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Abstract—In an interconnected world malware is not only a 

topic in classical computer environments (information 

technology) anymore. Recent examples have shown which 

damage malware can cause in modern interconnected cyber-

physical systems. Based on the increasing threat of malware we 

propose an approach to counter malware. In contrast to 

classical approaches like signature scanners or IDS (Intrusion 

Detection Systems), which focus on detection our approach 

focuses on the reaction on malware-caused incidents. While 

these classic approaches usually require manual intervention 

we focus our approach on an automatic, adaptive reaction. The 

approach proposed in this work is based on principles of 

Organic Computing and conceives a self-adapting system for 

malware reaction in automotive environments. 
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I.  INTRODUCTION 

With the ubiquitousness of cyber-physical and 
interconnected systems a new field of potential targets for 
malware arises. This work focuses on the automotive domain 
as an example of an interconnected cyber-physical system. 
With its broad array of different Electronic Control Units 
(ECUs) and it’s ever increasing range of means to 
communicate with its environment (Car2X), a modern car is 
a prime example for both categories. The automotive domain 
also carries the implication that malfunctions of an ECU 
could lead to accidents and serious physical harm. Therefore, 
not only the detection of a malware incident but also a 
timely, appropriate reaction upon such incidents becomes 
crucial. While interconnectivity and reliance on electronic 
components come with the downside of vulnerability, new 
technology also offers new possibilities to protect the 
automotive system from such attacks [1]. 

We propose an adaptive subsystem to support 
autonomous reactions against malware incidents in the 
automotive domain. After a brief introduction we give a 
short overview about anti-malware strategies from Classical 
computer environments, discuss the special properties of the 
automotive domain and show general approaches for 
adaptive systems. In the third section, we introduce our 
approach for an adaptive malware reaction system while the 
fourth section shows a first demonstrator of this approach. 
The fifth section closes with a summary and an outlook. 

 

II. STATE OF THE ART 

This section gives an overview about malware detection 
and reaction in classical computer environment, the 
characteristics of concurrent and upcoming automotive 
systems and adaptive systems. 

A. Malware in Classical computer environments 

In classical computer domains, like Desktop IT malware 
threats are a central challenge in the productive operation of 
IT systems. A lot of research went into reducing this threat. 
Malware analysis (like [2] or [3]) have determined the 
characteristics of common security threats. Appropriate 
countermeasures [4] [5] have been established. While 
protective mechanisms to prevent malware attacks are an 
important basis of established anti-malware concepts, the 
vast complexity of today’s IT systems with diverse user 
and/or system interactions make establishing complete 
protection mere theory. Therefore, an important basis for the 
treatment of malware incidents is their detection. While 
classical, signature-based detection strategies are 
increasingly ineffective due to the ever increasing size of 
malware samples and bypassing strategies, evolving heuristic 
approaches still have to cope with false alarms. 
Consequently, in many cases the subsequent reaction to 
detected incidents still require manual interaction with 
human operators – which might be system administrators in 
professional environments or simply the user himself (e.g. in 
home environment). Also, in Classical computer 
environments, the mechanisms for autonomous reactions to 
malware incidents are a young field of research with little, 
immature approaches so far. 

B. Characteristics of Modern Automotive Systems 

Automotive systems differ from classical computer 
environments in a range of characteristics. In order to design 
an approach that covers the automotive domain it is 
necessary to discuss these characteristics and their impact. 
Important differences originate from the operational 
environment and the hardware architecture. For the 
operational environment, we identify the following aspects: 

 Safety Implications: In contrast to typical operational 
environments of classical Classical computer 
environments, an incident in an automotive system 
can easily lead to threats to life and health of the user 
and even passengers and innocent bystanders. 
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 Technological Aspects: An automotive system is 
interacting with an analog environment. Therefore 
many central components within an automotive 
system have very strict real-time requirements. 

 Organisational Aspects: The owner/driver of an 
automotive system in general is not an IT expert. 
The automotive system's design therefore must 
consider that the user is not able to administrate the 
system or handle user interactions requiring deep, 
specific knowledge. 
 

