
Organic Principles to Counter Malware in Automotive Environments

Robert Altschaffel, Sven Kuhlmann, Jana Dittmann, Tobias Hoppe

Arbeitsgruppe Multimedia and Security

Otto-von-Guericke-Universität Magdeburg

Magdeburg, Germany

email: {Robert.Altschaffel|Sven.Kuhlmann|Jana.Dittmann|Tobias.Hoppe}@iti.cs.uni-magdeburg.de

Abstract—In an interconnected world malware is not only a

topic in classical computer environments (information

technology) anymore. Recent examples have shown which

damage malware can cause in modern interconnected cyber-

physical systems. Based on the increasing threat of malware we

propose an approach to counter malware. In contrast to

classical approaches like signature scanners or IDS (Intrusion

Detection Systems), which focus on detection our approach

focuses on the reaction on malware-caused incidents. While

these classic approaches usually require manual intervention

we focus our approach on an automatic, adaptive reaction. The

approach proposed in this work is based on principles of

Organic Computing and conceives a self-adapting system for

malware reaction in automotive environments.

Keywords - automotive security; adaptive systems; malware

I. INTRODUCTION

With the ubiquitousness of cyber-physical and
interconnected systems a new field of potential targets for
malware arises. This work focuses on the automotive domain
as an example of an interconnected cyber-physical system.
With its broad array of different Electronic Control Units
(ECUs) and it’s ever increasing range of means to
communicate with its environment (Car2X), a modern car is
a prime example for both categories. The automotive domain
also carries the implication that malfunctions of an ECU
could lead to accidents and serious physical harm. Therefore,
not only the detection of a malware incident but also a
timely, appropriate reaction upon such incidents becomes
crucial. While interconnectivity and reliance on electronic
components come with the downside of vulnerability, new
technology also offers new possibilities to protect the
automotive system from such attacks [1].

We propose an adaptive subsystem to support
autonomous reactions against malware incidents in the
automotive domain. After a brief introduction we give a
short overview about anti-malware strategies from Classical
computer environments, discuss the special properties of the
automotive domain and show general approaches for
adaptive systems. In the third section, we introduce our
approach for an adaptive malware reaction system while the
fourth section shows a first demonstrator of this approach.
The fifth section closes with a summary and an outlook.

II. STATE OF THE ART

This section gives an overview about malware detection
and reaction in classical computer environment, the
characteristics of concurrent and upcoming automotive
systems and adaptive systems.

A. Malware in Classical computer environments

In classical computer domains, like Desktop IT malware
threats are a central challenge in the productive operation of
IT systems. A lot of research went into reducing this threat.
Malware analysis (like [2] or [3]) have determined the
characteristics of common security threats. Appropriate
countermeasures [4] [5] have been established. While
protective mechanisms to prevent malware attacks are an
important basis of established anti-malware concepts, the
vast complexity of today’s IT systems with diverse user
and/or system interactions make establishing complete
protection mere theory. Therefore, an important basis for the
treatment of malware incidents is their detection. While
classical, signature-based detection strategies are
increasingly ineffective due to the ever increasing size of
malware samples and bypassing strategies, evolving heuristic
approaches still have to cope with false alarms.
Consequently, in many cases the subsequent reaction to
detected incidents still require manual interaction with
human operators – which might be system administrators in
professional environments or simply the user himself (e.g. in
home environment). Also, in Classical computer
environments, the mechanisms for autonomous reactions to
malware incidents are a young field of research with little,
immature approaches so far.

B. Characteristics of Modern Automotive Systems

Automotive systems differ from classical computer
environments in a range of characteristics. In order to design
an approach that covers the automotive domain it is
necessary to discuss these characteristics and their impact.
Important differences originate from the operational
environment and the hardware architecture. For the
operational environment, we identify the following aspects:

 Safety Implications: In contrast to typical operational
environments of classical Classical computer
environments, an incident in an automotive system
can easily lead to threats to life and health of the user
and even passengers and innocent bystanders.

128Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

 Technological Aspects: An automotive system is
interacting with an analog environment. Therefore
many central components within an automotive
system have very strict real-time requirements.

 Organisational Aspects: The owner/driver of an
automotive system in general is not an IT expert.
The automotive system's design therefore must
consider that the user is not able to administrate the
system or handle user interactions requiring deep,
specific knowledge.

These points show that some classic ‘emergency
reactions’ from Classical computer environments - like
rebooting or powering down - cannot be applied directly to
an automotive environment. Other classical strategies, like
software updates during runtime, can only be imported
within limits. The hardware architecture itself also has direct
impact:

 System Architecture: Like other embedded systems,
automotive IT features a broad range of different
hard- and software configurations. ECUs in an
automotive environment have a much less
standardized hardware and software architecture
than in a classical computer environment. Also, the
usage of processors with small word size and low
clock rate is common in automotive environments.
Combined with relatively small memory, this
seriously restrains available resources. While using
this kind of hardware is partially motivated by
economic considerations, automotive hardware also
needs to cope with various environmental effects
virtually unknown in Classical computer
environments. Automotive IT needs to be robust
against wide variations in temperature, concussions,
intruding fluids etc.

 Networking Architecture: The networking
technologies and protocols used in automotive IT
still differ widely from those utilised in Classical
computer environments. In modern cars, the
constantly growing number of ECUs require
efficient means of interconnection to implement
necessary communication use cases. While in the
early years of electronic automotive systems,
separate analogue lines were drawn for each signal,
the complex automotive systems of today require
communication via shared media in order to reduce
the amount of cables needed (with the aim of
reducing weight, costs, difficulties with handling,
etc.). Different types of field bus systems are used
for this like Controller Area Network (CAN), Local
Interconnect Network (LIN), Media Oriented
Systems Transport (MOST) and FlexRay. Usage of
Ethernet within (parts of) automotive networks is
increasingly discussed and tested in the automotive
industry. A great difference to Classical computer
environments is that typically, automotive networks
follow a broadcast strategy, i.e. one bus message of a
certain sender is simultaneously received by multiple
receivers which evaluate and process its content (if

required). Bus systems like CAN (currently the most
widely used automotive bus system) are designed for
simplicity and efficiency. Unfortunately, such bus
systems, which do not provide sender/receiver
addresses or even authentication "out of the box",
can easily be attacked once access to the internal bus
systems has been established. We demonstrated this
in previous work [6] [7], as have other research
groups like [8] and [9], who base their work on our
aforementioned papers.

These characteristics must be taken into account when
designing an approach, as discussed in this work.

C. Introduction to Adaptive Systems

In order to deal with as wide a variety of attacks as
possible, we need a protective system which is able to adapt
to various threats. This system should also be able to adapt to
malware which is unknown at the point of the incident. Our
approach to design such an adaptive system is based on
principles of Organic Computing [10]. Organic Computing is
a concept to deal with the ever-growing complexity of
hardware, software and networking. While classic
engineering approaches try to develop a system by
examining all possibilities (like modelling all possible
states), Organic Computing goes in a different direction to
cope with those cases where the complexity simply grows
too vast. Already, developers often do not know which
components their system will ultimately interact with – and
such cases will increase in future. Instead of preparing
different modes for operation in lots of different
environments (accepting the risk that the developers did not
foresee some of them), a system based on the principles of
Organic Computing is able to adapt to different
environments by itself –an adaptive system: „In organic
computing, the only task humans hold on to is the setting of
goals. As the machine is autonomously organising, detailed
communication between programmer and machine is
restricted to the fundamental algorithm, which is realising
system organisation. Application-oriented mechanisms lose
the status of algorithm and are treated as data, in analogy to
the transcription factors in the ontogenetic toolbox.“ [11]

Obviously, an organic system would need a set of
specific properties to behave in such a manner. These
properties are referred to as self-x-properties. Various self-x-
properties have been proposed, but self-organisation is the
core concept characterising adaptive systems. Further
examples are self-configuration, self-optimisation or self-
healing.

Some of these self-x-properties directly match our goal to
deal with new malware trends. Self-healing would best
describe our approach to find a fitting reaction to malware
incidents. However, the ability for self-perception is the base
of any adaptive system – since systems without any
information about their state and capabilities could not fulfil
any of the self-x-properties. Hence our approach needs to
address self-perception, too.

129Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

III. ORGANIC PRINCIPLES TO COUNTER MALWARE IN

AUTOMOTIVE ENVIROMENTS

In this section we discuss an adaptive system for the
reaction against malware incidents in automotive
environments.

Automotive environments bring up unique challenges to
IT security. They have specific characteristics, and many
security incidents carry a broad and deep threat to users and
bystanders, including endangering life and limb. This leads
to numerous challenges for dealing with malware in
automotive environments.

From this perspective, different application scenarios for
the implementation of a fitness function arise:

 While interconnectivity is on the rise it is by no
means guaranteed that a vehicle will have network
access at any time. It could also be possible that a
vehicle does not have any access for an extended
period of time and so would have no access to
necessary updates to block malware.

 Probable safety impacts of an incident make it
impossible to simply ‘sit it out’ or ‘ignore it’.

To deal with these challenges we use principles from
Organic Computing to design a system which both detects
and reacts to malware incidents. Hence, it implements
detection and reaction and establishes self-perception and
self-healing in an automotive system. As discussed in
Section II-B, the individual ECUs used in an automotive
environment have serious resource constraints. Therefore,
the changes to each of the ECUs need to be relatively simple.
In general these ECUs only handle calculations – they get
input from some ECUs (or sensors) and give instructions to
other ECUs (or actuators). Many of these values are
transferred via insecure lines, especially field bus system,
throughout the vehicle. An attacker could plug into this
system and falsify, or add false values. An input checking on
each individual component could detect those tampering
attempts. In addition it would distribute the effort to the
individual components.

To achieve this we assign a confidence measure (CM) to
each source of input value an ECU receives. If the input
value seems to be tampered with, the ECU would reduce the
confidence in this input source. In order for this to be
effective the ECU needs to be able to verify the input given.
This is done in two different ways. First, we assign various
sources for different ECUs – an ECU that would usually
only read speed information will also evaluate the
positioning information in order to double check between
those two sources. While this approach implements an inter-
source sanity check, we also implement an intra-source
sanity check, which detects unusual changes in the input data
(like the GPS sensor implying that the vehicle moved 100
miles since the last update seconds ago) and reduces the CM
accordingly.

The value the ECU works with is calculated from the
weighted input values it receives from various sources. If the
ECU completely distrusts a certain source it would
completely disregard any data from this source.

In addition, the frequency of input messages of a certain
type is also monitored. Usually these messages are
transmitted in regular intervals - an increase in messages
could point out the injection of falsified values. Hence if the
number of received messages deviates from the expected
frequency, the confidence measure would be decreased. On
the other hand the CM of an input source would recover over
time if the input is more in line with the other sources again.

IV. IMPLEMENTATION AND EVALUATION OF A FIRST

DEMONSTRATOR

This section covers the implementation of a demonstrator
to evaluate and refine the approach described in Section III.
We introduce the components necessary for our
demonstrator, the test setups used, and the evaluation results.

A. Exemplary Simulation Environment

In order to evaluate our chosen approach it was necessary
to implement a simulated environment. This environment
needs to fulfil a range of various requirements:

 Vehicles consist of a network of different ECUs and
actuators. Hence the simulated vehicle needs to
consist of multiple ECUs and means for them to
communicate with each other.

 The simulated vehicle needs to be modular so more
components can be added in order to increase the
complexity and feasibility of the simulation. This
also allows for different test cases with alterations to
the adaptive subsystems, different attack vectors or
malfunctions.

 The simulation environment must be able to support
the evaluation by offering exhaustive output to
ensure traceability of the simulation's results.

Our implementation follows a modular approach with
different types of modules as shown in Figure 1. The main
component is the simulator itself which handles the physics
inside the simulation and contains the ‘real’ system state of
the vehicle. Linked to the simulator is the logging subsystem.
This subsystem records the information needed for the
evaluation.

Our modelled vehicles themselves consist of actuators,
sensors, assistance systems and a bus. Sensors get
information about the current state from the simulator.
Actuators on the other hand give feedback about the actions
of the vehicle to the simulator. Assistance systems are the
various ECUs which use sensor information to control
actuators. The communication between sensors, actuators
and ECUs is covered by a communication bus which mirrors
a field bus used in automotive networks.

For our first exemplary simulation environment we
implemented the simulator itself, the bus, various actuators,
sensors and assistance systems. As assistance systems we
implemented cruise control (CC), adaptive cruise control
(ACC), lane-keeping assist, anti-lock braking systems (ABS)
and park distance control (PDC).

130Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Figure 1. Architecture of our Demonstrator

B. Exemplary Scenarios and Attacks

The modular approach for our simulation environments
allows for the easy simulation of various attacks or
malfunctions within the simulated car (or cars). In order to
evaluate the usefulness of our approach we formulated
various scenarios:

 S1 - Defunct sensor: In this scenario the GPS sensor
is manipulated in a way that it is not able to supply
data anymore. This might be due to a malware
attack, removal of the component or simple
breakdown of the component.

 S2 - Malicious messages: In this scenario an
additional component is added which adds false
input values to the bus. In our case we choose the
GPS sensor as main target and hence inject falsified
GPS data. These injections occur at the same
frequency the correct GPS data is transferred.

 S3 - Flooding attack: In this scenario we perform a
basic Denial-of-Service (DoS) attack on the
assistance systems, which rely on the input from the
GPS sensor. We add a malicious component, which
floods the bus with random GPS input data.

C. Evaluation results

After implanting and testing the various scenarios we
could evaluate them using the data supplied by the logging
subsystem.

 S1 - Defunct sensor: Over the course of time the CM
of the GPS sensor went down to zero and other
sources (velocity, steering angle) were used by the
assistance systems relying on position data.

 S2 - Malicious messages: The assistance systems
start to notice that the input given by the GPS sensor
is not plausible and therefore reduced the
corresponding CM. Instead they relied more on the
other sources (velocity sensor, steering angle) as
input. When the CM of the GPS sensor went to zero
it was ignored completely.

 S3 - Flooding attack: The strong divergence from the
amount of expected messages led to a quick decay of
the CM of the GPS sensor. After mere moments the

sensor data was not used anymore. After the
flooding stopped the CM slowly recovered.

V. CONCLUSION AND OUTLOOK

In this work we propose a novel approach to include an
adaptive reaction system against malware incidents in
automotive systems. Most current approaches as established
in Classical computer environments only handle the
detection of a malware incident and require a manual
reaction. Furthermore they rely only on pre-defined
knowledge from external sources for detection strategies.
With the approach presented here, an automotive system is
able to adapt to new malware threats by itself. This approach
not only handles malicious manipulations but also
unintentional malfunction like sensor failure, for example.

However, at this point this approach is very juvenile, and
several points need to be addressed in the future. For
example, further potential use cases will require more
complex heuristics to achieve a useful determination of the
CM of different input sources. Also, a more complete
evaluation will be required to get a broader impression of the
gains of the proposed approach. We consider doing so in
future research, either by further extensions to the presented
simulation environment or by implementing the methods
proposed in this work in a real automotive (laboratory)
system.

ACKNOWLEDGEMENTS

We like to thank our students from our course "Praktikum

IT-Sicherheit 2014/2015" for their work concerning the

presented demonstrator.
This work was partly supported by German Research

Foundation, project ORCHideas (DFG GZ: 863/4-1).
This work was also partly supported (definition of the

scenarios derived from high level project requirements) by
European Research Foundation, project SAVELEC (FP7 -
SEC-2011, Grant Agreement Number 285202).

REFERENCES

[1] J. Dittmann, T. Hoppe and C. Vielhauer, "Multimedia
Systems as Immune System to Improve Automotive
Security?", SAFECOMP 2013, Toulouse, France, 2013.

[2] James M. Aquilina, Eoghan Casey and Cameron H. Malin,
"Malware Forensics: Investigating and Analyzing Malicious
Code", Elsevier, ISBN 987-1-59749-268-3, 2008.

[3] M. Sikorski and A. Honig, "Practical Malware Analysis – The
Hands-On Guide to Dissecting Malicious Software", No
Starch Press, San Francisco, ISBN 978-1-59327-290-6, 2013.

[4] E. Skoudis and L. Zeltser, "Malware – Fighting Malicious
Code", Prentice Hall International, ISBN 978-0131014053,
2003.

[5] P. Mell, K. Kent and J. Nusbaum, "Guide to Malware Incident
Prevention and Handling", National Institute of Standards and
Technology Special Publication 800-83, November 2005.
http://csrc.nist.gov/publications/nistpubs/800-83/SP800-
83.pdf (last access: 14/01/2015), 2005.

[6] Tobias Hoppe, Stefan Kiltz and Jana Dittmann, "Security
threats to automotive CAN networks – practical examples and
selected short-term countermeasures", Computer Safety,
Reliability, and Security, Proceedings of the 27th
International Conference SAFECOMP 2008, Newcastle, UK,
September 2008; Springer LNCS 5219; S. 235-248; Editors:

131Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf
http://csrc.nist.gov/publications/nistpubs/800-83/SP800-83.pdf

Michael D. Harrison, Mark-Alexander Sujan; ISBN 978-3-
540-87697-7, 2008.

[7] Tobias Hoppe, Stefan Kiltz and Jana Dittmann, "Automotive
IT-Security as a Challenge: Basic Attacks from the Black Box
Perspective on the Example of Privacy Threats", Computer
Safety, Reliability, and Security, Proceedings of the 28th
International Conference SAFECOMP 2009, Hamburg,
Germany, September 2009; Springer LNCS 5775; S. 145-158;
Editors: Bettina Buth, Gerd Rabe, Till Seyfarth; ISBN 978-3-
642-04467-0, 2009.

[8] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S.
Checkoway, et al.: "Experimental Security Analysis of a
Modern Automobile", The IEEE Symposium on Security and
Privacy, Oakland, CA, May 16-19, 2010.

[9] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H.
Shacham, S. Savage, et al.: "Comprehensive Experimental
Analyses of Automotive Attack Surfaces", In D. Wagner, ed.,
Proceedings of USENIX Security 2011. USENIX, Aug. 2011.

[10] C. Müller-Schloer, H. Schmeck, T.Ungerer, "Organic
Computing — A Paradigm Shift for Complex Systems,
Springer" , ISBN: 978-3-0348-0129-4, 2011.

[11] R.P. Würtz (ed.), "Organic Computing. Understanding
Complex Systems", doi: 10.1007/978-3-540-77657-4 1, ©
Springer-Verlag Berlin Heidelberg 2008

132Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

