
Seven Steps to a Quantum-Resistant Cipher 

 

Julián Murguía Hughes 

Independent Researcher 

Montevideo, Uruguay 

email: jmurguia@montevideo.com.uy 

 

 
Abstract—All cryptography currently in use is vulnerable and 

will become obsolete once quantum computing becomes 

available. Continuing the current path seeking for more and 

more complex algorithms cannot guarantee neither secrecy nor 

unbreakability. Increasing the complexity while it keeps being 

vulnerable does not seem to be the right approach. Thinking 

outside the box is not enough. We need to start looking from a 

different perspective for a different path to ensure data 

privacy and secrecy. In this paper, we share advances in 

searching for perfect secrecy instead of complexity and we try 

to light a path to a whole new quantum-resistant 

cryptography.  

Keywords-cipher; quantum-resistant; cryptography; secrecy;  

privacy; encryption; quantum; computing; resistant; data. 

I.  INTRODUCTION 

 
In this work in progress, we show current achievements 

in the field of cryptography and present some future ideas in 

this area and their potential. No final results or final data is 

available at this time. 

Since the beginning, cryptography has worked the same 

way; you take the original source of information (the 

plaintext), a key and a fixed algorithm and you apply the 

algorithm using the plaintext and the key as input to generate 

the cryptogram or cipher text as its output. And modern 

cryptography keeps working in the exact same way. 

Although the first known evidence of some form of 

cryptography is almost four millennia old [1], one of the 

oldest known form of encryption is the Caesar’s cipher. It 

was a substitution cipher where each character was replaced 

for the one located three places later in alphabetic order and 

considered the alphabet as a round circle where ‘A’ follows 

‘Z’ and so, ‘X’ would be replaced by ‘A’, ‘Y’ would be 

replaced by ‘B’, ‘Z’ would be replaced by ‘C’, ‘A’ would be 

replaced by ‘D’ and so on. The Caesar’s algorithm was just 

a shift by places process and the key used was just three, 

indicating the algorithm that each character in the plaintext 

needed to be shifted by three to generate the cryptogram. 

Since then, algorithms have grown in complexity 

looking to enhance the security of the process and to make 

harder to recover the plaintext without knowing the key. 

But what has not changed is the logic, i.e., the way it is 

done. Cryptography is still using an algorithm with a fixed 

set of instructions that will use the plaintext and the key as 

input to produce the cipher text. The same plaintext and the 

same key will always produce the same cryptogram. 

There are two main attacks to try to get the plaintext 

without knowing the key: Cryptanalysis (analyze the process 

trying to find weaknesses or shortcuts that may allow to 

retrieve the original information without having the key) and 

Brute Force (try all possible keys). 

Modern cryptography is not unbreakable and bases its 

security on two premises: 

1) Cryptanalysis is not possible or too complex to be 

achieved. 

2) Brute Force attacks require too much time. 

It has been said and repeated that quantum computing 

will make obsolete all existing cryptography because it will 

allow brute force attacks to be completed in a short period of 

time.  

All existing cryptography? No, there is an exception. 

About a century ago, Gilbert Vernam invented an 

encryption technique [2] (Patent US 1310719 [3]) that thirty-

something years later Claude Shannon proved [4] it was 

unbreakable and will remain unbreakable to quantum 

computing. It is not used because it requires the key to have 

the same length as the plaintext, to be random and not to be 

reused. 

As today’s information is always measured in bytes or 

multiple of bytes (Kilobytes, Megabytes, Gigabytes, 

Terabytes, etc.) for all the explanations and examples here, 

the byte as the basic unit of information will be used. 

Considering the byte as just a group of eight bits, being a bit 

a binary digit that can either be a zero (0) or a one (1). 

A single byte can represent 256 different values, from 0 

to 255 in decimal, from 00 to FF in hexadecimal and from 

00000000 to 11111111 in binary. 

For a byte, the Vernam cipher will use the XOR function 

between the plaintext byte and the key byte. The function 

will compare each bit within the first byte to the bit in the 

same position in the second byte and will generate a bit with 

a value of zero if both bits have the same value and one if 

they are different. The function will return the cryptogram 

byte as its result. For a specific plaintext byte value, each of 

the 256 possible values of the key will produce a different 

cryptogram byte value. 

If you get the cryptogram byte and do not know the value 

of the key byte, every single possible value of the key byte 

has the exact same probability of being the right one and you 

247Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



have no way to decide which one of them is the right one and 

thus, which of the 256 possible values of the plaintext byte is 

the right one. 

There is no possible cryptanalysis of this process and a 

brute force attack will end up with the plaintext mixed with a 

huge number of false positives (apparently valid results) with 

no way to tell which one is the original one. 

Shannon proved that even knowing that the plaintext is 

just text, any possible text with the same length has the exact 

same probability of being the original plaintext [5]. 

In this paper, we will present our proposed encryption 

technique (patent pending [8]) and the seven steps to an 

unbreakable quantum-resistant cryptographic technique. 

The rest of this paper is organized as follows. Section II 

describes the state of the art and the vulnerability to quantum 

attacks. Section III describes each of the seven steps of our 

proposed encryption technique.  Section IV describes the 

analysis of a possible cipher based on those seven steps and 

compares it against Vernam’s and other current standards. 

Section V describes the conclusions and Section VI 

describes the future work and goals. 

II. STATE OF THE ART 

According to the European Telecommunications 

Standards Institute (ETSI), “Without quantum-safe 

encryption, everything that has been transmitted, or will ever 

be transmitted, over a network is vulnerable to 

eavesdropping and public disclosure” [6]. 

Discussion and comparison between symmetric and 

public key cryptography currently in use becomes irrelevant 

once one understands that none of them is unbreakable.  

Public key algorithms such as RSA (Rivest, Shamir and 

Adleman), ECC (Elliptic Curve Cryptography), Diffie-

Hellman and DSA (Digital Signature Algorithm) will be 

easily broken by quantum computers using Shor’s 

algorithms [7] and so, they are deemed to be insecure to 

quantum computing. 

Symmetric algorithms as AES (Advanced Encryption 

Standard) are believed (but not proven) to be resilient 

against quantum attacks by doubling the key length.  

Any cipher that bases its strength on its complexity and 

the computational power required for an attack will 

eventually be broken and persisting on this way will only 

provide a false sense of security that will last briefly. 

Vernam’s cipher and the one described in this paper 

make no computational assumptions and are both 

information-theoretically secure. 

What we hope to achieve is to provide a cipher offering 

perfect unconditional security against eavesdroppers no 

matter how arbitrarily powerful they may be or become in 

the future and without the constraints the Vernam cipher 

has. Something none of the currently in use standards can 

offer. 

III. THE SEVEN STEPS 

A. Step One (Use Multiple Encryption Functions) 

Vernam used a single function (XOR). Our approach will 
use many of them. Each function will take the plaintext byte 
and the key byte and will return a cryptogram byte and for 
each of the 256 possible key byte values will return a 
different cryptogram byte value. 

Below, we will explain two of these functions that are 
similar and as unbreakable as the Vernam or XOR function; 
other functions with the same behavior will also be 
unbreakable. 

 Modular Addition: Will add up the plaintext byte 
value and the key byte value wrapping up at 255. If 
the result is larger than 255 it will subtract 256 from 
the result. For a specific plaintext byte value, each 
possible key byte value will produce a different 
cryptogram byte value. If you get the cryptogram 
byte and do not know the value of the key byte, 
every single possible value of the key byte has the 
exact same probability of being the right one and 
you have no way to decide which one of them is the 
right one and thus, which of the 256 possible values 
of the plaintext byte is the right one. 

 Modular Subtraction: Will subtract the key byte 
value from the plaintext byte value wrapping up at 
zero. If the result is negative it will add 256 to the 
result. For a specific plaintext byte value, each 
possible key byte value will produce a different 
cryptogram byte value. If you get the cryptogram 
byte and do not know the value of the key byte, 
every single possible value of the key byte has the 
exact same probability of being the right one and 
you have no way to decide which one of them is the 
right one and thus, which of the 256 possible values 
of the plaintext byte is the right one.  

Using multiple functions provides additional security 
because, if one has the cryptogram byte, not only 
the key byte used is unknown, but also the function used. 

For a given plaintext byte value, any valid function 
should return 256 different results based on the value of the 
key byte, so applying each function to the given plaintext 
byte value and for each key byte value from 0 to 255, will 
produce a list of 256 different results.  

Each of those functions is as secure and unbreakable as 
Vernam’s XOR and using many of them does not diminish 
either the security or the unbreakability of the process. 

When the plaintext’s length is larger than one byte we 
can use one function to process the first byte, another one to 
process the second byte and so on. That leads us to the 
following step. 

B. Step Two (Use a Second Parameter) 

A second parameter will be used to indicate which 
function to use on each instance. 

A block from this second parameter will indicate which 
one of the many available functions will be used to process a 
byte from the plaintext and a byte from the key. 

248Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



Let us say we decide to use only 256 different functions 
from all that can be created. In such case, we will only need 
one byte from this second parameter to indicate which of 
those functions will be used for this specific plaintext byte 
and key byte. 

So far, the second parameter byte value x will trigger 
function z. 

How do we know which of the available functions is 
function z, is explained in the next step. 

C. Step Three (Order of the Functions) 

When we have many different functions, we need to 
identify them somehow and make a list of them. 

This list is what will be used to decide which function 
will be triggered by which value from the second parameter. 

And this list is not unique, 256 different functions can be 
ordered in 256! (n! = 1x2x3x,…n) different ways (256! is a 
507 digit decimal number with a value larger than 8.578 * 
10^506 or about 2^1684), and a different function order will 
produce a different cryptogram for the same plaintext and 
key. 

Now, an attacker not only needs to try every possible 
key, also needs to guess which functions were used and 
which function is triggered by each possible value of the 
second parameter. And that, assuming the selected function 
order is hardcoded within the process. 

So far, parameter byte value x will always trigger 
function z, unless we can make parameter value x trigger 
function w in a different run. 

The order of the functions can be changed, as explained 
in the next step. 

D. Step Four (Changing the Order of the Functions) 

How do we make second parameter byte value x to 

trigger a function different from function z? 

The solution is both simple and elegant. 

We add a third parameter. One of those 256! possible 

orders of the numbers from 0 to 255 is loaded into a 256 

elements vector, and value x is used to point to the vector’s 

element whose value will be used to trigger the function. 

A different third parameter will provide a different 

function order. 

As this third parameter is a sequence of 256 values, each 

between 0 and 255, it is possible to exclude certain values 

just by replacing them (i.e., if you want the value 14 not to 

be used, then replace the element with a value of 14 for a 

different value). 

Now, second parameter byte value x will trigger a 

function depending on the xth element of the third 

parameter. 

So far, any attacker would know that the first byte from 

the cryptogram corresponds to the first byte of the plaintext, 

the second byte from the cryptogram corresponds to the 

second byte of the plaintext, and so on. 

Next step will show how to change that. 

E. Step Five (Block Processing) 

Let us take a block of bytes of a given length from the 

plaintext and process it in reverse order, starting from the 

last byte in the block, processing it and saving it as the first 

byte in the cryptogram. Then the previous to the last to be 

the second byte in the cryptogram and so on, until we end 

processing the block by processing its first byte and then 

continue with the next block. 

The last block may be shorter but it is equally processed 

from last byte to first one as any other block without any 

need of any additional dummy information to be added. 

Now, unless the attacker knows the exact length of the 

block used, there is no way to know from where to start to 

retrieve the original plaintext. 

F. Step Six (Key Length and Key Repetitions) 

So far, no mention has been made of the key length.  

Vernam’s cipher requires the key to have at least the 

same length as the plaintext. If the key is shorter, the 

process starts to repeat and it weakens its security. 

If we use a key shorter than the plaintext it will wrap up 

at the end, but unless the key and the second parameter both 

have the exact same length, there will be no repetitions until 

we reach a position within the plaintext equal to the 

minimum common multiple of the lengths of both the key 

and the second parameter. And as it may eventually happen 

the whole process would be vulnerable unless we find a way 

to avoid repetitions. 

The solution is, once again, simple and elegant. 

When the end of the key is reached, before starting to 

repeat it, the process changes the function order by 

modifying the elements in the vector explained in step four.  

Each time this happens, the change process behaves 

differently. 

Now, even if the key and the second parameter have the 

exact same length and they start to repeat in the exact same 

order, the sequence of functions triggered will not be the 

same and so no repetitions will occur. 

G. Step Seven (Make Lengths Variable) 

Current encryption standards use fixed length blocks and 

fixed length keys (they may offer different key sizes but 

with very limited pre-defined fixed sizes). 

Our solution allows for user selected lengths for the key, the 

second parameter and the processing block. 

The key length may go from a single byte to any length, 

even the same length of the plaintext or longer. 

The second parameter may go from a single byte to any 

length, even the same length of the plaintext or longer. 

The processing block size may go from a single byte to 

any length up to the length of the plaintext and is limited 

only by the maximum size allowed by the system where the 

encryption is implemented. 

When building up the application, different groups and 

number of functions may be used to create personalized 

non-standard versions. 

249Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



IV. ANALYSIS 

A. A cipher complying with these seven steps 

If we build up a cipher complying with these seven steps, 
it may use up to four parameters: 

 The key to be used. 
This key is just a sequence of bytes of any 
length and can be longer, equal in length or 
shorter than the plaintext. 

 A second parameter defining which function to 
use on each instance. 
This second parameter is a sequence of bytes of 
any length and there is no relation between its 
length and the lengths of the plaintext or the 
key. 

 An original function order. 
This is a 256 bytes string that will be used to 
define an initial order for the encryption 
functions to be used. 

 A processing block size. 
This will define the number of bytes to be read 
at once from the plaintext and processed in 
reverse order (from the last byte to the first one) 
to generate the cipher text. A value of 1 (one) 
will make the plaintext to be processed straight 
from the first byte to the last one. 

Depending on how the cipher is programmed and 

implemented, it can allow the user to manually type every 

parameter or to select or chose them. 

The encryption process will work as follows: 

1. The user may select the plaintext to process, 

the key, the second parameter, the initial 

function order and the processing block size.  

2. The process loads the initial function order 

into a 256 element vector.  

3. If the remaining of the plaintext is shorter than 

the processing block, the processing block size 

is adjusted accordingly. 

4. The process reads a processing block from the 

plaintext. If the plaintext has been exhausted, 

the process ends. 

5. The process takes the last byte from the 

processing block. 

6. The process takes a byte from the key. 

If the key has been exhausted, reorder the 

original function order vector elements and 

read the first key byte again. 

7. The process takes a byte from the second 

parameter. 

If the second parameter has been exhausted, 

start over from its first byte. 

8. The process uses the byte from the second 

parameter to point to an element from the 

initial function order vector and uses its value 

to trigger an encryption function passing the 

plaintext and key bytes as parameters. 

9. The function triggered returns a cipher text 

byte that is written to the cipher text output. 

10. The process takes the previous byte from the 

processing block.  

If the processing block has been exhausted, 

jump to step 3. 

11. Jump to step 5. 
The decryption process will work the exact same way, 

using the cipher text instead of the plaintext and reversing 
the encryption process. 

B. Comparing this cipher with Vernam’s one 

Is easy to see that if one of the possible encryption 
functions used is the XOR function and the initial function 
order vector elements all have the same value and that 
specific value triggers the XOR function, then and only then, 
this cipher will behave the same as the Vernam’s one. 

A text message properly ciphered through the Vernam 
Cipher gives absolutely no clue on the key used or the 
original plaintext and a brute force attack will end up with a 
huge number of false positives. 

A brute force attack will return some invalid or 
unreadable results but will also return any possible message 
with the exact same length and there is no way to decide 
which one is the true original one. 

The Vernam Cipher is not used because it has three 
requirements that need to be fulfilled to comply with 
Shannon’s definition for Perfect Secrecy: 

1) The key needs to have the same length as the 

plaintext. 

2) The key must be random. 

3) The key must not be reused. 

These three requirements are mandatory because Vernam 
used a single encryption function (XOR) in the process.  

With the Vernam Cipher, for any given cipher text byte, 
one needs to try any possible key byte value and you will 
end up with 256 different results, each one with the exact 
same probability of being the plain text byte value. 

With our proposed encryption technique and even 
assuming the attacker knows the exact processing block size 
used for this specific cipher text, all the encryption functions 
used and can match each cipher text byte with the 
corresponding byte position in the plaintext; the attacker will 
still need to try each of the 256 possible key byte values with 
each of the encryption functions involved. So, if we used 256 
different encryption functions, the attacker will end up with 
65,536 possible values for the plain text byte, each one 
repeated many times and no way to decide which value is the 
original one. 

If the attacker does not know the processing block size, it 
multiplies the effort required as the first byte from the 
plaintext may correspond to any of the bytes in the cipher 
text, the second one to any of the bytes except the last and so 
on, doing the math it means there are n! (n! = 1x2x3x,…n) 
possible orders for the cipher text to match the byte order of 
the plaintext, being n the length in bytes of both the plaintext 
and the cipher text.  

250Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



Our proposed cipher does not have the same constraints 
as the Vernam one. 

Figure 1 shows a comparison between Vernam’s cipher 
and our proposed one: 

 

 
VERNAM 

Our Proposed 
Cipher 

Sample plaintext length 140 140 

Processing block size 1 Variable 

Key size 140 Variable 

Key and plaintext length 

must match 
Yes No 

Key must be true random Yes No 

Key must not be reused Yes No 

No. of functions 1 256 

No. of possible results 

per function 
256 256 

No. of possible results 
per Byte 

256 65536 

Ciphertext to plaintext 

match 
1 140! 

No. of possible results 
per Byte from brute force 

attack 

256 65536 x 140! 

No. of possible results 
per Byte from brute force 

attack as power of 2 

2^(8) 2^(809) 

Probability of being the 

plaintext byte 
0,39% 0,39% 

Rounds 1 1 

False Positives Yes Yes 

Figure 1.  Comparing Vernam’s cipher to our proposal. 

The key may have any length and it does not matter if it 
is shorter than the plaintext because we can assure the same 
key value-encryption function sequence will not be repeated. 

As we use some additional parameters, does the key truly 
need to be random? 

Leaving aside any discussion about what is truly random 
and what is not, anything can be used as a key; a text, a web 
page, a file from the Internet. As far as the key is kept secret, 
it really does not matter whether it is truly random or not. 

What if the key is reused? 
Using the same key again is irrelevant as far as we do not 

use the same processing block size, same second parameter 
and same initial function order altogether again. 

C. Comparing this cipher with currently used ciphers 

Due to their extreme complexity, none of the current 
encryption standards will produce a false positive when a 
wrong key is used and that is why they are vulnerable to 
brute force attacks. 

All currently used encryption base their privacy and 
security on the unavailability of enough computational 
power required to try all possible keys in a short time and 
that is why they will all fail under a quantum attack capable 
of trying every possible key in very little time. 

There is an old saying: “How do you hide an elephant on 
a beach? By filling the beach with elephants”. 

The strength of our proposed encryption technique relies 
not on the computational power required to try every 
possible key, second parameter, initial function order or 
function set; its strength relies on the fact that we assume it 
can be done but the real original plaintext will be hidden at 
plain sight within an immense sea of false positives with 
absolutely no indication on which one is the right one. 

Figure 2 shows a comparison between our proposed 
cipher and other symmetric ciphers: 

 

 
Block Size Key Size Rounds 

False 
Positives 

DES [9] 64 bit 56 bit 16 No 

3DES [10] 64 bit 128 bit 48 No 

AES [11] 128 bit 
128, 192, 
256 bit 

9, 11, 
13 

No 

BLOWFISH 

[12] 
64 bit 32-448 bit 16 No 

Our 

Proposed 

Cipher 

Variable Variable 1 Yes 

Figure 2.  Comparison between this cipher and current symmetric 

standards. 

Public-key cryptography currently in use (including RSA 
and ECC) relies on the presumption that some problems 
cannot be solved or would will require an extremely long 
time to be solved, and therefore, that it would take a very 
long time for their secured data to be decrypted. But as 
quantum algorithms can solve some of these problems with 
ease, that assumption is fatally challenged. 

Picture 3 shows public-key key sizes broken in recent 
years and projections for the near future: 

 

Figure 3.  Breaks of the RSA cryptosystem in recent years using 

conventional computation [6]. 

251Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



D. Attacking this cipher 

Trying to retrieve the plaintext from a cipher text created 
through an implementation of this cipher without having any 
additional information will be at least as difficult as trying to 
retrieve the plaintext from a cipher text created through a 
proper use of the Vernam cipher having only the cipher text. 

Any attack must take into consideration that all the 
parameters are external to the process and they all may be 
different from one plaintext encrypted to the next and also 
the fact that the process may be used in reverse order. 
Decryption can be used to protect the plaintext and 
encryption with the same parameters used to retrieve the 
original plaintext. 

Any possible attacker will need to face the following 
difficulties when attempting a brute force attack to break an 
encryption created with an implementation of this cipher: 

 Which cipher text byte corresponds to each 
plain text byte. 

 Which encryption functions exist and which of 
them were used. 

 Which function was used on each instance. 

 Which was the key used. 
Let us give the attacker the advantage of knowing all the 

encryption functions involved, the specific set used to create 
the cipher text and the processing block size used. In such 
situation, for each byte in the cipher text, the attacker needs 
to try every possible function for every possible key byte 
value and so, instead of getting 256 possible values as with 
Vernam’s cipher, the result will be 65536 possible values 
having every single one the exact same probability of being 
the plaintext byte value despite the repetitions. 

