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Abstract—Cryptosystems require a very good and secure source of
randomness for their security. Such a source is extremely difficult
to obtain in practice. Hence, developing a secure pseudo-random
number generator reveals necessary. In this paper, we propose a
new pseudo chaotic number generator. The proposed structure
integrates three discrete chaotic maps: Piece Wise Linear Chaotic
(PWLCM), Skewtent and Logistic maps, which are weakly
coupled and implemented with finite precision N=32 bits. It also
includes a chaotic multiplexing technique. The experiment results
and statistical analysis prove the robustness of the proposed
generator as well as its efficiency in terms of computation time in
comparison with know chaotic generators of the literature. Based
on the previous structure, a random number generator that uses
Linux generator has been designed : "/dev/urandom".

Keywords–Pseudo-chaotic number generator; Weakly Coupling;
Chaotic multiplexing technique; Random numbers; Security anal-
yses.

I. INTRODUCTION

Random numbers generators are useful for a variety of
purposes in various contexts including statistical mechanics,
gaming industry, cryptography and communications, etc. There
are two basic types of random number generator: True Random
Number Generators (TRNGs) and Pseudo-Random Number
Generators (PRNGs). TRNGs produce a random bit stream
from a non-deterministic natural source. They extract ran-
domness from certain physical phenomena such as thermal
and atmospheric noises. TRNGs are characterized by a higher
security. However, their implementation requires additional
devices, which make them inconvenient (cost and slow) [1].
A PRNG is a deterministic algorithm that produce numbers
whose distribution is uniform, by inputting an initial seed
(often generated by a TRNG). PRNGs are important in practice
for their rapidity in number generation, reproducibility of
the pseudo-random sequences and requiring less memory for
storage [2].

Over the past years, many researchers have been attracted
to chaos in the design of PRNGs, due to its intrinsic prop-
erties such as ergodicity, randomness and high sensitivity to
initial conditions and parameters [3]. Several PRNGs have
been proposed in the literature. Shujun et al. [4] presented
a novel pseudo-chaotic bit generator based on a Couple of
Chaotic Systems called CCS-PRBG. Analyses show that it has
good cryptographic properties, but the speed of the proposed

generator is not high enough for real time applications. Lozi [5]
introduced new models for very weakly coupled logistic and
tent maps using single or double precision numbers. Also, he
used a double threshold chaotic sampling and mixing in weakly
coupled tent maps [6]. This technique improves randomness
of the generated sequence but causes a decrease in the speed
performance. In [7], we proposed a Pseudo Chaotic Number
Generator (PCNG) based on three weakly-coupled discrete
skewtent maps and uses a chaotic multiplexing technique. This
structure is very secure but its implantation was not optimized.

In this paper, we present an efficient PCNG based on three
weakly coupled discrete chaotic maps namely PWLCM (Piece-
Wise Linear Chaotic Map), Skewtent and Logistic maps.
Besides, the structure uses a chaotic switching technique that
increase the security performance. In addition, based on the
proposed PCNG and Linux generator ”/dev/urandom”. The
paper is organized as follows: the architecture of the proposed
PCNG is described in Section II. In Section III, we give
its performance in terms of security and computation time.
Then, we present in Section IV the proposed RNG. Finally,
we conclude our work in Section V.

II. STRUCTURE OF THE PROPOSED PCNG
The scheme of the proposed PCNG is presented in Fig. 1.

It is based on iterating three chaotic maps, namely, Pwlcm,
skewtent and logistic maps, which are weakly coupled by
a coupling matrix. It also includes a chaotic multiplexing
technique [6], [8]–[13] .

Figure 1: Structure of the proposed chaotic generator.

The generated samples X(n) are quantified on N = 32 bits.

225Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-493-0

SECURWARE 2016 : The Tenth International Conference on Emerging Security Information, Systems and Technologies



The secret key of the system consists of:

• The initial conditions Xp, Xs and Xl of the three
chaotic maps: Pwlcm, Skewtent and Logistic respec-
tively, ranging from 1 to 2N -1.

