
LoT: a Reputation-based Trust System for Long-term Archiving

Martı́n Vigil, Denise Demirel, Sheikh Mahbub Habib, Sascha Hauke,
Johannes Buchmann, and Max Mühlhäuser

Technische Universität Darmstadt
Hochschulstr. 10, 64289 Darmstadt, Germany

Email: {vigil, ddemirel, buchmann}@cdc.tu-darmstadt.de
{sheikh, hauke, max}@tk.tu-darmstadt.de

Abstract—Digital archiving systems are necessary to store doc-
uments for several years, such as electronic health records.
However, security breaches in these systems may allow attackers
to tamper with archived documents without being noticed. To
address this threat, standardized archiving systems require a pub-
lic key infrastructure, where a time-stamp authority is trusted to
date and sign stored documents periodically. However, in practice
a time-stamp authority may not be fully trustworthy, allowing an
attacker to forge documents. Thus, in this paper, we introduce
a novel reputation-based trust system for time-stamping-based
archiving called Long-term evaluation of Trust (LoT), which
alleviates the required trust assumptions. This makes LoT an
important contribution to realize trust and security management
for digital archiving systems using public key infrastructures. We
implemented LoT showcasing its applicability to electronic health
records and demonstrate its efficacy by simulations.

Keywords–Digital Archiving; Time-Stamping; Reputation Sys-
tem; Trust; Electronic Health Record.

I. INTRODUCTION

In the field of long-term archiving [1], an important goal is
maintaining the integrity and authenticity of stored data over
long periods of time. An example of long-term stored data are
electronic health records (EHRs), which should be preserved
for the entire lifetime of a patient. The deployment of EHRs
is already in progress: by 2020, the British National Health
Service plans to make their patients’ health and care records
digitally available as a part of their “Personalized Health and
Care 2020” strategy [2].

In the long run, attackers can gain access to archiving
systems and tamper with archived data without being noticed.
This can cause serious issues, such as physicians using forged
electronic health records to prescribe wrong treatments. To
cope with this security threat, existing long-term archiving
schemes assume the existence of a trusted third party. This
party periodically checks and/or signs the documents. The
only standardized long-term archiving solutions are the time-
stamping-based schemes (e.g., [3]). These schemes require
public key infrastructures, where a trusted time-stamp authority
(TSA) dates and signs documents by time-stamping them. A
time-stamp allows users to verify when a document existed
and whether it has been modified since. For the purpose of
verification, users are bound to trust that the TSA has provided
the correct date and time in the time-stamp. Since time-stamps
have limited lifetime, e.g., TSAs’ signatures expire, a single
time-stamp cannot guarantee integrity and authenticity of a
document for an indefinite period of time. Therefore, a chain
of time-stamps is necessary. The first time-stamp authenticates

the document and the subsequent time-stamps authenticate the
previous ones, i.e., expired time-stamps. In this case, users
have to trust every TSA involved in constructing the time-
stamp chain.

However, the assumption of the existence of fully trustwor-
thy TSAs raises security concerns regarding time-stamping-
based schemes if TSAs turn out to be untrustworthy. For
instance, a malicious TSA can time-stamp a forged signature
using a particular date in the past when the corresponding
signature key was still valid. Also, a single suspicious TSA is
sufficient to cast doubt on the correctness of a time-stamp chain
and of the corresponding archived document. It is somewhat
surprising that such an issue has not been addressed yet,
although TSAs are key actors of long-term archiving solutions
and can be targets of attacks similar to that of certification
authorities (see [4] for an overview of these attacks).

In order to alleviate the need to assume fully trusted time-
stamp authorities, in this paper we propose a novel reputation-
based trust system for long-term archiving solutions that is
called Long-term evaluation of Trust (LoT). LoT evaluates the
trustworthiness of each and every TSAs along with their issued
time-stamps. Our proposed system provides users of long-term
archiving systems the power to assess how likely it is that the
TSAs provide correct time-stamps, documents are uncorrupted
and authentic, as well as to determine when the documents
have to be re-authenticated.

More precisely, the main contributions of this paper are as
follows:

• Mechanisms to collect and process experiences regard-
ing the TSAs and their issued time-stamps.

• Extended mechanisms for trust evaluation of the TSAs
and time-stamps.

• A decision mechanism based on trust scores.
• A trust resetting mechanism.

The contributions are evaluated by means of simulation
using our implemented trust system. The goal of the evaluation
is to showcase the applicability and efficacy of our proposed
trust system in the context of archiving EHRs.

Digital archiving systems should also guarantee the con-
fidentiality of stored documents. However, this security goal
is not addressed in this work because the current archiving
systems do not provide confidentiality in the long run. More
precisely, there is no solution available that guarantees both
long-term integrity and information-theoretic confidentiality.

262Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

Nevertheless, this is a vital research field, and we plan to ad-
dress this security goal in future work (see [5] for preliminary
results).

The remainder of this work is organized as follows. Related
work is provided in Section II. The background for the reader
to understand our contribution is provided in Section III. Our
contributions are presented in Section IV and evaluated in
Section V. In Section VI, we draw the conclusion and discuss
our future work.

II. RELATED WORK

In this section, we briefly discuss the state-of-the-art re-
garding long-term archiving schemes and trust systems.

Long-term Archiving. Lekkas and Gritzalis [6] propose a
long-term archiving scheme where digital signatures are used
to guarantee that EHRs have not been forged. Moreover, the
scheme assumes the existence of trusted third parties, the so-
called notaries, that verify and renew these signatures regularly.
Vigil et al. [7] soften this trust assumption by proposing a
peer-to-peer network of notaries, where one notary checks
that another notary verifies and renews signatures properly.
However, the reputation of notaries is not available for users in
the long term. Besides notary based solutions, the approaches
using TSAs [8] are very promising and have been even
standardized (e.g., [3]). However, for this type of archiving
scheme no trust evaluation is available.