And that is the best case scenario for the attacker. 
If the processing block size is not known, the attacker 

will need to try any block size from a single byte to the 
length of the cipher text. While this adds time and difficulty 
to the attack, every possible outcome still has the exact same 
probability of being the original plain text despite the 
repetitions. 

V. CONCLUSIONS 

Assuming there is currently enough available 

computational power to try in a very short time every single 

key length and value, with every single processing block 

size and every single possible encryption function there still 

will not be possible to decide which one of the apparently 

valid results is the true original plaintext. 

Even knowing that the plaintext is just plain text, any 

possible text with the same length or shorter (just filled with 

spaces at the end to reach the same length) has the exact 

same possibility of being the original plaintext. And that is 

the essence of perfect secrecy, something none of the 

currently in use encryption standards or solutions can offer. 

We’ve seen here that this new encryption technique 

offers the same level of perfect secrecy guaranteed by the 

Vernam cipher without its constraints. 

With billions and billions of files available through the 

internet and the capability of using any of them as a key, as 

a second parameter and even as the original function order, 

nobody needs to remember long keys, just needs to 

remember which files were used and how to reach them. 

If one has enough computational power like quantum 

computing promises to offer when it becomes available, one 

may be able to break and read any file encrypted with any of 

the current standards, techniques and tools with two 

exceptions: 

 Anything protected through the proper use of the 

Vernam cipher will remain secret. 

 Anything protected through the use of our proposed 

cipher will remain secret. 

VI. FUTURE WORK 

This is a work in progress and there is still a lot of work 
ahead before it could be considered complete. 

We have already implemented an encryption solution 
complying with the seven steps defined here. It is a Windows 
app programmed in Visual Basic 6.0 that uses 256 different 
encryption functions and is capable of encrypting and 
decrypting files up to about 900 TB (900,000,000,000,000 
bytes long) and fast enough to cipher/decipher a 40 MB file 
in less than five seconds. 

Future work will aim to validate the ideas presented in 
this paper by means of practical results, simulations, 
statistical analysis and practical performance comparisons 
with other ciphers.  

Future work will also aim to test and evaluate the ideas 
presented in this paper and their application for Format 
Preserving Encryption. 

REFERENCES 

[1] H. Sidhpurwala, “A Brief History of Cryptography”  redhat 
Security Blog, August 14th, 2013. 

[2] G. S. Vernam, “Cipher Printing Telegraph Systems for Secret 
Wire and Radio Communications”, Journal of the IEEE 55: 
109-115. 

[3] G. S. Vernam, Patent 1,310,719. “Secret Signaling System”, 
Patented July 22, 1919. United States Patent and Trademark 
Office. 

[4] C. E. Shannon, “A Mathematical Theory of Communication”, 
The Bell System Technical Journal, Vol. XXVII, No. 3, July 
1948, pp. 379-423 and October 1948, pp. 623-656. 

[5] C. E. Shannon, “Communication Theory of Secrecy 
Systems”, The Bell System Technical Journal, Vol. XXVIII, 
No. 4, pp. 656-715. 

[6] ETSI, “Quantum Safe Cryptography and Security”, ETSI 
Whitepaper No. 8, June 2015, ISBN No. 979-10-92620-03-0. 

[7] P. W. Shor, "Polynomial-Time Algorithms for Prime 
Factorization and Discrete Logarithms on a Quantum 
Computer", SIAM J. Comput. 26 (5): 1484–1509. 

[8] J. Murguia Hughes, “Poly-Algorithmic Encryption 
Technique”, Patent Pending. 

[9] “Data Encryption Standard (DES)”, FIPS PUB 46, United 
States National Institute of Standards and Technology (NIST), 
January 15, 1977. 

252Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



[10] W. C. Barker and E. Barker,  “NIST Special Publication 800-
67 Revision 1: Recommendation for the Triple Data 
Encryption Algorithm (TDEA)”, NIST Special Publication 
800-67, January 2012. 

[11] “Announcing the ADVANCED ENCRYPTION STANDARD 
(AES)”, FIPS PUB 197, United States National Institute of 
Standards and Technology (NIST), November 26, 2001. 

[12] B. Schneier, “Description of a New Variable-Length Key, 64-
Bit Block Cipher (Blowfish)”, Fast Software Encryption, 
Cambridge Security Workshop Proceedings (Springer-
Verlag): 191-204, 1993 

253Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies


