
A Secure Frequency Hiding Index for Encrypted Databases

Somayeh Sobati Moghadam

Université Lumière Lyon 2
Email: Somayeh.Sobati-moghadam@univ-lyon2.fr

Abstract—Cloud computing offers the opportunity of data out-
sourcing as well as the data management tasks. However, for the
sake of various privacy issues, confidential data must be encrypted
before outsourcing to the cloud. But query processing over
encrypted data without decrypting the data is a very challenging
task. Deterministic (DET) encryption scheme allows encrypting
data while still enabling efficient querying over encrypted data.
The inherit merits of DET make it very suitable and efficient
scheme for cloud data outsourcing. But the security of DET
scheme is still a challenge while DET is vulnerable to frequency
attacks. We present a new scheme for indexing encrypted data,
which hides data frequency to achieve a strictly stronger notion
of security. The proposed indexing method is secure against
frequency attacks, hence, data cannot be recovered from indexes.
Moreover, our scheme is still efficient for query processing.

Keywords–Data outsourcing; data privacy; querying encrypted
data.

I. INTRODUCTION

A naive solution to preserve privacy is encrypting data
before outsourcing to the cloud. In the context of relational
databases, the state-of-the-art solutions use property preserving
encryption schemes. Property preserving encryption schemes
enable processing query over encrypted data without decryp-
tion. For instance, order preserving encryption scheme (OPE),
preserves the order of ciphertexts as original plaintexts, means
OPE preserves the order property. Deterministic (DET) scheme
encrypts the same plaintext into the identical ciphertexts, thus,
the equality property is preserved [1]. Property preserving
encryption schemes are undoubtedly efficient schemes while
enabling queries to be directly processed over encrypted data.
But such schemes leak some information about the plaintext.

DET scheme allows the server to perform a large number
of queries which means it can perform SELECT with equality
predicates, equality JOIN, GROUP BY, COUNT, DISTINCT,
etc. [2]. DET scheme is vulnerable to frequency attacks, while
DET leaks the frequency distribution of underlying data. In
frequency attacks, an adversary not only has access to the
encrypted data but also has some prior knowledge about the
plaintext domain and its frequency distribution. Frequency
attack does not impose any threat when the underlying data has
uniform frequency distribution [3]. If the frequency distribution
of plaintext not uniform, DET scheme must be replaced with a
probabilistic encryption scheme, but it makes query processing
impossible over encrypted data.

CryptDB is a first practical system uses property preserving
schemes to support a wide range of queries processing over
encrypted data. As the best of our knowledge, other systems
like BigQuery demo [4], Always Encrypted [5], Cipherbase

[6] and Relational Cloud [7] use a DET scheme too. As a
result, they are vulnerable to frequency attacks. Naveed et al.
in [8] demonstrate that a large fraction of the records from DET
encrypted columns, can be decrypted by frequency attacks.

We present a new scheme to improve the security of DET
by hiding the frequency of plaintexts. The proposed scheme
hides the frequency of plaintexts by means of a new indexing
scheme. In our scheme, the indexes have a uniform distribu-
tion,and hence the proposed scheme is robust against frequency
attacks. While increasing security, our scheme preserves the
functionality of DET scheme. This scheme can be applied as
an alternative to a DET scheme.

II. FREQUENCY HIDING SCHEME

The basic idea is to create an index such that no frequency
information from repeated plaintexts leaks. Note that this index
should still enable querying while hiding the frequency of data.
Therefore, any plaintext value of frequency f is mapped into
multiple index values. Thus, the target distribution remains
close to flat, i.e., uniform Intuitively, if t distinct plaintext
values are mapped into m > t unique values that are of the
same frequency, none of these target values can be explicitly
mapped to the corresponding plaintext values by the frequency
attacks.

To enable efficient query processing, we propose to add
some auxiliary metadata for an attribute A at the server
side. In our solution, we add an auxiliary column named
EqIdx (Equality checking Index) along an attribute A.
This column allows equality checking over A. To create EqIdx
column, first the values of A are sorted in ascending order.
Then, an incremental ID is assigned to the sorted values, which
are stored in EqIdx column. As a result, for each plaintext
value vi, we have fi distinct values in the column EqIdx,
from si to li. We call si and li as boundaries of vi.

In order to query processing, the user should keep the
boundaries of each plaintext value; otherwise, when the user
has a query, he cannot know how to transform the values in
a query. Storing the corresponding boundaries at the user side
induces storage overhead which is in contrary with the benefits
of data outsourcing. Thus, we store an auxiliary table that
maintains the information about the boundaries for each plain-
text value. We call this table as frequency table, fT . Frequency
table’s values are encrypted, thus, leak no information about
the plaintext values. In order to query processing, the user first
sends a query to retrieve the corresponding boundaries from
frequency table. Then, using the result of the first query, the
user sends another query to retrieve the desired values.

32Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

A. Building Index
To simplify our discussion, let us assume a relational table

T consists of one column A (additional columns, if any, can
be processed similarly) and we wish to encrypt and store it
at a service provider. The encrypted version of T is T ′ at the
server side. Considering A has t distinct values {v1, v2, ..., vt}
with the frequencies {f1, f2, ..., ft}. First, we sort the plaintext
values in ascending order. Then, we assign incremental values
in to the sorted data. We store the incremental values in an
auxiliary column called EqIdx along the encrypted values
of A, E(A). Note that the encryption scheme for encrypting
A’s values could be a scheme with high security guarantees
(e.g., a randomize encryption scheme that encrypts the same
plaintexts into the different ciphertexts). Each plaintext value
vi is mapped into fi distinct values Ii in EqIdx such that
Ii ∈ [si, li] ∀i = 1, ..., fi. In other words, all values in an
interval like [si, li] are corresponded to the same plaintext vi.

B. Building Frequency Table
Frequency table fT consists of two attributes, the first one

maintains the encryption of distinct plaintext values and the
second attribute stores the encrypted boundaries corresponding
to the plaintext values.

As we explained before, for any distinct plaintext values vi
in attribute A, we have two corresponding boundaries si and
li, i = 1, ..., t. si and li are concatenated < si ‖ li >, and
encrypted with a key k, Ek(< si ‖ li >). vi is encrypted with
the same key, Ek(vi). Then, Ek(< si ‖ li >) and Ek(vi) i =
1, ..., t are stored in the attributes E(Boundaries) and E(A′)
in fT , respectively. Figure 1 shows an example of frequency
table and EqIdx for attribute A.

E(A') E(Boundaries)
E(28) E(<1,4>)

E(37) E(<5,6>)

E(41) E(<7,7>)

E(43) E(<8,10>)

E(65) E(<11, 12>)

𝑬𝒏𝒄𝒓𝒚𝒑𝒕𝒆𝒅 𝑻𝒂𝒃𝒍𝒆 (𝑻′)

𝑭𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚 𝑻𝒂𝒃𝒍𝒆 (𝒇𝑻)

A
43

28

28

41

65

43

37

28

28

65

37

43

EqIdx E(A)
1 x27c3

2 xd1e3

3 x79z4

4 x82q9

5 x27s4

6 x12t3

7 x14p3

8 x24f4

9 x21v8

10 x87d5

11 x12g5

12 x98s2

𝑼𝒏𝒕𝒓𝒖𝒔𝒕𝒆𝒅 𝒔𝒆𝒓𝒗𝒆𝒓 𝒔𝒊𝒅𝒆

𝑶𝒓𝒊𝒈𝒊𝒏𝒂𝒍 𝑻𝒂𝒃𝒍𝒆 (𝑻)

Figure 1. Metadata at the server side. Ciphertexts shown are not full-length.

C. Query Processing
Considering a simple query example like ”SELECT *

FROM T WHERE A=vi”. First, the user sends a query to
retrieve the boundaries of vi from fT . Therefore, the user
encrypts vi with k and sends the following query:
SELECT Ek(Boundaries) FROM fT WHERE
E(A′)=E(vi). When the user receives the result, he

decrypts and recovers the corresponding boundaries si and
li. Subsequently, the user sends a query using the extracted
boundaries to retrieve all values that have EqIdx between si
and li:
SELECT E(A) From T′ WHERE si ≤ EqIdx ≤ li.
Finally, the user decrypts the final results returned back by
the server.

Confidentiality in our approach relies on the secure crypto-
graphic scheme using for encryption of data and corresponding
metadata. Uniform distribution in EqIdx hides the frequency
of data. Thus, our solution is robust against frequency attacks.
Note that the drawback of this scheme is its inefficiently
for data updating. Typically, our indexing method uses the
distribution of plaintext, while update operations may change
it, rendering re-calculation unavoidable.

III. CONCLUSION

In this paper, we propose a new scheme that can effectively
resist against frequency attacks in cloud data outsourcing. The
adversary in our scenario has knowledge of the frequency
of original data in a database. In the proposed scheme, all
sensitive data are encrypted at the server side and some
metadata is used to query encrypted data. A new indexing
scheme is introduced to hide the frequency of data. The
proposed solution, not only provides robust security guarantees
against frequency attacks, also allows efficient and correct
query processing over encrypted data. We plan to introduce
security proof for the proposed scheme and extend it in order
to support any query over encrypted data.

REFERENCES
[1] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and efficiently

searchable encryption,” in CRYPTO, 2007, pp. 535–552. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-74143-5 30

[2] R. A. Popa, “Building practical systems that compute on encrypted data,”
Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

[3] T. Sanamrad, L. Braun, D. Kossmann, and R. Venkatesan, “Randomly
partitioned encryption for cloud databases,” in DBSec, 2014. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-43936-4 20

[4] Google Encrytped Big Query. [Online]. Available: https://github.com/
google/encrypted-bigquery-client (retrieved: May, 2016)

[5] Always Encrypted. [Online]. Available: https://msdn.microsoft.com/
enus/library/mt163865(v=sql.130).aspx (retrieved: May, 2016)

[6] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan, “Orthogonal security with
cipherbase,” in CIDR 2013, 2013. [Online]. Available: http://www.
cidrdb.org/cidr2013/Papers/CIDR13 Paper33.pdf

[7] Relational cloud. [Online]. Available: http://relationalcloud.com/
(retrieved: June, 2016)

[8] M. Naveed, S. Kamara, and C. V. Wright, “Inference attacks on
property-preserving encrypted databases,” in SIGSAC, 2015, pp. 644–
655. [Online]. Available: http://doi.acm.org/10.1145/2810103.2813651

33Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