Trust & Reputation. Trust models and reputation systems
have been proposed in various environments [9][10][11]. For
instance, electronic marketplaces, peer-to-peer systems, and
cloud computing. A number of commercial instances of such
systems are also available, such as eBay and Amazon. More-
over, Braun et al. [12] propose a reputation system called CA-
TMS to be used in public key infrastructures. More precisely,
their system allows for assessing the trustworthiness level of
certificate chains. However, none of the existing systems or
models have been applied to long-term archiving schemes yet.

Our Scheme. To the best of our knowledge, our scheme is
the first one to allow for trust evaluation when TSAs instead
of notaries are used. Note that this significantly changes the
archiving procedures and correspondingly how trustworthiness
is evaluated. Moreover, our scheme provides a centralized
reputation-based trust system where the reputations of TSAs
and time-stamps are stored indefinitely. These reputations
allow users to estimate the trustworthiness of TSAs and time-
stamps even in the long run. In this work, we focus on classical
time-stamping-based schemes where a time-stamp is signed
by a single TSA as described in the standardized solution [3].
To analyze other approaches (e.g., a time-stamp is signed by
multiple TSAs) is left for future work. Furthermore, we assume
that the storage system stores the time-stamps generated. In
addition, they can be published in a newspaper. However, note
that this requires the existence of witnesses why a reputation
system for the TSAs remains a useful tool.

III. PRELIMINARIES

In this section, we explain how to use time-stamping to
authenticate long-term data. Moreover, we present an adversary
model for time-stamping and discuss the trust users put in
digital signatures.

A. Long-term archiving of data
When using documents that already exist for long periods

of time, it is necessary to check that these documents have
not been forged since they were stored. To address this
issue, several time-stamping schemes have been proposed with
different security goals. In general, a time-stamping scheme
generates an initial time-stamp to establish that a document
and its signature existed at the date and time they were stored
(proof of existence) and that they have not been changed
since (integrity). Moreover, this time-stamp allows to verify
the document authenticity even after the document signature
becomes invalid or cryptographically insecure. However, the
digital signature that guarantees the authenticity of the time-
stamp is also valid and secure for a certain period of time only.
After this period, the time-stamp and the document can be
manipulated without being noticed. Therefore, it is necessary
to renew the time-stamp timely. More precisely, before the
time-stamp becomes insecure, the scheme generates a new one.
This new time-stamp authenticates the old time-stamp. That is,
the new time-stamp can be used to verify that the old time-
stamp existed when the corresponding signature was valid and
secure and that the old time-stamp has not been changed since.
This process generates an endless time-stamp sequence which
can be used to demonstrate that the document existed and was
not changed since it was archived.

Fig. 1 illustrates an example of time-stamping. A signed
document d is created at a time τ0. This document is stored
in an archive at a time τ1 > τ0. At this time, the signature on
the document is still secure and a time-stamp s1 is created.
The time-stamp s1 authenticates the document d, that is, s1
can be used to verify that d existed at τ1 and has not been
changed since. The next time-stamps s2 and s3 are created at
times τ2 > τ1 and τ3 > τ2, respectively. They authenticate the
previous time-stamp before it becomes insecure. For example,
s2 authenticates s1 at the time τ2 < τ2′ , where τ2′ is when s1
becomes insecure.

time

d s1 s2 s3 . . .auth. auth. auth. auth.

τ0 τ1 τ2 τ3τ2′

s1 becomes
insecure

τ3′

s2 becomes
insecure

Figure 1. A signed document d and a sequence of time-stamps s1, s2,

We now present the involved parties and procedures of
time-stamping-based archiving schemes. The parties are sub-
mitters, storage systems, TSAs, and retrievers. Submitters send
signed documents to storage systems. Storage systems store
the submitted documents and can be realized, for instance, by
building a cloud infrastructure. Additionally, storage systems
request time-stamps to demonstrate that the submitted docu-
ments and their signatures have not been forged since their sub-
mission. Note that even if the document signature is no longer
secure, the time-stamp ensures that neither the document
nor the signature have been changed. TSAs are trusted third
parties issuing the requested time-stamps. They are trusted to
include the date and time when the time-stamps are issued
in the time-stamps. Retrievers obtain signed documents and
the corresponding time-stamps from the storage systems. They

263Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

verify the time-stamps to ensure that the retrieved data is not
a forgery.

The long-term archiving of signed documents comprises
the procedures initialization, renewal, and verification. During
the initialization, a first time-stamp s1 is generated showing
that the signed document d existed at the date and time τ1.
The procedure is detailed below and illustrated in Fig. 2.

1) A submitter sends a document d to a storage system.
2) The storage system requests the first time-stamp s1

by sending d to a TSA. (To be precise, the hash of
d instead of d itself is sent. Since hash functions
are only computationally secure, time-stamps are also
renewed when the hash function is about to become
insecure. However, since this does not affect the
reputation system we omit this detail for legibility.)

3) The TSA issues s1 = TS(d), where TS is a function
that creates time-stamps on the given input. More
precisely, TS creates a signature σ1 on the input d
together with the current date and time τ1 and returns
s1 = (τ1, σ1).

4) The TSA returns s1 to the storage system.
5) The storage system stores d together with s1.

Document
submitter

Storage
system

Time-stamp
authority

1. d 2. d

3. s1 = TS(d)

4. s1

5. store(d, s1)

Figure 2. The initialization procedure.

The renewal procedure should be executed before the time-
stamp s1 becomes invalid. It generates a new time-stamp s2
showing that s1 existed at a date and time τ2 > τ1 when s1
was still valid, and that s1 has not been changed since. This
procedure is explained next and depicted in Fig. 3.

1) The storage system requests s2 by sending s1 to a
TSA.

2) The TSA issues s2 = TS(s1). This time-stamp
includes a signature σ2 on s1 together with τ2, where
τ2 > τ1 is the date and time when the TSA executed
the function TS.

3) The TSA returns s2 to the storage system.
4) The storage system stores d together with s1 and s2.

Storage
system

Time-stamp
authority

1. s1

2. s2 = TS(s1)

3. s2

4. store(d, s1, s2)

Figure 3. The renewal procedure.

The renewal procedure must also be performed for each
time-stamp sequence s1, s2, . . . , sk where the latest time-stamp
sk is about to become invalid. In this case, the storage system
requests a time-stamp sk+1 by sending sk to a TSA.

The verification procedure is executed by a retriever as
follows. For k > 1, assume the retriever has obtained the

signed document d and time-stamp sequence s1, . . . , sk from
the storage system. Thus, he or she first verifies that sk is a
valid time-stamp using as time reference the date and time
τ when he or she performs the verification. The verification
includes checking that the signature σk contained in sk is valid
at the date and time τ . (Further properties are also verified, e.g.,
the security of key sizes, but we omit these details for ease of
understanding and simplicity.) Similarly, for j = k − 1, . . . , 1
he or she verifies that sj was a valid time-stamp at the date
and time τj+1 when the time-stamp sj+1 was generated. The
date and time τj+1 is found in the time-stamp sj+1. Next, the
verifier checks that the signature on d is valid at time τ1 found
in s1. If the document signature and the k time-stamps are valid
and the involved TSAs are trustworthy, then the retriever can
be convinced that d is not a forgery, i.e., it existed on τ1 and
has not been changed since.

B. Adversary model
In this work, we will consider an adversary that is active

and mobile. In the active adversary model, parties might devi-
ate from the protocol. In addition, to meet long-term security,
we assume that the attacker is mobile and might interact and
corrupt different parties at different stages of the protocols’
executions. Finally, we assume that the adversary can interact
an unlimited time with the system but is computationally
bounded each time he or she performs an attack (see [13]
for a corresponding security model).

Long-term archiving comes with the following trust as-
sumptions. First, the TSAs issue correct time-stamps, i.e., time-
stamps containing the correct date and time. This must also
be preserved at the presence of an attacker. More precisely, if
there is an attacker who is able to control a storage system,
then the TSAs do not collaborate with the attacker by issuing
time-stamps containing the wrong date and time. Second,
certification authorities issue correct certificates (proving the
owner of a signature). In the following, we provide an example
how a forgery could be carried out.

Assume our first trust assumption is not fulfilled and an
attacker who gained access to the storage system is able to
collaborate with a malicious TSA. In this case, the attacker
can ask the TSA to issue time-stamps providing a date and
time that is earlier or later than the date and time when the
TSA in fact creates this particular time-stamp. This allows the
attacker controlling the storage system to violate integrity and
authenticity as follows. First, he or she takes a compromised
signature key pair (e.g., of a doctor) and signs a forged
document. Next, he or she requests a time-stamp containing a
date and time from the malicious TSA, when the key pair of
the signature was still secure and valid. This time-stamp can be
used to convince a retriever that the attacker’s document was
signed by the corresponding doctor. However, such a back-
dating attack needs the cooperation of a TSA, because the TSA
is responsible for generating the evidence (i.e., time-stamps).
Note that if an attacker controls a storage system, but there are
no malicious TSAs that can collaborate with him or her, then
the attacker can only forge time-stamps by using insecure and
outdated signature keys and therefore will fail in generating an
evidence that is valid at the current date and time. It follows
that if all TSAs are trustworthy, not even a storage system that
is controlled by an attacker is able to fake a time-stamp and
violate integrity and authenticity. Therefore, a reputation-based

264Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

trust system is required to deal with untrustworthy TSAs as
well as time-stamps in long-term archiving solutions.

C. Trust Opinions on Signatures
Besides the correctness of a time-stamp, an important

criterion to trust or distrust in the integrity and authenticity
of a document is the correctness of the signatures. Each time
the submitter or the TSA generates a signature, it is necessary
to trust that the signature key pair used is indeed owned by the
signer. In practice, public key infrastructures are used where
certification authorities (CAs) issue digital certificates proving
the ownership. Since these CAs are assumed to be fully trusted,
the reputation system CA-TMS (see Section II) can be used in
addition to our proposed system, LoT. Each time the storage
system receives a signature, it sends the certificate chain and
a security parameter to CA-TMS and receives a trust score.
Depending on the application, it either rejects “untrusted”
signatures or stores the trust score and leaves the decision to
the retriever.

IV. A NOVEL REPUTATION SYSTEM FOR LONG-TERM
STORAGE

As discussed in the last section, if malicious TSAs issue
fake time-stamps, i.e., time-stamps containing the wrong date
and time, then retrievers may accept forged documents. Fur-
thermore, the CA trust management system CA-TMS is only
able to provide trust scores on the ownership of signature keys.
Therefore, we propose a reputation-based trust system, LoT, to
assess the trustworthiness of the TSAs and time-stamps asso-
ciated with digital signatures. The proposed system will assign
trust scores on the TSAs and time stamps based on the assess-
ment. Typically, reputation-based trust systems are driven by
direct experience and indirect experience, obtained via witness
referrals [10]. Trust computation in such a system requires
three distinct operational steps: i) experience or evidence
collection and processing, ii) trust evaluation/assessment, and
iii) making a trust-based decision. We next elaborate on these
three steps in detail.

A. Experience collection and processing
In the collection phase, direct and indirect experiences

provided are collected from the system’s participants. An expe-
rience – realized as a binary value, either positive or negative
– indicates whether a participant believes that a particular
time-stamp contains the correct date and time. Participants, in
the experience collection and processing phase, are document
submitters, storage systems, and TSAs.

Collection phase. To provide their binary experience,
participants verify whether the date and time contained in a
time-stamp is correct. Initially, the LoT system provides the
time-stamp to participants right after the time-stamp is created.
Next, these participants verify that the date and time in the
time-stamp is reasonably close to the date and time when they
received the time-stamp (i.e., the current date and time). How
much deviation from the current date and time is allowed is a
parameter of LoT and depends on its application. For example,
a deviation of half a day may be acceptable for electronic
health records, but not for online auctions.

We extend the initialization and renewal procedures pre-
sented in Section III-A. The extended procedures use new
parameters such as r and δ, where r > 0 is the number of

TSAs that provide experiences and δ > 0 is the maximum
acceptable deviation from the current date and time. In the
collection phase, the initialization procedure is as follows:

1) A submitter D sends his or her document d to a
storage system.

2) The storage system selects a reputable TSA T from
LoT.

3) The storage system requests a time-stamp on d from
T .

4) T creates a time-stamp s containing a signature σ and
the current date and time τ . T returns the time-stamp
s to the storage system.

5) The storage system verifies s. More precisely, it
computes an experience e = {0, 1} on s such that
e = 1 if |τc − τ | ≤ δ otherwise e = 0, where τc is
the date and time when the storage system received
the time-stamp s, and τ is the date and time included
in s. The storage system submits e, s, D, and T to
the reputation system.

6) The reputation system stores e, s, and T together with
the participant type storageSystem.

7) The reputation system randomly selects r different
TSAs other than T that will be allowed to submit
their experiences on s. We assume that this number of
TSAs can always be found and that they are selected
at random to reduce the chance of collusion against
or in favor of T . The reputation system notifies the
selected TSAs and the document submitter D. More-
over, the reputation system sets a deadline δ+ τr for
the selected TSAs and D to submit their experiences,
where τr is the moment when the reputation system
notified D and the selected TSAs. Note that this
allows to immediately identify when a time-stamp
containing a wrong time has been generated.

8) The selected TSAs and the document submitter D
compute their experiences on s as described in Step 5.
Next, they submit their experiences to the reputation
system.

9) The reputation system stores each submitted experi-
ence together with s, T , and the participant type TSA
or submitter.

The same steps are performed during the renewal phase,
which is used to generate the subsequent time-stamps. The
only difference is that the submitter D does not participate in
the renewal phase. This is because he or she may be no longer
available after the document has been initially time-stamped.
Moreover, LoT can publish the collected experiences, say, on
a public board, for accountability reasons. Thus, participants
can check that LoT has not changed their experiences.

Processing phase. The reputation system provides trust
scores on TSAs and on time-stamps to participants. To com-
pute trust scores, we rely on a well-established trust model,
such as CertainTrust [14] or Subjective Logic [15]. In the
following, we use CertainTrust. However, Subjective Logic can
be readily substituted, as both models are isomorphic.

In CertainTrust model, trust scores are represented by
means of the so-called opinions. They are represented as tuples
o = (t, c), where t represents a trust value and c a certainty
value, indicating how confident one is that the trust score is
representative. (We use a simplified opinion representation that
omits the CertainTrust parameters f and w.)

265Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

Trust values are computed as the proportion of the sum of
positive experiences, r, divided by the sum of all positive, r,
and negative experiences, s, yielding t = r

r+s . If r + s = 0,
t = 0.5. The computation of the certainty value is given in
CertainTrust as c = N ·(r+s)

2·(N−r−s)+N ·(r+s) . The computation of
the certainty value requires an additional parameter N which
refers to the maximal number of expected experiences. How to
set this parameter within LoT will be discussed below.

The trust score oT on a TSA T and the trust score os
on a time-stamp s are computed using the experiences the
reputation system has collected. While in the latter case, only
the experiences collected on s are considered, in the former
case the entire history of T with respect to all the time-stamps
s1, . . . , sk generated by T is taken into account. The reputation
system collects experiences from distinct participants, where
one type of participant may be more reliable than another type
when providing their experiences. For instance, TSAs may be a
more reliable source of experiences than document submitters.
Therefore, the reputation system computes three different trust
scores oD, oS , and oT , where the labels D,S, and T identify
scores derived from experiences given by document submitters,
storage systems, and TSAs, respectively.

To compute the trust scores on a time-stamp, Ns can
be set as follows. For document submitters and the storage
system, Ns should be set to 1 because for every time-stamp
only a single document submitter and single storage system
can provide an experience. In contrast, we propose to use
Ns = r > 0 for TSAs because r TSAs are selected randomly
by the reputation system to provide an experience on a time-
stamp (where r is also a public input parameter). For the trust
score on a TSA, NT can be defined as follows. Assume that
the TSA has issued around k > 0 time-stamps. Then, NT is
given by multiplying the values of Ns by k.

B. Trust Evaluation
Assume a retriever requests a document from the storage

system and wants to decide whether this document is a
forgery or not. Then, the storage system verifies whether the
corresponding time-stamp sequence s1, . . . , sk is valid, i.e., the
time-stamps contain valid signatures. Afterwards, it sends the
time-stamp sequence to LoT. LoT computes the trust scores
on these time-stamps and involved TSAs from the experiences
that have been collected so far. Next, LoT signs and returns
the resulting trust scores to the storage system. The storage
system then returns the requested document and trust scores
to the retriever. Finally, the retriever uses the trust scores to
decide whether to trust the document.

It may happen that the document has a valid time-stamp
sequence, but the decision mechanism suggests that the docu-
ment should not be trusted. To solve this issue, we propose
a trust renewal procedure. Note that the retriever can also
perform the above verification of the time-stamp sequences
by him- or herself. In this case, he or she obtains the data
needed from the storage system. Moreover, the retriever can
obtain the experiences LoT published on the public board and
run the trust evaluation. Therefore, the retriever neither has to
trust the storage system nor our proposed system, LoT.

Next, we detail the trust evaluation of time-stamps and
TSAs. After that, we present our decision mechanism and a
procedure to renew trust.

Trust evaluation of time-stamp sequences. The trust
opinion (score) os on a sequence of time-stamps si (i =
1, . . . , k) is computed as follows. Assume that weights
wD, wS , wT ∈ [0, 1] represent how much retrievers rely on
the collected experiences from submitters, the storage system,
and TSAs, respectively. These values can either be provided
by retrievers or be public parameters. Initially, the trust scores
oDsi , o

S
si , and oTsi on each of the time-stamps si are calculated as

described before. Then, the overall trust score osi is calculated
by aggregating the trust scores oDsi , o

S
si , and oTsi on each time-

stamp si according to the formula osi = oDsi⊕̂wo
S
si⊕̂wo

T
si ,

where ⊕̂w refers to the Weighted Fusion (W.FUSION) op-
erator as defined in CertainLogic [16], an extension of Cer-
tainTrust. Essentially, the weighted fusion operation provides
a weighted average over the scores, averaging and combining
trust scores into an overall, fused score. This score uses the
assigned weights wD, wS , and wT and the certainty values,
so that a trust score with a higher weight and/or a higher
certainty value has a higher impact on the overall score.
Finally, to gauge the trustworthiness of an entire time-stamp
sequence, the trust score os on the time-stamp sequence is
computed from the combined trust opinions os1 , . . . , osk by
calculating os = os1 ∧ . . .∧osk . Since the overall score should
represent how much one can trust that all time-stamps contain
the correct date and time, the AND operator ∧ as defined
in CertainLogic [17] is used. The CertainLogic ∧ operator
functions like a probabilistic AND operator over trust scores,
considering not only the probabilistic trust value t but also the
certainty value c.

Trust evaluation of TSAs. Assume there is a set of l TSAs
Tj , where j = 1, . . . , l, 0 < l ≤ k, and each of the TSAs signs
at least one time-stamp contained in the time-stamp sequence
s1, . . . sk. Also, assume weights, wD, wS , wT ∈ [0, 1], repre-
senting how much retrievers rely on the collected experiences
from submitters, storage system, and TSAs, respectively. Thus,
the computation of oT is analogous to calculating the trust
score on the time-stamp sequence. More precisely, for every
TSA Tj , the overall trust score oTj

is calculated using the
CertainLogic weighted fusion operator, the individual scores
oDTj

, oSTj
, and oTTj

, and the assigned weights wD, wS , and wT .
Finally, the trust score oT on TSAs is computed using the
CertainLogic AND operator ∧ and the combined trust scores
oT1

, . . . , oTl
, such that oT = oT1

∧ . . . ∧ oTl
. The score oT

should tell how much we can trust that all involved TSAs
generate time-stamps containing the correct date and time.

Decision mechanism. We propose a threshold-based deci-
sion mechanism which works as follows. The retriever defines
trust thresholds αs and αT for the sequence of time-stamps
and the TSAs, respectively. These thresholds are in the form of
CertainTrust opinions. The values assigned as trust thresholds
depend on the time-stamped document. For example, in a hos-
pital using time-stamped electronic health records, thresholds
should be as high as possible when the misuse of records are
life threatening for patients (e.g., containing the wrong blood
type). Other medical records, say, containing blood pressures,
might be less harmful and to them a lower threshold can be
assigned than to the life threatening ones.

The retriever provides αs, αT , os, and oT as input for the
decision mechanism. The trust decision is made as follows:
if and only if os ≥ αs and oT ≥ αT the mechanism outputs
true, i.e., the document is trusted not to be a forgery. Otherwise,

266Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

false, i.e., the document may be a forgery.

Note that there is a good reason for only the trust opinion
oT on TSAs and the trust threshold αT for TSAs being not
sufficient to make trust decisions. It is because the trust opinion
os on a time-stamp sequence and the trust threshold αs for
time-stamp sequences can prevent retrievers from accepting,
for example, a sequence that contains a wrong time-stamp
accidentally issued by a trustworthy TSA.

C. Resetting trust

Even though the time-stamps for a document have valid
signatures, the document may not be trusted. We discuss two
such situations where this problem may arise. Moreover, we
propose a solution to this problem.

Assume there is a document and the corresponding time-
stamp sequence in the storage system. The first situation can
happen when one or more TSAs, issuing the time-stamp se-
quence, have bad reputation. The second situation can happen
when the time-stamp sequence grows large in size. More
precisely, the more time-stamps a sequence contains, the higher
the chance that one of these time-stamps have been wrongly
issued.

In order to address both situations, we propose the fol-
lowing solution. Assume that a document d has a time-stamp
sequence s1, . . . , sk and can no longer be trusted by retrievers.
Moreover, assume that there is an expert which is able to check
whether the content of d is indeed correct. For example, if d is
a document describing a patient’s disease, the expert could be a
physician that examines the patient to confirm that d is correct.
Note that this is a necessary requirement to use the resetting
procedure. If there is no expert to check the correctness, then
this cannot be done. If there is an expert available he or she
first verifies that the content of document d is correct and that
it has been legitimately signed, say, by a doctor. If d fails the
verification, then the expert alerts the storage system and the
procedure ends. Otherwise, the expert re-signs d, generating
d′. Then, he or she submits d′ to the storage system. The
storage system obtains a time-stamp sk+1 on d′ together with
d and s1, . . . , sk. Afterwards, the storage system stores d′ and
sk+1 together with d and s1, . . . , sk+1. Our proposed solution
is illustrated in Fig. 4. Next, the storage system requests trust
scores on the certificates of the signatures from CA-TMS and
collects and stores experiences on sk+1 from the reputation
system.

Expert
Storage
system

Time-stamp
authority

1. check d

2. d′ = sign(d)

3. d′ 4. d, s1, . . . , sk, d
′

5. sk+1 = TS(d, s1, . . . , sk, d
′)

6. sk+1

7. store(d, s1, . . . , sk, d
′, sk+1)

Figure 4. The resetting trust procedure.

Future retrievers use document d′ instead of document d.
Note that d′ is protected by the time-stamps sk+1, sk+2,
The document d and time-stamps s1, s2, . . . can be checked
for audit purposes. For example, auditors can check that d and
s1, s2, . . . existed before d′ and that d and d′ are consistent.

V. EVALUATION

In this section, we demonstrate the applicability and ef-
ficacy of our proposed trust system, LoT. First, we explain
an application scenario related to EHRs. Second, we describe
the implementation of a demo EHR application. Finally, we
simulate the EHR scenario in order to demonstrate the efficacy
of our proposed system.

A. Application scenario: Electronic Health Record

Health care institutions (e.g., hospitals) keep their patients’
health information in the form of EHRs. An EHR is a container
of documents, where each document provides specific informa-
tion about the patient’s health (e.g., the diagnosis of a disease).
Additionally, the container includes time-stamp sequences for
the documents proving the correctness of the information. The
involved parties are storage systems, TSAs, the trust system,
and physicians.

Storage systems, TSAs, and the trust system are the same
as presented in Section IV. The storage systems can be either
hosted by the health care institutions or outsourced to a global
service, such as a private health care cloud. The trust system
should be hosted by organizations other than the health care
institutions and TSAs to prevent collusion. Physicians play
the roles of document submitters and retrievers. They are
submitters when they update a patient’s EHR by adding new
documents and are retrievers when they obtain documents from
the storage system to learn the health conditions of patients.
The EHR software allows to submit and retrieve EHRs and
verifies the retrieved documents by checking their time-stamp
sequences and trust opinions.

However, issues on performance and trust may occur in
this scenario. Performance can be an issue if a retrieved
document has a long time-stamp sequence (e.g., it has been
stored for decades) and the device running the EHR software
has low computing power (e.g., outdated tablet computers).
To address this issue, the verification of time-stamp sequences
can be pre-computed by the storage systems. Moreover, the
computations on trust opinions for each time-stamp and TSA
can be done by the reputation-based trust system. Note that
in any case the EHR software can perform these verifications
by itself, which we recommend for life-critical medical data.
Trust issues can happen, for example, when the involved TSAs
build bad reputation or time-stamp sequences grow largely (see
Section IV-C). Therefore, the EHR software must also show
when the retrieved document should not be trusted. Finally,
note that physicians may be unable to provide their experiences
to the trust system because they might not know how to verify
the date and time contained in a time-stamp. Therefore, the
EHR software performs such verification automatically when
a new document is added to the storage system.

Assumptions. The majority of the involved parties is ex-
pected to provide reliable experiences by checking the date and
time contained in time-stamps properly. Note that physicians
and storage systems are interested in correct time-stamps to
avoid being liable for forgeries. In contrast, a TSA wants to
build a good reputation but may have no reasons to provide
experiences on other TSAs’ time-stamps. A possible solution
is that the reputation-based trust system only publishes a TSA’
reputation if this TSA provides experiences on request.

267Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

B. Electronic Health Records Software
We developed a demonstration software to show that

physicians can easily use the reputation-based trust system.
The demonstrator allows for creating EHRs for new patients,
adding documents to existing EHRs, consulting EHRs, and
renewing the trust in documents. Due to space limitation, we
only describe how physicians consult EHRs and renew trust.

To consult an EHR, physicians use the interface depicted
in Fig. 5 as follows. First, they enter the patient’s name and
birthday. Next, the software retrieves the documents from the
patient’s EHR found in the storage system. Then, the software
obtains the required trust scores from the trust system and
uses the decision mechanism to check whether the documents
can be trusted. Finally, the software presents the corresponding
documents in a table.

Figure 5. Consulting documents in an EHR.

The table shows for each document the date and time it was
initially time-stamped, the document’s title, and the trust status.
A trust status marked with green means that the time-stamps
are correct and that the document has passed the decision
mechanism. In this case, physicians can trust the document
and open it. In contrast, the red trust status alerts physicians
that the document could be a forgery and that its trust should
be renewed.

To renew trust in a document, the physician uses the
interface illustrated in Fig. 6 as follows. First, the software
shows the details and the content of the document. Next,
the physician checks that the document contains correct in-
formation (e.g., he or she interviews the patient or request
new exams). The document can be changed by the physician
if necessary. Finally, he or she signs the document and the
software submits the document to the storage system.