• The control parameter Pp and Ps of Pwlcm and
Skewtent maps, where 1 ≤ Pp ≤ 2N−1 and 1 ≤
Ps ≤ 2N − 1.

• The parameters of the coupling matrix A, εij , ranging
from 1 to 2k with k ≤ 5.

The chaotic system uses three initial vectors IVp, IVs and
IVl, each quantified on 32 bits.

All the initial conditions, parameters and initial vectors are
chosen randomly from file "/dev/urandom", interfaces to
the entropy pool sources on the Lunix kernel.

The functionality of the chaotic generator is as follows:

Step1: It calculates the initial values Xp(0), Xs(0) and
Xl(0) as follows:

Xp(0) = Xp⊕ IV p
Xs(0) = Xs⊕ IV s
Xl(0) = Xl ⊕ IV l

Step2: The chaotic maps are weakly coupled by a coupling
matrix A, as indicated by (1):[

Xp(n)
Xs(n)
Xl(n)

]
= A×

[
Fp[Xp(n− 1)]
Fs[Xs(n− 1)]
Fl[Xl(n− 1)]

]
. (1)

where A is given by:

A =

[
ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

]
(2)

with ε11 = 2N − ε12 − ε13.
ε22 = 2N − ε21 − ε23.
ε33 = 2N − ε31 − ε32.

Fp[X(n-1)], Fs[X(n-1)] and Fl[X(n-1)] are the discrete
PWLCM, Skewtent and Logistic maps functions respectively
[7].

Fp[X(n− 1)] =

⌈
2N × X[n−1]

P

⌉
if 0 < X[n− 1] ≤ P

⌈
2N × X[n−1]−P

2N−1−P

⌉
if P < X[n− 1] ≤ 2N−1

⌈
2N × 2N−P−X[n−1]

2N−1−P

⌉
if 2N−1 < X[n− 1] ≤ 2N − P

⌈
2N × 2N−X[n−1]

P

⌉
if 2N − P < X[n− 1] ≤ 2N − 1

2N − 1− P otherwise
(3)

Fs[X(n− 1)] =
⌊
2N×X[n−1]

P

⌋
if 0 < X[n− 1] < P

2N − 1 if X[n− 1] = P⌊
2N×(2N−X[n−1])

2N−P

⌋
if P < X[n− 1] < 2N

(4)

Fl[X[n− 1]] =
⌊
X[n−1]×[2N−X[n−1]]

2N−1

⌋
if X[n− 1] 6= [3× 2N−2; 2N ]

2N − 1 if X[n− 1] = [3× 2N−2; 2N ]
(5)

Step3: The output samples X(n) are controlled by a
threshold T and a chaotic sample Xth which is equal to Xl(n):

X(n) =

{
Xp(n), if 0 < Xth < T
Xs(n), otherwise (6)

Notice that at the end of each execution, a new IV is
generated. This allows to produce a new key stream for the
next execution (using the same secret key).

III. SIMULATION RESULTS AND ANALYSIS

A. Security Analysis
1) Key space analysis: A PCNG should have a large key

space in order to make brute-force attacks infeasible. It is
generally accepted that a key space of size equal or greater
to 2128 is secure. The size of the secret key of the proposed
system is:

|K| = (|Xp|+ |Xs|+ |Xl|) + (|Pp|+ |Ps|) + 6× |εij |.
(7)

where |Xp| = |Xs| = |Xl| = |Ps| = 32 bits ; |Pp| = 31
bits and |εij | is equal to 5 bits. Therefore |K| = 189 bits.

The size of the secret key is large enough to resist any
brute-force attacks. Such a large space of keys is a necessary
condition, but not sufficient. Indeed, the generated sequences
must be cryptographically secure.

2) Key Sensitivity: The sensitivity on the key is an essential
property for any PCNG. Naturally, a small change in the secret
key causes a large change in the output sequences. In order to
verify this characteristic, we calculate the Hamming Distance
of two sequences generated with only one bit change (lsb
bit) in the parameter Pp. We calculate the average Hamming
Distance DHamming between two sequences S1 and S2, over
100 random secret keys. The DHamming(S1, S2) is defined by
the following equation:

DHamming(S1, S2) =
1

Nb
×

Nb∑
K=1

(S1[K]⊕ S2[K]) (8)

where Nb is the number of bits in a sequence. The obtained
average value of Hamming distance is equal to 0.499988. This
value is close to the optimal value of 50%. This result illus-
trates the heigh sensitivity on the secret key of the proposed
PCNG.
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B. Statistical Analysis

To test the statistical properties of the proposed PCNG, we
used several known statistical tests. They concern mapping,
auto and cross-correlation, histogram, chi square and NIST
test.

1) Phase space trajectory or mapping analysis: The map-
ping or the phase space trajectory of the generated sequences
reflects the dynamic behaviour of the system. In Fig. 2, we
give a zoom of the obtained mapping. It is messy due to the
used chaotic coupling and switching techniques. Therefore, it
is impossible to identify the type of the used chaotic maps.

Figure 2: Mapping of the sequence X .

2) Histogram and Chi-square analysis: We study the dis-
tribution uniformity of the generated sequences. A PCNG must
provide a uniform distribution in the whole phase space. We
give in Fig. 3 the histogram of a generated sequence, by our
PCNG, formed by 107 samples.

Figure 3: Histogram of a generated sequence X .

Visually, we observe that the generated sequence is nearly
uniformly distributed. We then apply the chi-square test to
assert the uniformity of the sequence [14]. The experimental

Chi-square χ2 value is given by:

χ2
exp =

K−1∑
i=0

(Oi − Ei)
2

Ei
. (9)

where K is the number of classes (sub-intervals) chosen in
our experiment equal to 1000, Oi is the number of observed
(calculated) samples in the i-th class and Ei is the expected
number of samples of a uniform distribution, Ei = 107/K.

We compare the experimental value given by (9) with a
theoretical value obtained for a threshold α=0.05 and a degree
of freedom K-1=999. The experimental value of chi-square is
equal to 1027.26. This value is lower than the theoretical one
which is equal to 1073.64. These results confirm the uniformity
of the generated sequence.

3) Correlation analysis: Correlation reflects the intensity
of connection which may exist between two random variables.
In PCNG, the values in the sequences must not be repeated
nor correlated. To avoid the statistical analysis, the correlation
coefficients of two sequences X and Y , computed with nearby
initial conditions, should be close to zero.

The correlation coefficient is calculated by the following
equation:

ρXY =

∑N
i=1(xi − X̄)(yi − Ȳ )

[
∑N

i=1(Xi − X̄)2]1/2 × [
∑N

i=1(Yi − ȳ)2]1/2
. (10)

where X̄ = 1
N

∑N
i=1 xi and Ȳ = 1

N

∑N
i=1 Yi are the mean

values of two sequences X and Y respectively.
The calculated correlation coefficient ρXY is equal to

0.0022 (close to zero). Also, in Fig. 4 we give a zoom of the
cross-correlation function of sequences X and Y , and the auto-
correlation of sequence X . Results clearly show the negligible
correlation between the generated sequences X and Y .

Figure 4: Cross-correlation of sequences X and Y , and
auto-correlation of sequence X .

4) NIST test: We apply the NIST statistical test, which
presents one of the most popular standard test for analysing
randomness of binary data. The STS 2.1.2 version statistical
test suite published in [15] is used. It consists of a battery of
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188 tests (globally 15 different tests) to conclude regarding
the randomness or non-randomness of binary sequences. For
each test, a set of m P-values are expected to indicate failure.
Indeed, an α = 0.01, indicates that 1% of the m sequences are
expected to fail.

• A P − value ≥ α = 0.01 would mean that the
sequence would be random with a confidence of
(1− α) = 99%.

• A P − value < α = 0.01 would mean that the
conclusion was that the sequence is non-random with
a confidence of (1− α) = 99%.

In our experiments, we generate m = 100 sequences, each of
length 106 bits, and α = 0.01.

The results are given in Fig. 5 and Table I. It can be seen
that the bit-sequences pass all tests and fulfil the hypothesis
of randomness. Therefore, the proposed chaotic generator is
robust against statistical attacks.

Figure 5: NIST tests results.

TABLE I: P-VALUES AND PROPORTION RESULTS OF
NIST TEST.

Test P -value Proportion
Frequency test 0.972 99
Block-frequency test 0.055 99
Cumulative-sums test 0.834 98.5
Runs test 0.534 100
Longest-run test 0.290 99
Rank test 0.964 97
FFT test 0.384 97
Non periodic-templates 0.482 98.939
Overlapping-templates 0.637 98
Universal 0.237 98
Approximate entropy 0.936 99
Random-excursions 0.314 99.364
Random-excursions-variant 0.295 99.435
Serial test 0.606 100
Linear-complexity 0.290 99

C. Speed Performance
Speed is an important factor for evaluating the performance

of a PCNG. For the proposed PCNG, we calculate the bit rate
(in Mega bits per second) and the number of needed cycles to
generate one byte. All experiments are performed on a personal

computer with Intel(R) Core(TM) i5-4300M CPU @2.60GHz
and memory 15,6 GB and the operating system is Ubuntu
14.04 Trusty Linux distribution, using GNU GCC Compiler.
In tableII, we give, over 100 different secret keys, the average
Bit Rate in Mbps and the average number of needed cycles to
generate one byte (NCpB) for the proposed PCNG to generate
31250 samples. And we compare the obtained results with
some known generators. The Bit Rate and NCpB are calculated
respectively as follows:

Bit Rate(Mbps) =
Generated data size(Mbits)

Average generation time(s)
(11)

NCpB =
CPUspeed(Hz)

Bit Rate(Byte/s)
(12)

TABLE II: COMPUTING PERFORMANCE OF SOME
KNOWN PCNGS.

Pseudo chaotic generator Bit Rate (Mbps) NCpB
Proposed PCNG 514.73 41
Jallouli et al. [7] 138 151
Shujun et al. [4] 9 711

We notice that the proposed chaotic generator is faster than
the following known pseudo random number generator of the
literature: Francois et al. [16], QUANTIS [17] and Blum Blum
Shub [18].

IV. DESIGN OF A RANDOM NUMBER GENERATOR

The ability to generate random numbers is important for
many applications including cryptographic ones and others
applications that do not require deterministic sequences when
using the same secret key. For that, we adapt our PCNG,
to be used as a random numbers generator. The proposed
random numbers generator has the same structure of Fig. 1,
but includes a refresh process repeated every R% samples,
for generating a sequence X(n) of length n, to update the
values of Xp(R), Xs(R) and Xl(R). The refresh process uses
random values from the file ”/dev/urandom” [19], interface
to the Linux kernel’s random number generator. For example,
when using R = 50%, the bit rate of the proposed random
numbers generator is equal to 397 Mbits/s.

V. CONCLUSION AND FUTURE WORK

In this paper, we reported a work on the design, realization
and test of a new pseudo chaotic number generator. This one
is based on three discrete chaotic maps: PWLCM, Skewtent
and Logistic that are weakly coupled. The proposed PCNG
also includes a chaotic switching technique. Results of the
statistical analysis show that the proposed PCNG has very
good cryptographic properties due to its structure. In addition,
it runs faster than other well known pseudo random number
generators. Furthermore, the structure of the PCNG is updated
to be used as a RNG for various applications that need random
numbers such as generation of cryptographic keys, computer
games and some classes of scientific experiments.

Our future work will focus on a software realization of
chaos-based stream ciphers and the measurement of their
energy consumption.
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