These points show that some classic ‘emergency 
reactions’ from Classical computer environments - like 
rebooting or powering down - cannot be applied directly to 
an automotive environment. Other classical strategies, like 
software updates during runtime, can only be imported 
within limits. The hardware architecture itself also has direct 
impact: 

 System Architecture: Like other embedded systems, 
automotive IT features a broad range of different 
hard- and software configurations. ECUs in an 
automotive environment have a much less 
standardized hardware and software architecture 
than in a classical computer environment. Also, the 
usage of processors with small word size and low 
clock rate is common in automotive environments. 
Combined with relatively small memory, this 
seriously restrains available resources. While using 
this kind of hardware is partially motivated by 
economic considerations, automotive hardware also 
needs to cope with various environmental effects 
virtually unknown in Classical computer 
environments. Automotive IT needs to be robust 
against wide variations in temperature, concussions, 
intruding fluids etc. 

 Networking Architecture: The networking 
technologies and protocols used in automotive IT 
still differ widely from those utilised in Classical 
computer environments. In modern cars, the 
constantly growing number of ECUs require 
efficient means of interconnection to implement 
necessary communication use cases. While in the 
early years of electronic automotive systems, 
separate analogue lines were drawn for each signal, 
the complex automotive systems of today require 
communication via shared media in order to reduce 
the amount of cables needed (with the aim of 
reducing weight, costs, difficulties with handling, 
etc.). Different types of field bus systems are used 
for this like Controller Area Network (CAN), Local 
Interconnect Network (LIN), Media Oriented 
Systems Transport (MOST) and FlexRay. Usage of 
Ethernet within (parts of) automotive networks is 
increasingly discussed and tested in the automotive 
industry. A great difference to Classical computer 
environments is that typically, automotive networks 
follow a broadcast strategy, i.e. one bus message of a 
certain sender is simultaneously received by multiple 
receivers which evaluate and process its content (if 

required). Bus systems like CAN (currently the most 
widely used automotive bus system) are designed for 
simplicity and efficiency. Unfortunately, such bus 
systems, which do not provide sender/receiver 
addresses or even authentication "out of the box", 
can easily be attacked once access to the internal bus 
systems has been established. We demonstrated this 
in previous work [6] [7], as have other research 
groups like [8] and [9], who base their work on our 
aforementioned papers. 
 

These characteristics must be taken into account when 
designing an approach, as discussed in this work.  

C. Introduction to Adaptive Systems 

In order to deal with as wide a variety of attacks as 
possible, we need a protective system which is able to adapt 
to various threats. This system should also be able to adapt to 
malware which is unknown at the point of the incident. Our 
approach to design such an adaptive system is based on 
principles of Organic Computing [10]. Organic Computing is 
a concept to deal with the ever-growing complexity of 
hardware, software and networking. While classic 
engineering approaches try to develop a system by 
examining all possibilities (like modelling all possible 
states), Organic Computing goes in a different direction to 
cope with those cases where the complexity simply grows 
too vast. Already, developers often do not know which 
components their system will ultimately interact with – and 
such cases will increase in future. Instead of preparing 
different modes for operation in lots of different 
environments (accepting the risk that the developers did not 
foresee some of them), a system based on the principles of 
Organic Computing is able to adapt to different 
environments by itself –an adaptive system: „In organic 
computing, the only task humans hold on to is the setting of 
goals. As the machine is autonomously organising, detailed 
communication between programmer and machine is 
restricted to the fundamental algorithm, which is realising 
system organisation. Application-oriented mechanisms lose 
the status of algorithm and are treated as data, in analogy to 
the transcription factors in the ontogenetic toolbox.“ [11] 

Obviously, an organic system would need a set of 
specific properties to behave in such a manner. These 
properties are referred to as self-x-properties. Various self-x-
properties have been proposed, but self-organisation is the 
core concept characterising adaptive systems. Further 
examples are self-configuration, self-optimisation or self-
healing.  

