
AWESOME - Automated Web Emulation for Secure Operation of a
Malware-Analysis Environment

Martin Brunner, Christian Martin Fuchs and Sascha Todt
Fraunhofer Research Institution for Applied and Integrated Security (AISEC)

Munich/Garching, Germany
{martin.brunner,christian.fuchs,sascha.todt}@aisec.fraunhofer.de

Abstract—We present AWESOME, a novel approach for
integrated honeypot-based malware collection and analysis
which extends the functionalities of existing approaches. In
contrast to purely network-based approaches, the goal of
our collection and analysis system is runtime retrieval of
internal malware logic information. This approach allows us
to provide analyzed malware with all requested resources
in real time, despite the fact that it is executed within an
isolated environment. Our assumption is that being able to
track the entire malware execution life-cycle will enable a better
understanding of current and emerging malware. This paper
introduces our design, outlining its contributions and design
considerations. An in-depth description and evaluation of each
component will be discussed in separate work. While still under
development, we expect our approach to make a significant
contribution to enhanced analysis of current malware.

Keywords-malware collection; malware analysis and defense.

I. INTRODUCTION AND RELATED WORK

Some of today’s most disruptive cyber threats can be
attributed to malware, usually organized within a botnet in
large-scale scenarios. This results in a fundamental need to
track the rapid evolution of malware, which, in turn, depends
on collection and examination of current real-world attack
data, commonly acquired through meticulous analysis of the
most recent samples. The evolution of malware over time has
led to the development of intensive obfuscation and anti-
debugging mechanisms, as well as a complex and multi-
staged malware execution life-cycle [16]. Usually, this life-
cycle can be partitioned into three phases: (i) propagation
and exploitation, which covers the spread of malicious
payloads and unpacking and deobfuscation of the corre-
sponding shellcode; (ii) infection and installation covers the
deployment of a binary (e.g., dropper) on the victim host
followed by possible preparatory activities and the retrieval
of the actual malware body; and, (iii) the operation and
maintenance phase, in which the malware’s core compo-
nents harvest valuable information and attempt to establish
a command-and-control (C&C) channel awaiting further
instructions. Each phase may include numerous measures
aimed at maximizing installation success and reliability. In
order to comprehensively analyze the full life-cycle, the
malware under analysis must have unhindered access to all
requested resources during runtime. While this could easily

be achieved by allowing full interaction with the Internet,
this is not a viable approach in setups which are forced
to consider liability issues. Advanced large-scale malware
collection and analysis infrastructures, such as [1][5][8], can
satisfy the requirements for automated tracking of malware,
but suffer from several limitations:

(i) Despite being executed within an isolated environment,
samples must be supplied with requested network services
during analysis. Otherwise, achieving high-quality results
is impeded, potentially causing different malware behavior
or even a refusal of execution. While certain services can
be offered using sinkholing techniques, existing approaches
are purely network-based, and reactions to malware-initiated
connection attempts remain static during runtime. Predefined
commonly-used services, which are usually queried, are
offered by these infrastructures to the malware; however,
other requests can not be handled accordingly.

(ii) High-interaction (HI) honeypots pose, aside from their
complexity and maintenance issues, high operational risks.
These are often inadequately addressed. While there are
many methods of mitigation, the remaining risk is still higher
than with low-interaction (LI) honeypots, resulting in ethical
questions and possibly even legal and liability issues for the
operating organization.

(iii) Existing approaches separate collection and analysis,
thus forfeiting the system context (i.e., file handles, requests,
sockets) of the victim host. While such separation is not
necessarily a limitation (it may not be mandatory to gain
qualitative analysis results), we argue that this loss of infor-
mation hinders analysis and may degrade analysis results or
prevent analysis of certain malware altogether.

II. APPROACH

A. Goals

Our overall goal is to capture and dynamically analyze
novel malware on a large scale. To identify trends of current
and emerging malware, we aim to cover the entire life-
cycle. That is, we want to track malware communicating
via unknown (e.g., C&C) protocols in an automated way
within a controlled environment. In order to minimize harm
to third parties, malware should by default have no Internet
access during analysis. The whole procedure intends to trick

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

HI Honeypot

VMI Framework

Repository

Malicious
Binary

External
Service Handler

Internal
Service Handler

no

Download Binary

yes

Service Emulator
(HTTP, FTP, DNS, SMB, C&C Protocols...)

Generate
ResponseInteraction

Needed?

no

yes

Analysis Triggered,
Parse Instruction(s) Part 2: Fetching of Malware

- Exploitation / Infection
- Download

Part 3: Analysis
- Pause / Resume
- Examine Instructions

Part 4: Service Provisioning
- External Service Handler
 (Benign Actions)
- Internal Service Handler
 (Malicious Actions)

Iteration throughout
Malware Life-Cycle:

LI Honeypot

Further Iterations during Analyis Stages

Attacks from the Internet

If Collected via LI Honeypot:
Push Sample into VM

Extended Analysis /
Pause Execution

Honeywall

Visit URI

or

Signal Resume Execution

Collection Network

Part 1: Forward Attacks
- Taintmap Triggered
- Activate VMI Framework
- Pause Execution

Harm to
3rd

Party?