C. Simulation
To demonstrate the efficacy of the proposed reputation-

based trust system in the long term, we simulate the storage
of EHRs for 100 years as follows. Initially, submitters (physi-
cians) send 10, 000 documents to a storage system and the
initialization procedure is executed for each document. Next,
because time-stamps are usually valid for up to five years, the
renewal procedure is executed 19 times for each submitted
document in order to guarantee its authenticity for 100 years.

Figure 6. Renewing the trust in a document.

These procedures request time-stamps from a pool of
60 TSAs. From these TSAs, one third issues time-stamps
containing correct date and time with a probability of 0.90. The
other two thirds issue correct time-stamps with probabilities of
0.85 and 0.80. After a TSA issued a time-stamp, we mimic the
collection of experiences from the participants. The submitter,
the storage system, and three TSAs check the date and time
contained in this time-stamp. The submitter and the storage
system do this properly with probabilities p equal to 0.50 and
0.90, respectively. TSAs check it properly with p = 0.80.
That is, with p they submit TRUE to the trust system if the
time-stamp contains the correct date and time and FALSE
otherwise. Furthermore, with probability 1 − p they submit
TRUE if the time-stamp contains wrong date and time and
FALSE otherwise.

Next, we compute the probability that retrievers obtain a
submitted document that has a time-stamp sequence containing
at least one time-stamp with wrong date and time. We calculate
this probability after executing the initialization procedure, i.e.,
when the time-stamp sequences of all submitted documents
contain only one time-stamp. Furthermore, we compute the
same probability every time after running the renewal proce-
dure, i.e., for time-stamp sequences of 2–20 time-stamps.

We compare the calculated probabilities in three scenarios.
In Scenario 1, neither our reputation system nor our decision
mechanism is available. Therefore, TSAs are selected ran-
domly from the pool and retrievers trust all documents in the
storage system. In Scenario 2, only the reputation system is
available. TSAs are selected randomly from the set of TSAs
having the 10% highest trust opinions. Note that this leads
to the exploration versus exploitation problem [18] which is
also known for other scenarios, such as Amazon or eBay.
How to deal with this requires more research and is out of
scope for this work. To bootstrap the reputation-based trust
system, 10, 000 time-stamps are issued by the TSAs in the
pool, the experiences on these time-stamp are collected, and
their reputation scores are computed. In addition to the trust
system, in Scenario 3 the decision mechanism helps retrievers
to decide whether to trust the documents. We use the trust

268Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

Length of time-stamp sequences

Pr
ob

ab
ili

ty

Scenario 1
Scenario 2
Scenario 3

Figure 7. The probabilities that retrievers trust a document that could be a
forgery.

opinion (t = 0.60, c = 0.60) as trust threshold for time-stamp
sequences and TSAs.

Fig. 7 shows that the probability of retrievers obtaining
a forged document grows exponentially for Scenario 1 and
2. However, Scenario 2 is safer for retrievers because the
used TSAs are more likely to provide correct time-stamps. By
contrast, in Scenario 3 this probability is almost negligible. So
it is prevented that a retriever accepts a forged document with
high confidence.

However, note that if the trust opinions on time-stamp
sequences and TSAs for a document are under the threshold,
this does not automatically mean that the document must be a
forgery. Therefore, the decision mechanism can produce false
negatives, i.e., time-stamp sequences that are indeed correct
may not be trusted by retrievers. In this case, if an expert is
available the trust can be reset. However, one may want to do
this as few as possible and in some scenarios there is even no
expert allowing to reset the trust. In this sense, the simulation
showed another advantage of using our proposed trust system.
More precisely, when selecting preferably trustworthy TSAs,
this reduces the chance that a forged time-stamp is generated.
Consequently, the trustworthiness of time-stamp sequences
decays more slowly.

VI. CONCLUSION & FUTURE WORK

Digital archiving systems store documents in the long term.
A serious threat in these systems is that attackers may explore
security breaches to tamper with stored documents without
being noticed. To address this, a standardized archiving system
is available that uses a public key infrastructure, where trusted
time-stamp authorities (TSAs) date and sign stored documents
periodically. However, in practice TSAs may not be fully
trustworthy and could collude with attackers. To cope with
this issue, trust models and reputation systems could be used
to identify trustworthy TSAs. However, none of the existing
systems are designed to run in the long term and to provide
trust scores for TSAs.

In this work, we proposed a reputation-based trust system
for long-term archiving called Long-term evaluation of Trust
(LoT). It provides trust scores for TSAs and their time-
stamps. These scores are derived from experiences collected
from other participants of the system. We demonstrated the
applicability of LoT in the use case of electronic health records

(EHRs). We described how physicians could use LoT to avoid
forged EHRs that, for example, could mislead physicians into
prescribing wrong treatments. We presented a demonstration
software for physicians and simulated how LoT can reduce
the probability of malicious time-stamp sequences generated
to forge electronic documents.

This is the first work that shows how to apply reputation
systems and trust models to time-stamping-based long-term
archiving schemes. Our solution allows to extend the stan-
dardized schemes by trust evaluations of archived documents,
increasing the chance of detecting maliciously modified or
generated documents. This is an important contribution for
the practicability of long-term storage, since detecting such
misbehavior increases the overall security of archiving sys-
tems. Therefore, this improvement allows archiving systems
to be used also for the use cases where very sensitive data is
processed, such as electronic health records.

Future work. We plan to analyze how to adapt LoT
to archiving schemes where multiple TSAs sign a time-
stamp together. Moreover, further security analysis on the
storage system (e.g., with respect to non-repudiation) is de-
sired. Moreover, we are working on efficient approaches to
provide confidentiality together with authenticity for archived
documents. Furthermore, it would be interesting to analyze
colluding attacks [19][20], e.g., Ballot stuffing, Bad-mouthing,
Self-promoting, Slandering, and Sybil attacks, against our
proposed reputation-based trust system, LoT. In these types
of attacks, attackers can influence the trust scores by sending
fake positive or negative experiences to the participants of the
system. Therefore, we plan to analyze the attack-resistant trust
methods, e.g., similar to [21], in the context of LoT.

ACKNOWLEDGMENTS

This work has been co-funded by the DFG as part of
projects “Scalable Trust Infrastructures” and “Long-Term Se-
cure Archiving” within the CRC 1119 CROSSING. In ad-
dition, it has received funding from the European Union’s
Horizon 2020 research and innovation program under Grant
Agreement No 644962.

REFERENCES

[1] H. M. Gladney, Preserving digital information. Springer, 2007.
[2] C. Jee, “Nhs promises real-time digital health and care

records by 2020,” http://www.computerworlduk.com/news/data/
nhs-promises-real-time-digital-health-care-records-by-2020-3585822/
[retrieved: June, 2016].

[3] A. J. Blazic, S. Saljic, and T. Gondrom, “Extensible markup language
evidence record syntax (xmlers),” RFC 6283, Internet Engineering Task
Force, Jul. 2011, https://tools.ietf.org/html/rfc6283 [retrieved: June,
2016].

[4] N. Leavitt, “Internet security under attack: The undermining of digital
certificates,” IEEE Computer, vol. 44, no. 12, 2011, pp. 17–20.

[5] D. Demirel and J. Lancrenon, “How to securely prolong the com-
putational bindingness of pedersen commitments,” IACR Cryptology
ePrint Archive, vol. 2015, 2015, p. 584, http://eprint.iacr.org/2015/584
[retrieved: June, 2016].

[6] D. Lekkas and D. Gritzalis, “Long-term verifiability of the elec-
tronic healthcare records’ authenticity,” Journal of Medical Informatics,
vol. 76, no. 5-6, 2007, pp. 442–448.

[7] M. Vigil, D. Cabarcas, J. Buchmann, and J. Huang, “Assessing trust
in the long-term protection of documents,” in ISCC 2013, 2013, pp.
185–191.

269Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

[8] M. Vigil, J. Buchmann, D. Cabarcas, C. Weinert, and A. Wiesmaier,
“Integrity, authenticity, non-repudiation, and proof of existence for long-
term archiving: A survey,” Computers & Security, vol. 50, no. 0, 2015,
pp. 16–32.

[9] T. Grandison and M. Sloman, “A survey of trust in internet applica-
tions,” IEEE Communications Surveys and Tutorials, vol. 3, no. 4, 2000,
pp. 2–16.

[10] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and reputation
systems for online service provision,” Decision Support Systems, vol.
43(2), 2007, pp. 618–644.

[11] S. M. Habib, S. Hauke, S. Ries, and M. Mühlhäuser, “Trust as a
facilitator in cloud computing: a survey,” Journal of Cloud Computing:
Advances, Systems and Applications, vol. 1, no. 19, 2012, p. 19.

[12] J. Braun, F. Volk, J. Classen, J. Buchmann, and M. Mühlhäuser, “CA
trust management for the web PKI,” IOS Press: JCS, 2014, Jun. 2014.

[13] R. Canetti, L. Cheung, D. Kaynar, N. Lynch, and O. Pereira, “Modeling
computational security in long-lived systems,” in CONCUR 2008, 2008,
pp. 114–130.

[14] S. Ries, “Extending bayesian trust models regarding context-dependence
and user friendly representation,” in Proceedings of the ACM SAC.
New York, NY, USA: ACM, 2009, pp. 1294–1301.

[15] A. Jøsang, “A logic for uncertain probabilities,” INT J UNCERTAIN
FUZZ, vol. 9, no. 3, 2001, pp. 279–212.

[16] S. M. Habib, S. Ries, S. Hauke, and M. Mühlhäuser, “Fusion of opinions
under uncertainty and conflict – application to trust assessment for cloud
marketplaces,” in 11th IEEE TrustCom 2012, June 2012, pp. 109 –118.

[17] S. Ries, S. Habib, M. Mühlhäuser, and V. Varadharajan, “Certainlogic:
A logic for modeling trust and uncertainty,” in TRUST, vol. 6740, 2011,
pp. 254–261.

[18] W. T. L. Teacy, G. Chalkiadakis, A. Rogers, and N. R. Jennings,
“Sequential decision making with untrustworthy service providers,” in
Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 2, ser. AAMAS ’08. Rich-
land, SC: International Foundation for Autonomous Agents and Multi-
agent Systems, 2008, pp. 755–762.

[19] K. Hoffman, D. Zage, and C. Nita-Rotaru, “A survey of attack and de-
fense techniques for reputation systems,” ACM Comput. Surv., vol. 42,
no. 1, Dec. 2009, pp. 1:1–1:31.

[20] A. Jøsang and J. Golbeck, “Challenges for robust of trust and reputation
systems,” in Proceedings of the 5th International Workshop on Security
and Trust Management (STM 2009), 2009.

[21] S. Ries and E. Aitenbichler, “Limiting sybil attacks on bayesian
trust models in open soa environments,” in Proceedings of the The
First International Symposium on Cyber-Physical Intelligence (CPI-09),
2009.

270Copyright (c) IARIA, 2016. ISBN: 978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies

