
Implementation Issues in the Construction of an Application Framework for Secure

SMS Messages on Android Smartphones

Alexandre Melo Braga
12

, Romulo Zanco Neto
1
, André Luiz Vannucci

1
, and Ricardo Shiguemi Hiramatsu

1

1
Centro de Pesquisa e Desenvolvimento em Telecomunicações (Fundação CPqD)

Campinas, São Paulo, Brazil
2
Universidade Estadual de Campinas (UNICAMP)

Campinas, São Paulo, Brazil

 Email:{ambraga,romulozn,vannucci,ricardoh}@cpqd.com.br

Abstract—This paper details the construction of an application

framework for SMS security that provides secrecy, integrity,

authentication, and non-repudiation for SMS messages. The

proposed framework integrates authenticated encryption and

short digital signatures to management services for

cryptographic keys and digital certificates. The framework

hides from final users all details concerning certificate and key

management. A flexible trade-off between security objectives

and message length makes it possible to offer three levels of

security: (i) secrecy only, (ii) secrecy and message

authentication, and (iii) secrecy, origin authentication and non-

repudiation. The main contribution is the use of short

signatures for SMS origin authentication, which makes it

possible to pack in a single, 140-byte SMS all information

necessary to authenticate the origin of encrypted messages,

while the user is still left with a useful length of text.

Keywords - SMS; Cryptography; Android; Security.

I. INTRODUCTION

Nowadays, despite the growing popularity of new
message services, such as instant messages, on mobile
devices, the old-fashion Short Message Service (SMS) is still
in plenty of use. Due to its higher reachability, relatively low
cost, small amount of traffic, and existing infrastructure,
varied flavors of SMS applications are being used in various
fields, such as mobile commerce [12], home automation
[24], and Machine-to-Machine (M2M) communication [30].
Even though SMS is not suitable for real-time remote
control, as it suffers from transmission delay, message lost
and lack of confidentiality [24], the ordinary SMS
technology has evolved from a simple messaging service to
an integral component of these security-critical applications.
The SMS persistent popularity can also be attributed to
modern smartphone platforms, such as Google Android [20],
that provide to software developers an easy means to include
SMS functionality into mobile applications.

This paper details the construction of an application
framework for SMS security that provides secrecy, integrity,
authentication, and non-repudiation for SMS messages. The
proposed framework integrates authenticated encryption and
short digital signatures to management services for
cryptographic keys and Initialization Vectors (IVs). The
main contribution of this paper is the use of short signatures
for SMS origin authentication. Those signatures are only 33-

bytes long, but provide the same security level of
conventional signatures with at least twice its size. Such a
small length saves space in message payload, so that an
authenticated message can occupy only a single SMS.

The resulting application framework for SMS security is
part of an integrated infrastructure for mobile security on
mobile devices [5][6], that provides strong cryptography
[3][4] to security-aware mobile applications [1][2].

The text is organized as follows. Section II offers
background information about SMS internal workings.
Section III provides related work on SMS security. Section
IV details de design of the proposed solution. Section V
contains a performance evaluation. Section VI discusses
implementation issues of the prototype. Section VII
concludes the text.

II. BACKGROUND

A. SMS workings

The Short Message Service (SMS) is a standardized

facility defined as part of the Global System for Mobile

Communications (GSM) series of standards [21] and the

following description is based upon that documentation.

SMS enables the transmission of up to 1120-bit (140 bytes

or 160 7-bit characters) alphanumeric messages between

mobile phones or external systems. The SMS service

provides out-of-band delivery of messages, meaning that

user can receive or transmit messages also when a voice call

or data transfer is already in progress. The delivery and the

integrity of an SMS are guaranteed by the network even in

presence of temporary failures or unavailable stations.

Any message, sent via SMS, is not directly delivered to

its destination, but it is stored into an SMS Center (SMSC)

after passing through a Mobile Switching Center (MSC),

which has the important role of message routing. If the

destination device is unavailable or not connected to the

GSM network, the messages are stored in the SMSC and

delivered when the destination becomes available again,

through another MSC. SMS has got a validity period, for

which it will wait for the destination device to be available.

After that time, the SMSC will delete the message. (The

usual validity period is one day).

By enabling the delivery confirmation option, disabled

by default, the sender of a SMS message can receive a

67Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

return message notifying whether it has been successfully

delivered. Without the notification option, there is no

guarantee about the correct reception or in the correct order

of delivery of a previously sent SMS message.

Techniques for SMS concatenation and compression

have been defined and incorporated in the GSM standard.

However, these features may not be reliably implemented

worldwide. Thus, only single uncompressed message

delivery should work everywhere.

B. SMS on Android

Google’s website on Android [20] is a well-documented

source of information for software developers. According to

that documentation [20], the basic building blocks of

Android’s internal messaging system are Intents. The Intent

is a simple message object that holds additional information

about an operation to be performed or of an event that has

happened. Upon reception of an SMS message, intents are

used to broadcast the contents of the received SMS message

internally to registered receivers. To receive a broadcasted

intent, an Android app needs to implement and register an

appropriate broadcast receiver. The registered broadcast

receiver’s implementation determines the actions to be

carried out, when a broadcast is received. Within an

Android app, broadcast receivers can be registered either

statically or dynamically.

If multiple broadcast receivers are registered for the same

intent, they are called according to their given priorities. It is

important to note that registered receivers have the

possibility to abort a received broadcast intent, which

prevents the intent from being forwarded to further

registered receivers with a lower priority.

C. GSM encryption and SMS security

Global System for Mobile (GSM) communications has

point-to-point encryption based upon the A5 family of

ciphers [21]. A5/1 is the original cipher designed for use in

the GSM protocol. After several weaknesses had been

discovered, this cipher is not considered secure anymore

[16]. A5/2 is a weakened version of A5/1 to allow for

(historically kept) export restrictions to certain countries. It

is therefore not considered secure [16]. A5/3 is also called

Kasumi and is still in use today. Currently, known attacks

do not inhibit its practical use in GSM. However, it is not

intended to be used in further applications [16]. Though

SMS encryption could be provided by network layer, on a

point-to-point basis, it should be noted that end-to-end

encryption of SMS still belongs to the application layer.

SMS technology is also inherently insecure, since the

messages could be intercepted during the path that the

messages follow during the transmission, including base

stations, SMSC, and MSC. Particularly, SMS is subjected to

replay attacks, message falsification, payload corruption,

and sender impersonation.

Inside mobile devices, SMS sniffers and SMS catchers

weaken the security of received and processed SMS

messages, as these kinds of malware can simply use

available APIs to intercept SMS messages [37]. SMS

sniffers intercept SMS messages to spy on their content.

After interception, the original message is forwarded to the

default SMS-processing application (receiver). Differently,

SMS catchers discard the message after its interception.

This way, SMS catchers hide the original message from the

user. This kind of malware intercepts incoming SMS

messages either to spy on security-sensitive data transmitted

via SMS or to receive SMS-based malware control

commands [37]. The architecture of the Android platform

facilitates the implementation of SMS catcher and sniffers

even on non-rooted smartphones [37].

Starting with version 4.4, Android [20] enforces the

forwarding of incoming SMS messages to a default SMS

application. This renders realization of SMS catchers more

difficult but by no means prevents SMS sniffers, as installed

applications are still capable of reading incoming SMS

messages [37].

III. RELATED WORK

The development of end-to-end encryption of SMS by

mobile applications has a history of at least ten years and its

evolution seems to coincide with the proliferation of mobile

application platforms, as shown in next paragraphs.

In 2005, Hassinen presented SafeSMS [26] as an

application meant for SMS end-to-end encryption.

Encryption was based on a secret password shared between

the sender and the recipient. The shared secret could also be

generated and distributed by the system using a key

exchange procedure, or by using a few text messages in a

key exchange protocol, such as the Diffie-Hellman (DH).

In 2008, Lisonek and Drahansky [14] describe an

application for securing of SMS which prevents tapping and

substitution of SMS messages, by using RSA with OAEP

padding. Also, Hossain et al [8] proposed a security scheme

for improving the SMS security by encrypting SMS

messages using GSM encryption technology, and digitally

signing them with public key signature.

In 2009, Kuaté, Lo, and Bishop [36] proposed a supposed

simple-to-use but cryptographically strong API for message

encryption and authentication, called Linca, which was

designed for limited devices, as well as a protocol called

SMSSec for confidentiality and integrity.

In 2010, De Santis et al [7] presented Secure Extensible

and Efficient SMS (SEESMS), a software framework

written in Java, which allows two peers to exchange

encrypted and digitally signed SMS messages. SEESMS

supports the encryption of a communication channel

through the Elliptic Curve Integrated Encryption Scheme

(ECIES) and the Rivest-Shamir-Adleman (RSA) algorithms.

