-used design

patterns and mechanisms. Section 3, presents the main
disadvantages of ACLs. In Section 4, an Object-Oriented
Approach, suitable for appliactions using Object Relational
Mapper/Object-Document Mapping, (ORM/ODM), is also
presented. Finally - in Section 5, the Performance Impact of
our proposal is discussed.

II. BASIC PRINCIPLES

This section presents some basic principles underlying
the preparation of applications´ security structures. This
approach helps to consider a few choices and takes into
consideration our own requirements to select the best
approach.

A basic presumption in effective design approaches is
that all dependencies of the Application Logic from the
users, user-accounts, and their roles, are removed. For
instance, in an Invoice Price Calculation Model, the user or
their role, is generally considered irrelevant. Rather, what is
more important, is the knowledge of what operations can or
cannot run. This means that whether or not the current user
fulfills the conditions necessary for authorization, an
authorization service that provides and manages the current
user account, according to law and regulations has to be
provided. At the moment, when a project reaches a state
where it is necessary to set a security policy, quite a number
of developers tend to advance the implementation of security
policy in the code on the basis of customer specifications
using an authentication service.

While there is nothing wrong with this process in
principle, a common problem often surfaces in the later
stages of development. This challenge, in particular, is
related to creating information about user accounts - or their
roles, in the code and in places where it would be needed to
access user-roles instead of asking the authentication
services; whether the specified permissions are assigned or
not (See comparison in Figure 1).

Running both approaches will lead to the same results
with negligible performance impact. Fixing roles in the
model however, results in a scattered security policy
throughout the system instead of being managed centrally
[9][10]. In case of any change to the security policy, the
entire code must be revised and all the potential occurrences
must have to be checked. Such a system is more inclined to
errors due to improper authentication – and, it is far more
difficult to maintain the consistency of the overall security
policy documentation of system roles.

76Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

Figure 1. Authentication during the Creating of a new Record in the Modeling, Verification of Rights (viz left); and Verification by Role (viz right)

A. Permission collision avoidance

A modern trend in applications development has to do
with the design of modular applications with completely
separate and independent components. This is particularly
evident in Open Source projects, where hundreds of different
developers create modules for a specific framework. This
trend increases the potential risk of permission collision
when composing the application. Since prefix titles are often
used in prevention, there is always a real risk of missing
these out in the assignment of prefixes. It is prudent
therefore, to anticipate permission collisions during
compiling or testing - when the application can fail, rather

than in the production version - when full operation with
client data is used.

This is consistent with the reasons advanced above for
the introduction of the term “permissions resources”, which
essentially divides privileges into smaller units – thus
minimizing the risk of collisions. For weakly-typed
languages, these resources are defined as a text-string.
However, a much better way is to use objects like structures
in strongly-typed languages, so that the textual expression
resource name can be replaced for the entire class name;
serving as a source of authority (See comparison in Figure
2). In case of building a program that would include two
classes of the same name, an exception occurs when one
compiles it - and the program will not even start.

Figure 2. Avoiding Resource Permission Collisions; Text Form (viz left); Object Form (viz right)

B. Application of CRUD operations

With the entry of ORM [4] tools for mapping database
data on the object-structure in applications, another layer
nestled between the model and the database containing the
repositories and services is formed. This is essentially
designed to work with the entities. At the same time, there
are attempts to unify the implementation of the authorization
process with the interlayer - consistent with basic database
operations, e.g creating, reading, editing and deleting
records. For each entity, four permissions were created using
for which the developers implemented the security function.

This allowed the creation of generic class managing
entities (Figure 3), thereby significantly reducing the spread
of homogeneous source codes, and speeding up its
development in a system with a large number of entities.

In most cases, these operations are quite enough. For
example - in the Web-content management system context,
in this way we manage the application development
lifecycle. But which of the permissions does one require, for
example, to publish a page by a Senior Editor?

Is it an operation to create or edit? In this case, we need
help by creating additional permissions.

77Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

Figure 3. Demonstration of a Generic Service for Managing Weakly-typed Language Entities

C. Misprint minimisation

Man is a fallible creature, and it is very easy to make a
misprint in writing code. If a programmer makes a mistake in
the source code, the compiler reports an error. In most cases,
the IDE in which the application is being developed, posts
the error directly. However, if we connect the information
controlling the program logic to text strings, then there is no
better tool for performing such compilations. When this
occurs, not even a robust IDE is able to estimate whether it is
just text for later “bubbling” to the user; or to control
characters. Object design is a popular approach in many
systems - but not all developers can fully understand this
approach and utilize all of the benefits that it brings.
Occurrences of control character sequences are more
advantageous to bind in constants tied to objects which have
to be applied to them or semantically related. The added
value is used for accuracy verification by the compiler so as
to detect a misprint; while simultaneously, the IDE will offer
its lists by enabling one to interactively cooperate with
constants. Some developers however, reject this approach
because it creates redundant writing – i.e. the extra burden to
rethink how and where to place constants, or have no
experience with good working practices (especially
developers working with weakly-typed languages).

III. THE DISADVANTAGES AND LIMITATIONS OF ACL

The above-mentioned procedures are suitable for most
applications in practice. However, owing to their functional
principles, there are restrictive limits that are particularly felt
in large and modular systems.

A. Violation of the Single Responsibility Principle

Too often, the open concept allows developers to design
a system carelessly - instead of using best-practice
principles, which would ensure the better sustainability of
the system throughout its life-cycle. Most developers make

errors to a varying degree when writing code and begin to
merge the application´s object-structure, thereby limiting
readability, scalability and testability. This increases the risk
of error. An example can be data entities, to which constants
are added and used for access control, instead of defining
objects exclusively for this purpose and thus minimizing
binding in the system.

B. Gross Allocating Rights

Access control does not necessarily influence the
accessibility of specific records. If one needs to grant user
access just to certain articles in the Content Management
System, one can either set the rights for all - or for none.
This can be done with definitions depending on the user (for
example, a property right, the position of the head against the
author, etc.). But if one wants to add access to an item that
does not exist in the system´s logical connection to the user
or their role, then this cannot be achieved. Further, the
introduction of auxiliary information for approach
management violates the Single Responsibility Principle
(SRP).

C. Keeping the documentation and permissions
management

It may seem that, in the documentation process, nothing
is inherently damaged. A separate document is created that
describes the rights of individual roles in the system, and
appropriate comments are created in the source code.
Unfortunately, experiences from practice demonstrate that
these mechanisms do not always work. Often - under
pressure, there are sudden changes, communication noises,
and all these changes are either completely undocumented or
not commented on in the system. Overall, the principle of
keeping two documents is difficult to maintain. Rather, it is
more suitable to structure an application so that both could
be managed uniformly and centrally; though it will rely on
information from source-codes. When designing a unified

78Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

standard that contains all the key information; the creation of
automatically-generated documentation that is updated after
every intervention in the system is not considered to be a big
problem. This may simultaneously build more milestones for
the development of safety measures.

The whole situation of the doubling of the documentation
may still be complicated by the need for the creation of
administration rights for management authority, where there
is also a need to rewrite information about the function and
impact of individual rights.

IV. THE OBJECT-ORIENTED DESIGN OF ACCESS CONTROL

In the previous section, it was shown how to use an
object-oriented approach to improve the development of an
ACL. So it is valuable considering how to compose a
concept that would create some sort of framework to manage
permissions. Additionally, framework features also include
definitions of the scope of the proceedings - separated from
the application logic, thus allowing scalability and self-
documentation.

First, it is necessary to clarify several major changes and
their impact on the structure of the safety logic.

A. Resource Permission Abstraction

The classical ACL model is restrictive due to the
subtleties of how to assign permissions and owing to the fact
that we have verified them against the object classes [3]. If
we used a system where each entity uses a unique identifier
(see Figure 4) within its own class, thereby defining their
common interface to be able to obtain this key, and the
transfer of specific instances of objects, one is able to obtain
the name of the source that is its unique identifier. This then
serves for the assignment of authorization services to obtain
information on this source and to return a message saying if
permission is set or not.

It must be noted that even standard entities either have a
single identifier, or obtain one to perform a set of operations
with relational-data or data-dependent objects. Solutions can
be found in resolvers registrations for a particular object-type
specified class or common interface. When creating a
resource name, a resolver is necessary; and can be obtained
from the specified object.

It is also necessary to convert the source-object into text
or numbers so that the authentication service will be able to
manage these objects in the database and to search for them.
We could also store entire objects - but this approach is only
suitable for document-oriented databases like MongoDB.

Figure 4. Replacement of a Permission Resource by an Entity

B. Rights specification

The term 'resource permissions' represents a set of rules,
settings and related information on how to handle data (see
Figure 5) was introduced above. Principally, via this step, an
attempt has been made to separate the security information
objects outside the application logic and to form the basis for
the documentation of the individual permissions. This source
tells us - by entity or class of data shields, how to obtain
information about a particular record (instance), under which
the resource and its formal description fall hierarchically. It
also allows one to create a collection of permissions that can
be allocated over the object and verify whether they are
associated with roles in the system. Another important
benefit of this proposal is its ability to structurally rank these
in hierarchies – not only as individual resources, but also
permissions. Also, the entire system can be divided into
logical units and an overall map of all privileges can be
created. Ultimately, the outcome may generate
documentation or create a tool that allows for the allocation
and revocation of privileges because all of the information is
managed in one place.

Figure 5. Sample Resource Permissions for One Entity

79Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

C. Expansion Permission Problems

Extending control permissions to a specific instance and
data brings with it a big problem. This is termed the “default
permissions” before first starting the system. The more
options one has - the more “permissions” one needs to
initialize. To simplify this process one has to rely on the
advantage of the inheritance of both user roles and individual
permissions. With a suitable algorithm, one can set the
authorization service so that it is cumulatively associated
with the higher-level roles and the permission subordinate
roles [7].

This procedure is sufficient to define permissions on the
lowest layers of the tree structure (Figure 6) and roles in the
upper layers. This only defines additional permissions, which
arise just for that role, and 'bubble up' to the other parent
layer.

Figure 6. Cumulative Assignment of Permissions to Parent-roles
(Green: Defined manually; Orange: inherited)

D. The Multiple Assignment of Rights to Overall Resources
of the Same Type

By restricting the permissions to the distinction between
instances, one loses the ability to mass configure the rights of
target group resources. This limitation can be compensated
for by the “inheritance” of individual permissions within one
source - or privileges superior to the source. Logically, there
is a possibility to divide these into Local Law (i.e. applied
individually over instances); and Global Law (i.e. applicable
to all instances) groups. Altering the setting of inheritance
rights from local to global eliminates this restriction. For
authentication services, it is necessary to know how to work
with these additions. Inheritance can also be used to restrict
the necessary definition permissions over their resources. For
example, by assigning rights on the creation of article
categories, one wants to enable someone to create individual
articles within this category.

In contrast to roles, rights calculation must be performed
in the opposite direction from the highest layer to the lowest.
At the same time, it is not enough to work on only the
grantgranting and refusing access - but a third, neutral state,
must be introduced with the right to take over from the
parent permissions.

E. Creating Resources on the Run

In order to fulfill the functionality of the above points,
the implementation mechanism to manage these resources is
still missing.

This requires a solution which offers a manual
implementation approach to all services that manage entities
and to data for which access needs to be managed. It would
be necessary to implement at least a ‘create a resource’ entity
after creating and deleting a source before deleting entities.
One can include call changes and record any events; but it is
not necessary to ensure that this concept will work.

Manual implementation can be dispensed with by using
the abilities of some ORM/ODM implementations – i.e. so-
called “listener” or “subscriber” services that invoke special
application extensions on selected groups of objects that are
triggered when changes in state entities occur. Their purpose
is simple and built on objects´ additional events, without
affecting the integrity of their content and functionality.

F. Ownership of Resources and Events

In some cases, we need to decide the access to a resource
based on information regarding its ownership. It is very
questionable whether the owner information should be part
of the functional logic - or a component of the management
approach, since this data is often only used as functional
logic to filter the records or to access relational records.
Their movement outside the influence entity would
complicate querying databases. On the other hand, it would
turn into a violation of the Single Responsibility Principle, so
that the information about the owner should be stated at the
source, not the entity. Both cases, however, can be resolved
relatively quickly so that the resulting behavior will be
similar. If we want to note the information about a property
with entities, then we have to note the method by which the
owner is obtained. In higher programming languages, we use
the Lambda expressions or Closures for this purpose to
advantage. Setting the property will be part of the functional
logic.

For property management inside these resources
purposes, we can automate it by just slipping the logged user
object to the authorization service through which it obtains
this identity and assigns it a new source. To simplify folding
database queries, one needs to create an object that returns a
partial database command connecting the required tables,
which will simply be included into the desired filter
command.

In the same way as a property, we can also keep
information about the latest update, or delete the record.

V. OBJECT ACCESS PERFORMANCE IMPACTS

The crucial question however, is how this approach will
have an impact on the application performance.

One can notice the significant impact when the call first
acts on database queries. The percentage impact is very
difficult to calculate and depends on the complexity and size
of the entire model.

Negative impacts can partially cancel out the pre-
calculations and there is a need for a suitable caching
intermediate results application and for the results for each

80Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

role in the system. After application caching, let us move on
to the complexity of the search at list-level.

Another negative effect is due to the fact that there are
doubled insert and delete commands to the database in the
case of the creation and deletion of records. This concept is
unsuitable for example, for monitoring systems - but rather,
will assist in the development of Customer Relationship
Management (CRM) systems.

The concrete results and ensuing comparison of the
performance impact model applications - at least, are not yet
known, because this model is currently in the testing phase.

VI. CONCLUSION

The main advantage of the above-mentioned approach is
the centralization of security logic and related documentation
in an ideal case as separated models from application logic.
It allows one to have a greater detailed and more sensitive
control of access to resources, (applications), without the
side-effect of the expansion of privileges because of their
structuring options due to heredity and to relations that are
defined only in security logic. Additionally, the approach
also helps in the production of more effective code by means
of developer tools.

Future work will focus on three key areas, herein below:
Firstly, the work will focus on how to make preprocessed

combinations of privileges, roles and all of the relations
between them. This would be ideal for boosting the
performance of authorization services and the minimization
of latency.

Secondly, the focus will be on designing a security policy
documentation generator, based on structure and definitions
of all permissions - throughout all resources. This approach
would generate feedback about the range and complexity of
the (given) security policy.

Thirdly, we will focus on the creation of a Security
Coverage measuring tool that will be able to analyze source
codes and generate feedback about the degree of security
(insecurity). It will also focus on the concrete role of access -
or permission, requirements for accessing any part of a code.
This would serve as a foundation of extant knowledge for
developers.

ACKNOWLEDGMENT

This work was supported by:

Grant No.: IGA / Cebia Tech / 2015/036, Tomas Bata
University in Zlin Internal Grant Agency.

REFERENCES

[1] D. Ferraiolo and R. Kuhn,“Role-Based Access Controls,”
Baltimore, 15th National Computer Security Conference,
1992,pp. 554–563

[2] O. M. Pereira, M. Rui, R. L. Aguiar, and Y. M.
Santos,“CRUD-DOM: A Model for Bridging the Gap
between the Object-Oriented and the Relational Paradigms,”
Fifth International Conference on Software Engineering
Advances. IEEE, 2010,pp. 114-122, DOI:
10.1109/ICSEA.2010.25, ISBN 978-1-4244-7788-3

[3] R. S. Sandhu and P. Samarati, “Access control: principle and
practice,” IEEE Communications Magazine (Volume 32,
Issue:9),1994, pp. 40-48, DOI: 10.1109/35.312842, ISSN
0163-6804.

[4] H. Song and L. Gao,“Use ORM Middleware Realize
Heterogeneous Database Connectivity,” Spring Congress on
Engineering and Technology IEEE,” 2012, pp. 1-4, DOI:
10.1109/SCET.2012.6341925. ISBN 978-1-4577-1964-6.

[5] C. O. Truica, F. Radulescu, A. Boicea, and I. Bucur,
“Performance Evaluation for CRUD Operations in
Asynchronously Replicated Document Oriented Database,”
20th International Conference on Control Systems and
Computer Science. IEEE, 2015, pp. 191-196, DOI:
10.1109/CSCS.2015.32, ISBN 978-1-4799-1780-8.

[6] O. M. Pereira, D. D. Regateiro, and R. L. Aguiar, “Distributed
and Typed Role-based Access Control Mechanisms driven by
CRUD Expression,” International Journal of Computer
Science: Theory and Application, ORB Academic Publisher
2014, pp. 1-11, [Online] Available from: http://www.orb-
academic.org/index.php/journal-of-computer-science

[7] A. A. Elliott and G. S. Knight, “Role Explosion:
Acknowledging the Problem,” In Proceedings of the 2010
International Conference on Software Engineering Research
& Practice, 2010

[8] C. Feltus, M. Petit, and M. Sloman, “Enhancement of
Business IT Alignment by Including Responsibility
Components in RBAC,“Proceedings of the CAiSE 2010
Workshop Business/IT Alignment and Interoperability
(BUSITAL2010), 2010, pp. 61-75

[9] M. Munz, L Fuchs, M. Hummer, and G. Pernul, “Introducing
Dynamic Identity and Access Managemen in Organisations,”
11th International Conference on Information Systems
Security, 2015, pp. 139-158, DOI: 10.1007/978-3-319-26961-
9_0

[10] R Sandhu, D Ferraiolo,and R Kuhn, “The NIST model for
role-based access control: towards a unified standard,”, ACM
workshop on Role-based access control, 2000

81Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