Some of these self-x-properties directly match our goal to 
deal with new malware trends. Self-healing would best 
describe our approach to find a fitting reaction to malware 
incidents. However, the ability for self-perception is the base 
of any adaptive system – since systems without any 
information about their state and capabilities could not fulfil 
any of the self-x-properties. Hence our approach needs to 
address self-perception, too. 
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III. ORGANIC PRINCIPLES TO COUNTER MALWARE IN 

AUTOMOTIVE ENVIROMENTS 

In this section we discuss an adaptive system for the 
reaction against malware incidents in automotive 
environments. 

Automotive environments bring up unique challenges to 
IT security. They have specific characteristics, and many 
security incidents carry a broad and deep threat to users and 
bystanders, including endangering life and limb. This leads 
to numerous challenges for dealing with malware in 
automotive environments. 

From this perspective, different application scenarios for 
the implementation of a fitness function arise: 

 While interconnectivity is on the rise it is by no 
means guaranteed that a vehicle will have network 
access at any time. It could also be possible that a 
vehicle does not have any access for an extended 
period of time and so would have no access to 
necessary updates to block malware. 

 Probable safety impacts of an incident make it 
impossible to simply ‘sit it out’ or ‘ignore it’.  
 

To deal with these challenges we use principles from 
Organic Computing to design a system which both detects 
and reacts to malware incidents. Hence, it implements 
detection and reaction and establishes self-perception and 
self-healing in an automotive system. As discussed in 
Section II-B, the individual ECUs used in an automotive 
environment have serious resource constraints. Therefore, 
the changes to each of the ECUs need to be relatively simple. 
In general these ECUs only handle calculations – they get 
input from some ECUs (or sensors) and give instructions to 
other ECUs (or actuators). Many of these values are 
transferred via insecure lines, especially field bus system, 
throughout the vehicle. An attacker could plug into this 
system and falsify, or add false values. An input checking on 
each individual component could detect those tampering 
attempts. In addition it would distribute the effort to the 
individual components.  

To achieve this we assign a confidence measure (CM) to 
each source of input value an ECU receives. If the input 
value seems to be tampered with, the ECU would reduce the 
confidence in this input source. In order for this to be 
effective the ECU needs to be able to verify the input given. 
This is done in two different ways. First, we assign various 
sources for different ECUs – an ECU that would usually 
only read speed information will also evaluate the 
positioning information in order to double check between 
those two sources. While this approach implements an inter-
source sanity check, we also implement an intra-source 
sanity check, which detects unusual changes in the input data 
(like the GPS sensor implying that the vehicle moved 100 
miles since the last update seconds ago) and reduces the CM 
accordingly. 

The value the ECU works with is calculated from the 
weighted input values it receives from various sources. If the 
ECU completely distrusts a certain source it would 
completely disregard any data from this source. 

In addition, the frequency of input messages of a certain 
type is also monitored. Usually these messages are 
transmitted in regular intervals - an increase in messages 
could point out the injection of falsified values. Hence if the 
number of received messages deviates from the expected 
frequency, the confidence measure would be decreased. On 
the other hand the CM of an input source would recover over 
time if the input is more in line with the other sources again. 

IV. IMPLEMENTATION AND EVALUATION OF A FIRST 

DEMONSTRATOR 

This section covers the implementation of a demonstrator 
to evaluate and refine the approach described in Section III. 
We introduce the components necessary for our 
demonstrator, the test setups used, and the evaluation results. 

A. Exemplary Simulation Environment 

In order to evaluate our chosen approach it was necessary 
to implement a simulated environment. This environment 
needs to fulfil a range of various requirements: 

 Vehicles consist of a network of different ECUs and 
actuators. Hence the simulated vehicle needs to 
consist of multiple ECUs and means for them to 
communicate with each other. 

 The simulated vehicle needs to be modular so more 
components can be added in order to increase the 
complexity and feasibility of the simulation. This 
also allows for different test cases with alterations to 
the adaptive subsystems, different attack vectors or 
malfunctions. 

 The simulation environment must be able to support 
the evaluation by offering exhaustive output to 
ensure traceability of the simulation's results. 
 

Our implementation follows a modular approach with 
different types of modules as shown in Figure 1. The main 
component is the simulator itself which handles the physics 
inside the simulation and contains the ‘real’ system state of 
the vehicle. Linked to the simulator is the logging subsystem. 
This subsystem records the information needed for the 
evaluation. 

Our modelled vehicles themselves consist of actuators, 
sensors, assistance systems and a bus. Sensors get 
information about the current state from the simulator. 
Actuators on the other hand give feedback about the actions 
of the vehicle to the simulator. Assistance systems are the 
various ECUs which use sensor information to control 
actuators. The communication between sensors, actuators 
and ECUs is covered by a communication bus which mirrors 
a field bus used in automotive networks. 

For our first exemplary simulation environment we 
implemented the simulator itself, the bus, various actuators, 
sensors and assistance systems. As assistance systems we 
implemented cruise control (CC), adaptive cruise control 
(ACC), lane-keeping assist, anti-lock braking systems (ABS) 
and park distance control (PDC). 
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Figure 1.  Architecture of our Demonstrator 

B. Exemplary Scenarios and Attacks 

The modular approach for our simulation environments 
allows for the easy simulation of various attacks or 
malfunctions within the simulated car (or cars). In order to 
evaluate the usefulness of our approach we formulated 
various scenarios: 

 

 S1 - Defunct sensor: In this scenario the GPS sensor 
is manipulated in a way that it is not able to supply 
data anymore. This might be due to a malware 
attack, removal of the component or simple 
breakdown of the component. 

 S2 - Malicious messages: In this scenario an 
additional component is added which adds false 
input values to the bus. In our case we choose the 
GPS sensor as main target and hence inject falsified 
GPS data. These injections occur at the same 
frequency the correct GPS data is transferred. 

 S3 - Flooding attack: In this scenario we perform a 
basic Denial-of-Service (DoS) attack on the 
assistance systems, which rely on the input from the 
GPS sensor. We add a malicious component, which 
floods the bus with random GPS input data. 

C. Evaluation results 

After implanting and testing the various scenarios we 
could evaluate them using the data supplied by the logging 
subsystem. 
 

 S1 - Defunct sensor: Over the course of time the CM 
of the GPS sensor went down to zero and other 
sources (velocity, steering angle) were used by the 
assistance systems relying on position data. 

 S2 - Malicious messages: The assistance systems 
start to notice that the input given by the GPS sensor 
is not plausible and therefore reduced the 
corresponding CM. Instead they relied more on the 
other sources (velocity sensor, steering angle) as 
input. When the CM of the GPS sensor went to zero 
it was ignored completely. 

 S3 - Flooding attack: The strong divergence from the 
amount of expected messages led to a quick decay of 
the CM of the GPS sensor. After mere moments the 

sensor data was not used anymore. After the 
flooding stopped the CM slowly recovered. 

V. CONCLUSION AND OUTLOOK 

In this work we propose a novel approach to include an 
adaptive reaction system against malware incidents in 
automotive systems. Most current approaches as established 
in Classical computer environments only handle the 
detection of a malware incident and require a manual 
reaction. Furthermore they rely only on pre-defined 
knowledge from external sources for detection strategies. 
With the approach presented here, an automotive system is 
able to adapt to new malware threats by itself. This approach 
not only handles malicious manipulations but also 
unintentional malfunction like sensor failure, for example.  

However, at this point this approach is very juvenile, and 
several points need to be addressed in the future. For 
example, further potential use cases will require more 
complex heuristics to achieve a useful determination of the 
CM of different input sources. Also, a more complete 
evaluation will be required to get a broader impression of the 
gains of the proposed approach. We consider doing so in 
future research, either by further extensions to the presented 
simulation environment or by implementing the methods 
proposed in this work in a real automotive (laboratory) 
system. 
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