The identity validation of the contacts involved in the

communication is implemented through the RSA, Digital

Signature Algorithm (DSA) and Elliptic Curve DSA

(ECDSA) signature schemes. Also, Read and Martina

presented SAMES [15], an Android application that allows

68Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

its users to send and receive text messages that are

encrypted with the AES using hashing algorithms or Elliptic

Curve DH (ECDH) for key creation. Certificates can also be

created, signed, verified and sent to others using text

messages. However, producing a method to convert

certificates to a string less than 140 characters was not

possible due to the signature itself exceeding this limit. In

addition, Agoyi and Seral [25] compared RSA, ELGamal

and Elliptic Curve Cryptography (ECC). They concluded, at

the time (2010), that large key size algorithms were not

suitable for SMS encryption due to small memory and low

computational power of mobile phones. This has put ECC at

an advantage over RSA and ELGamal in SMS encryption.

In 2011, Nanda and Awasthi analyzed Joint Channel

Coding and Cryptography (JCCC) and Soft Input

Decryption (SID) and proposed two algorithms to be used in

SMS security: NTRUSign [9] and XTR – NR Signature

[10]. Also, Qi, Pan, and Ding [31] used FPGA to implement

the RSA algorithms and applied it in SMS encryption

system. The implementation not only encrypted the SMS

with hardware encryption, but also used a public-key server.

In 2012, Saxena and Chaudhari performed research [33]

in securing SMS with a variant of ECDSA. Also, Saxena,

Chaudhari, and Prajapati [34] proposed an encryption

approach that used a password-based key exchange protocol

based on DH and generated a shared secret-key which could

be used in message encryption as well as in MAC functions.

Still in 2012, Chavan and Sabnees [39] proposed a

technique that combines encryption and compression. The

technique encrypts the SMS using ECC and after that, the

encrypted SMS is compressed using a lossless algorithm.

The supposed advantage is the decreasing of message

lengths while maintaining the security. In addition, Pan,

Ding, and Qi, [23] proposed a chaos-based encryption

scheme combined with A5/1 algorithm for SMS security.

The solution was tested on a phone-like system designed in

Field-Programmable Gate Array (FPGA).

In 2013, Pereira et al [19] implemented SMSCrypto, a

Java framework for securing SMS-based communications in

mobile phones. The framework encloses a tailored selection

of lightweight cryptographic algorithms and protocols,

providing encryption, authentication, and signature services.

Also, Khan, Bakhtiari, and Bakhtiari [28] proposed a

framework that uses HTTPS for secure key exchange, as

well as ECC and RSA as encryption algorithm to protect

SMS messages against MITM attacks.

Still in 2013, Ariffi, Mahmod, Rahmat, and Idris [40]

dealt with SMS encryption on Android smartphones. They

proposed the use of a block cipher called 3D-AES for SMS

encryption. Sagheer, Abdulhameed, and AbdulJabbar [11]

proposed a solution for confidentiality and integrity for

SMS by applying a hybrid cryptographic scheme which

combines Advanced Encryption Standard (AES) for

encryption and Rivest Cipher 4 (RC4) for key expansion

and generation. It was implemented in Java and tested on a

Nokia 5233. Pizzolante et al [38] investigates the feasibility

of secure file transfer through SMS. Their solution

compresses and eventually encrypts a variable-sized

massage (or file) and sends it through standard SMS.

Again, in 2013, Saxena, Chaudhari, and Thomas [35]

provided solutions to the repudiation attack on SMSs by

using a variant of ECDSA. In 2014, Saxena and Chaudhari

[32] proposed a protocol called EasySMS which provides

end-to-end security during the transmission of SMS. This

solution puts key management on the control of Mobile

Network Operator (MNO).

In 2014, three unusual papers have appeared. First,

Fahrianto, Masruroh, and Ando [17] argued that a

combination of two “toy” ciphers (Caesar and Vinegére)

was good enough to protect the secrecy of SMS, which is

hardly believable. Second, Kashif [27] rediscovers RSA

encryption for SMSs. However, the paper gives no clue

about key management, randomization of RSA, and

message splitting. Third, Al Bashar Abul Ulayee, Mesbah-

Ul-Awal, and Newaj [22] used Caesar cipher in CBC mode

to encrypt SMSs, and used a MAC for message

authentication. The paper does implement a proprietary key

management, arguing that the method is sufficient to surpass

the weakness of Caesar Cipher, which is an unlikely

assumption.

Finally, still in 2014, Patil, Sahu, and Jain [29] studied

SMS compression in order to minimize the overhead of

(B) Receiver

(A) Sender

Figure 1. Screenshots showing the steps for sending and receiving

encrypted SMS messages. In (A), Sender finds a contact, selects her,
writes a message and sends it to her. In (B), Receiver is notified about an

incoming message from a known contact, the message is shown encrypted

by Android and can be decrypted only by CryptoSMS app.

69Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

payload due to encryption, and proposed a method for

compression of SMSs after encryption using ECC.

IV. PROPOSED SOLUTION

This section details the construction of the application
framework for SMS security that provides encryption,
integrity, authentication, and non-repudiation for SMS
messages. From now, the framework is called CryptoSMS.
CryptoSMS is not a stand-alone mobile application. In fact,
it is supported by a server-side Java Enterprise Edition (JEE)
application for management of users, apps and trust, which is
integrated to a XMPP-based message service, a Public-Key
Infrastructure (PKI) and Certification Authority (CA).

The general usage of CryptoSMS is quite simple, as seen
in Figure 1, which shows screenshots for both sending and
receiving of encrypted SMS messages. In Figure 1(A),
Sender finds a contact, selects her, writes a message, and
sends it to her. In Figure 1(B), the Receiver is notified about
an incoming message from a known contact, the message is
shown encrypted by Android (as was expected), and could
only be decrypted by CryptoSMS.

Modern mobile platforms, such as Android, allow users
to extend their device’s behavior by installing new mobile
apps. App installation is an import event, from service
provider’s point of view, and can be security sensitive. Not
only app’s binary code has to be accepted by the host device,
but generally user accounts, along with other data, have to be
created and registered as a profile for the new user.

CryptoSMS performs security sensitive actions during
app installation, such as user account creation, key pair
generation, public key upload, and (predefined) contacts
synchronization, including the download of contact’s digital
certificates. Certification authority’s root certificates are
embedded in the app and distributed along with it.

It is a well-accepted behavior in social networks that
users have contact lists (or friends) and that a pair of users
becomes friends after an invitation is sent and accepted. In
CryptoSMS, users’ relationships behave like social networks
contacts. This is an important usability aspect, as it
resembles similar communication systems and utilizes the

same software components, such as Android’s notification
service, to inform the user about new invitations.

The invitation process, illustrated in Figure 2, triggers
several security related actions. For instance, when Alice
sends to Bob an invitation to share secure SMSs, this request
is supplemented by the generation of a secret key (KAB), its
encryption with Bob’s public-key, and its secure transfer to
CryptoSMS server. At this point, an asymmetric algorithm,
such as RSA-OAEP or ECIES, can be used to securely
transport KAB. Bob’s acceptance of Alice’s invitation triggers
the download of key KAB to Bob’s device.

The process for securing SMS messages depends on the
desired security level and is illustrated in two parts by Figure
3 and Figure 4. The security level is not related to key sizes,
as is usual in cryptography, since only 256-bit security is
used for cryptographic algorithms. On the other hand,
Security levels try to capture the security perception of the
user and are related to the security objective of secrecy,
integrity, authentication and non-repudiation, as follows:

 Level one grants only secrecy and was implemented
with a symmetric block cipher (e.g., AES or Serpent) in
in CTR mode, as shown in Figure 3;

 Level two grants secrecy, integrity, and message
authentication, and was implemented with algorithms
for symmetric authenticated encryption (e.g., AES/GCM
or Serpent/CCM), as shown in Figure 3;

 Level three, illustrated in Figure 4, grants not only
secrecy, integrity, and message authentication, but also
grants user authentication and non-repudiation.

In level three, user authentication and non-repudiation of
messages are accomplished by an unusual kind of digital
signatures called short signatures, which are provided by
asymmetric cryptographic algorithms and, as such, require
management of key pairs and authenticated distribution of
public keys. All cryptographic implementations are provided
by a proprietary Cryptographic Service Provider (CSP) [3].

This security level three was implemented with a
symmetric block cipher (e.g., AES or Serpent) in CTR mode
and a short signature, such as Boneh-Lynn-Shacham (BLS)
[13] or Zhang-Safavi-Susilo (ZSS) [18]. It is interesting to
note that the short signatures used by CryptoSMS are only

Figure 3. Levels 1 and 2 – encryption and authenticated encryption.

Figure 2. Shared-key transport is an invitation to a fellow to become a

contact.

70Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

33-byte long, but provide the same security of conventional,
66-byte ECDSA and are stronger then 256-byte RSA.

The resulting secure SMS carries with it an encrypted
payload (in level one) and an authentication tag (in level
two) or a short signature (in level three). Secret keys, public-
key pairs, digital certificates, and other cryptographic
parameters are all managed locally at the Android device by
an app container fully integrated (synchronized) to
CryptoSMS server and CA. It is an interesting usability
aspect that users do not have to deal with cryptographic
material, because it is all hidden from final user behind the
concepts of invitations, contacts, data syncs, app installation,
updates, and notifications.

V. PERFORMANCE EVALUATION

This section evaluates the performance in seconds taken
to deliver an SMS message from one device to another. The
performance of short signatures compared to conventional
cryptography is also evaluated.

Figure 5(A) shows time measurements in seconds for
SMS delivery from sender’s device (dev1), through SMSC,

to receiver’s device (dev2). SMSC is the SMS routing center,
a network entity that receives SMS messages from sender,
temporarily stores them, and forwards them to receiver. Both
sender and receiver were under the same SMSC, so network
routing was minimal and latency was mostly due to network
congestions.

A total of 20 SMS messages were sent in a loop of 50
iterations, resulting in 1,000 SMSs. There were no message
losses or message disordering (rearrangement of message
sequence during arrival). The overall time for SMS delivery
stood around 20 seconds in average, and 90% of the values
stood below that average. It is interesting to observe that the
time taken from dev1 to SMSC is always balanced by the
time taken from SMSC to dev2, preserving the average time.

Figure 5 also shows time measurements in milliseconds
(ms) for two types of cryptographic services: symmetric
encryption and digital signatures. The measurements were
taken on a Samsung Galaxy S III (Quad-core 1.4 GHz
Cortex-A9 processor, 1GB of RAM, and Android 4.1).
Figure 5(B) shows time measurements of single-block
encryption and decryption for Serpent and AES. Algorithms
were setup with a 256-bit key. The bar chart shows the 9

th

centile of 10 thousand operations. Serpent is faster than AES.
Figure 5(C) shows generation of digital signatures for

four algorithms: RSA (1024-bit key), ECDSA (with SHA-
256), BLS, and ZSS, all of them for 256-bit security. For
signature generation, RSA is the slowest one. Elliptic Curve
Cryptography (ECC), as in ECDSA, is faster. Short
signatures, such as BLS and ZSS, are not as fast as ECC. For
signature verification, RSA is the fastest one, ECDSA is not
that fast, and BLS/ZSS are the slowest ones.

Experiment has shown that network latency for SMS
delivery (in seconds) is much larger than encryption and
digital signature operations (in milliseconds). It is interesting
to notice that the long latency for SMS delivery inhibits the
use of key agreement protocols for negotiation of ephemeral
keys through the SMS channel and it is an explanation for
using pre-distributed secret keys.

BLS and ZSS are not as fast as ECC, since their
constructions are based on complex mathematical structures

Figure 4. Security level 3 – encryption and short signatures.

0

5

10

15

20

25

30

35

RSA ECDSA ZSS BLS

T
im

e
 (

m
s)

Algorithm

Signature Verification

(C)

0

0,02

0,04

0,06

0,08

AES Serpent

T
im

e
 (

m
s)

Algorithm

Encryption Decryption

(B)

00

04

09

13

17

22

Dev1-Dev2 Dev1-SMSC SMSC-Dev2

T
im

e
 (

se
co

n
d

s)

SMS path

Average 9th. Centile

(A)

Figure 5. Three bar charts showing time measurements. In (A), time elapsed to transmit SMS messages from sender’s device (dev1), through SMSC, to

receiver’s device (dev2). In (B), time for encryption and decryption of messages using AES and Serpent. In (C), time for digitally sign and verify

signatures of messages with 64-byte length using RSA-PSS, ECDSA with SHA-256, ZSS, and BLS.

71Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

called bilinear pairings that require more computations.
Here, there is a tradeoff, because the short signature can be
roughly half the size of a regular ECDSA signature, but the
verification is less efficient.

VI. DISCUSSION

This section discusses important implementation issues
of CryptoSMS framework. One of them, the incorrect use of
hardcoded Initialization Vectors (IVs), even with fixed or
constant values, is a frequent issue on mobile devices.
According to a NIST standard [41], the Counter (CTR) mode
requires unique IVs and this constraint is inherited by
authenticated encryption with Galois/Counter mode (GCM).

CryptoSMS implements IV management services in
order to fulfill the uniqueness requirement for CTR, GCM
and CCM modes of operation, as illustrated by Figure 6.
During the invitation process, an IV initialization package is
generated by Alice and saved at server until Bob retrieves it.
The IV is split in two: a base and a count. The IV package
consists of a base IV for Alice, a base IV for Bob, and a
nonce to be used by both Alice and Bob as an initial counter.

 Another aspect is the order in which encryption and
authentication is performed over plaintext. Authenticated
encryption (e.g., GCM and CCM) does not suffer from such
an issue because encryption and message authentication are
embedded in a single service. However, short signatures
have to be programmatically composed with encryption by
the application programmer. The correctly way to make this
composition is to encrypt the message, then sign the
encrypted message. This method provides not only integrity
of cipher text and plaintext, but also does not provide any
side information on the plaintext.

Base64 encoding is used as a sanitization measure in
order to avoid misinterpretation of binary SMS messages by
other receiver apps running at the same device, besides
CryptoSMS. This measure reduces the total length of a
single message from 140 to 105 bytes. After excluding the
length of a 20-byte tag, the user is left with 85 bytes of text
length. When a 33-byte signature is used instead, the user has
72 bytes of text length.

CryptoSMS makes it possible to pack in a single, 140-
byte SMS message an encrypted payload along with its
authentication tag or short signature. The payload could be at
most 105-bytes long, which is enough for a large number of
applications. Split the text in a sequence of SMSs is a way to
circumvent this limitation. However, transmission delay,
message lost, and reception out of order of the message
sequence, may cause incorrect decryption.

Finally, a last concern is that CA software had to be
customized to support digital certificates for non-standard
algorithms. This means that certificates has to be generated
and verified for public-keys of short-signature algorithms.

VII. CONCLUDING REMARKS

This paper discussed the construction of an application
framework for SMS security on Android smartphones. The
framework provides secrecy, integrity, authentication, and
non-repudiation for SMS messages. The use of authenticated
encryption and short digital signatures makes it possible to

pack in a single SMS all necessary information to
authenticate encrypted SMSs, while preserving a useful
length of messages. The usability of security features is
addressed by offering easy-to-use security levels and a
seamless integration of cryptographic management into
common app management functions.

ACKNOWLEDGMENT

The authors acknowledge the financial support given to
this work, under the project "Security Technologies for
Mobile Environments – TSAM", granted by the Fund for
Technological Development of Telecommunications –
FUNTTEL – of the Brazilian Ministry of Communications,
through Agreement Nr. 01.11.0028.00 with the Financier of
Studies and Projects - FINEP / MCTI.

REFERENCES

[1] A. Braga and A. Colito, “Adding Secure Deletion to an
Encrypted File System on Android Smartphones,” in proc. of
The 8th Int’l Conf. on Emerging Security Inform., Systems
and Technologies (SECURWARE), 2014, pp. 106–110.

[2] A. Braga and D. Schwab, “Design Issues in the Construction
of a Cryptographically Secure Instant Message Service for
Android Smartphones,” in proc. of The 8th Int’l Conf. on
Emerging Security Information, Systems and Technologies
(SECURWARE), 2014, pp. 7–13.

[3] A. Braga and E. Morais, “Implementation Issues in the
Construction of Standard and Non-Standard Cryptography on
Android Devices,” in proc. of The 8th Int’l Conf. on Emerging
Security Information, Systems and Technologies
(SECURWARE), 2014, pp. 144–150.

[4] A. Braga and E. Nascimento, “Portability evaluation of
cryptographic libraries on android smartphones,” in proc. of
Cyberspace Safety and Security (CSS), 2012, pp. 459–469.

[5] A. Braga, “Integrated Technologies for Communication
Security on Mobile Devices,” in proc. of the 3rd Int’l Conf. on
Mobile Services, Resources, and Users (Mobility), 2013, pp.
47–51.

[6] A. Braga, E. Nascimento, and L. Palma, “Presenting the
Brazilian Project TSAM–Security Technologies for Mobile
Environments,” in proc. of Security and Privacy in Mobile
Information and Comm. Systems, no. i, 2012, pp. 53–54.

[7] A. De Santis, A. Castiglione, G. Cattaneo, M. Cembalo, F.
Petagna, and U. F. Petrillo, “An Extensible Framework for
Efficient Secure SMS,” in proc. of The Int’l Conf. on

Figure 6. IV management for SMS security.

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

Complex, Intelligent and Software Intensive Systems (CISIS),
2010, pp. 843–850.

[8] A. Hossain, S. Jahan, M. M. Hussain, M. R. Amin, and S. H.
S. Newaz, “A proposal for enhancing the security system of
short message service in GSM,” in proc. of The 2nd Int’l Conf.
on Anti-counterfeiting, Security and Identification (ASID),
2008, pp. 235–240.

[9] A. K. Nanda and L. K. Awasthi, “Encryption based channel
coding algorithm for secure SMS,” in proc. of The World
Congress on Information and Communication Technologies
(WICT), 2011, pp. 1282–1287.

[10] A. K. Nanda and L. K. Awasthi, “Joint Channel Coding and
Cryptography for SMS,” in proc. of The Int’l Siberian Conf.
on Control and Communications (SIBCON), 2011, pp. 51–55.

[11] A. M. Sagheer, A. A. Abdulhameed, and M. A. AbdulJabbar,
“SMS Security for Smartphone,” in proc. of The 6th Int’l
Conf. on Developments in eSystems Engineering (DeSE),
2013, pp. 281–285.

[12] A. Pourali, “The presentation of an ideal safe SMS based
model in mobile electronic commerce using encryption hybrid
algorithms AES and ECC,” in proc. of The 8th Int’l Conf. on
e-Commerce in Developing Countries: With Focus on e-Trust
(ECDC), 2014, pp. 1–10.

[13] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the Weil pairing,” J.Cryptol., vol. 17, n. 4, 2004, pp.297–319.

[14] D. Lisonek and M. Drahansky, “SMS Encryption for Mobile
Communication,” in proc. of The Int’l Conf. on Security
Technology (SECTECH’08), 2008, pp. 198–201.

[15] D. Read and J. Martina, “SAMES-Short Anonymous Message
Encryption Scheme,” in proc. of X Simpósio Brasileiro em
Segurança da Informação e de Sistemas computacionais
(SBSeg), Fortaleza, Ceará, Brasil, 2010.

[16] ENISA, “Algorithms, key size and parameters report”, nov.
2014. Retrived [July 2015] from www.enisa.europa.eu/
activities/identity-and-trust/library/deliverables/algorithms-
key-size-and-parameters-report-2014.

[17] F. Fahrianto, S. Masruroh, and N. Ando, “Encrypted SMS
application on Android with combination of caesar cipher and
vigenere algorithm,” in proc. of The Int’l Conf. on Cyber and
IT Service Management (CITSM), 2014, pp. 31–33.

[18] F. Zhang, R. Safavi-Naini, and W. Susilo, “An Efficient
Signature Scheme from Bilinear Pairings and Its
Applications,” in F. Bao, R. H. Deng and J. Zhou, ed., 'Public
Key Cryptography', 2004, pp. 277-290.

[19] G. C. C. F. Pereira et al., “SMSCrypto: A lightweight
cryptographic framework for secure SMS transmission,” in
Jour. of Sys. and Software, vol. 86, no. 3, 2013, pp. 698–706.

[20] Google, Inc., “The Android Project,” Retrived [July 2015]
from http://www.android.com.

[21] GSM Doc 28/85 "Services and Facilities to be provided in the
GSM System" rev2, June 1985.

[22] H. Al Bashar Abul Ulayee, M. Mesbah-Ul-Awal, and S.
Newaj, “Simplified Approach Towards Securing Privacy and
Confidentiality of Mobile Short Messages,” in proc. of The 4th
Int’l Conf. on Advanced Computing Communication
Technologies (ACCT), 2014, pp. 403–408.

[23] J. Pan, Q. Ding, and N. Qi, “The Research of Chaos-based
SMS Encryption in Mobile Phone,” in proceedings of The 2nd
Int’l Conf. on Instrumentation, Measurement, Computer,
Communication and Control (IMCCC), 2012, pp. 501–504.

[24] L. Pu, “An Improved Short Message Security Protocol for
Home Network,” in proc. of The Int’l Conf. on Future
Computer and Communication, (FCC’09), 2009, pp. 62–65.

[25] M. Agoyi and D. Seral, “SMS Security: An Asymmetric
Encryption Approach,” in proceedings of The 6th Int’l Conf.

on Wireless and Mobile Communications (ICWMC), 2010,
pp. 448–452.

[26] M. Hassinen, “SafeSMS - end-to-end encryption for SMS,” in
proc. of the 8th Int’l Conf. on Telecommunications,
(ConTEL), vol. 2, 2005, pp. 359–365.

[27] M. Kashif, “Secure SMS Communication Using Encryption
Gateway and Digital Signature,” in proc. of The 17th IEEE
Int’l Conf. on Computational Science and Engineering (CSE),
2014, pp. 1430–1434.

[28] M. M. Khan, M. Bakhtiari, and S. Bakhtiari, “An HTTPS
approach to resist man in the middle attack in secure SMS
using ECC and RSA,” in proc. of The 13th Int’l Conf. on
Intelligent Sys. Design and Appl. (ISDA), 2013, pp. 115–120.

[29] M. Patil, V. Sahu, and A. Jain, “SMS text Compression and
Encryption on Android O.S,” in proc. of The Int’l Conf. on
Computer Comm. and Informatics (ICCCI), 2014, pp. 1–6.

[30] N. Gligoric, T. Dimcic, D. Drajic, S. Krco, and N. Chu,
“Application-layer security mechanism for M2M
communication over SMS,” in proc. of The 20th.
Telecommunications Forum (TELFOR), 2012, pp. 5–8.

[31] N. Qi, J. Pan, and Q. Ding, “The Implementation of FPGA-
based RSA Public-key Algorithm and its Application in
Mobile-phone SMS Encryption System,” in proc of The 1st
Int’l Conf. on Instrumentation, Measurement, Computer,
Communication and Control, 2011, pp. 700–703.

[32] N. Saxena and N. S. Chaudhari, “EasySMS: A Protocol for
End-to-End Secure Transmission of SMS,” in proc. of The
IEEE Transactions on Information Forensics and Security,
vol. 9, no. 7, 2014, pp. 1157–1168.

[33] N. Saxena and N. S. Chaudhari, “Secure encryption with
digital signature approach for Short Message Service,” in
proc. of The World Congress on Information and
Communication Technologies (WICT), 2012, pp. 803–806.

[34] N. Saxena, N. S. Chaudhari, and G. L. Prajapati, “An
extended approach for SMS security using authentication
functions,” in proc. of The 7th IEEE Conf. on Industrial
Electronics and Applications (ICIEA), 2012, pp. 663–668.

[35] N. Saxena, N. S. Chaudhari, and J. Thomas, “Solution to an
attack on digital signature in SMS security,” in proc. of The
5th Int’l Conf. on Modeling, Simulation and Applied
Optimization (ICMSAO), 2013, pp. 1–6.

[36] P. H. Kuaté, J. L.-C. Lo, and J. Bishop, “Secure asynchronous
communication for mobile devices,” in proc. of the Warm Up
Workshop for ACM/IEEE ICSE 2010, 2009, pp. 5–8.

[37] P. Teufl, T. Zefferer, C. Woergoetter, A. Oprisnik, and D.
Hein, “Android - On-device detection of SMS catchers and
sniffers,” in proc. of The Int’l Conf. on Privacy and Security
in Mobile Systems (PRISMS), 2014, pp. 1–8.

[38] R. Pizzolante, B. Carpentieri, A. Castiglione, A. Castiglione,
and F. Palmieri, “Text Compression and Encryption through
Smart Devices for Mobile Communication,” in proc. of The
7th Int’l Conf. on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2013, pp. 672–677.

[39] R. R. Chavan and M. Sabnees, “Secured mobile messaging,”
in proc. of The Int’l Conf. on Computing, Electronics and
Electrical Technologies (ICCEET), 2012, pp. 1036–1043.

[40] S. Ariffi, R. Mahmod, R. Rahmat, and N. A. Idris, “SMS
Encryption Using 3D-AES Block Cipher on Android Message
Application,” in proc. of The Int’l Conf. on Advanced Comp.
Science App. and Tech. (ACSAT), 2013, pp. 310–314.

[41] NIST SP 800-38D. Recommendation for Block Cipher Modes
of Operation: Galois/Counter Mode (GCM) and GMAC.
2007. Retrived [July 2015] from http://csrc.nist.gov/publications/
nistpubs/800-38D/SP-800-38D.pdf.

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-427-5

SECURWARE 2015 : The Ninth International Conference on Emerging Security Information, Systems and Technologies