Figure 1. General Design of the Presented Approach

a sample into believing it is running on a real victim host
with full Internet access.

B. Basic Concept

To identify the services and protocols required in the
next step of the life-cycle, we intend to harvest information
on internal malware logic during execution. In contrast to
purely network-based approaches, our method also operates
at the binary level, directly interacting with the malware’s
host system. It therefore aims to integrate network-based
analysis and binary analysis, as in [21]. As depicted in
Figure 1, the presented approach is based on a HI honeypot
and a virtual machine introspection (VMI) framework. We
enhance our architecture with a transparent pause/resume
functionality, which is instrumented to determine and, if
needed, interrupt the program flow. Hence, we enable the
extraction and alteration of program logic and data within the
victim environment during runtime. This is specifically valu-
able for extracting protocol information and cryptographic
material embedded within malware in order to determine the
protocol type and intercept encrypted communication. After
checking, extracted information is forwarded to a service
handler (SH) and sinkholing service in order to maintain
full control over all interactions between the malware and
the outside world. For handling unknown traffic as well,
finite state machines (FSM) are automatically derived from
the observed traffic and used for service emulation. An
important goal of automating the whole collection and
analysis process is to handle large amounts of malware while
allowing scalability.

C. Added Value

The system context of the malware collection facility
persists and is also used in the subsequent analysis. The
capabilities resulting from the merge of collection and

analysis is similar to the approach used in HI honeypots.
Thus, it is more closely aligned to real-world scenarios than
LI honeypots. In addition, we achieve increased transparency
during analysis due to the use of VMI. We consider this to
be a benefit, since we argue that VMI based analysis is more
likely to remain undetected by malware. Compared to other
techniques, VMI requires no trusted support components
which could be compromised [7] inside the sample’s context
of execution. Hence, the approach is more likely to observe
the entire malware execution life-cycle. Furthermore, we are
able to extract and inject data as well as instructions from
or into the memory of the infected virtual machine (VM)
during runtime (for example, in order to tap and manipulate
encrypted C&C traffic). Since our approach does not depend
on analysis components within the VM, we believe it to be
more secure while also expecting better overall performance.
Moreover, we are able to control any interaction between
malware and third party systems. Thus, our architecture can
fulfill legal and liability constraints. Since our approach is
applied directly at the instruction level, we are aware of the
actions initiated by the malware, thus allowing us to provide
matching services and even to service novel communication
patterns. Subsequently, the risk resulting from HI honeypot
operation is minimized.

III. DESIGN AND IMPLEMENTATION

A. Components

Our approach utilizes the following components:
For malware collection, a modified HI honeypot [18] is

used. Malware analysis is conducted based upon Nitro [17],
a KVM-based framework for tracing system calls via VMI.
In particular, we determine whether a given action initiated
by the currently-analyzed malware requires Internet access
and thus apply a complex rule-set to the tracing component.

69Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

Our service provisioning component manages all malware-
initiated attempts to request Internet resources. Malicious
attempts are handled via an appropriate sinkholing service
spawned by Honeyd [19], and unknown traffic patterns may
be handled utilizing ScriptGen [13].

B. Setup

While most popular LI honeypots have proven to be
efficient for malware collection, their knowledge-based ap-
proach has also drawbacks regarding the quantity and di-
versity of the collected malware [23]. With respect to our
primary goal (to handle unknown malware), we chose to
apply the taint-map-based approach of ARGOS, since it
allows the detection of both known and unknown (0-day)
attacks. In addition, it is independent of special collection
mechanisms. Moreover, it can cooperate with the KVM
based VMI framework Nitro. Hence, several components
were modified: (i) the victim VM’s RTC is detached from
the host’s clock, since ARGOS is more time-consuming than
traditional approaches and thus detectable by an abnormal
latency and timing-behavior; (ii) once the taint-map reports
tainted memory being executed, we activate the analysis
functionality provided by the VMI framework; and, (iii)
simple interpretation and filtering of system calls and their
parameters is conducted directly within hypervisor space,
while more complex analysis is performed via the VMM
in the host environment [10]. The entire process consists of
three parts (collection, analysis, and service provisioning)
and is structured as described below. The steps are repeated
iteratively throughout the entire life-cycle of the malware.

C. Malware Collection

To overcome the poor performance of ARGOS, we build a
two-staged malware collection network. That is, we deploy a
hybrid honeypot system similar to existing approaches, such
as [2][11][22]. We then take advantage of our preexisting
honeyfarm infrastructure [3], which utilizes a large-scale
network telescope employing various different LI honeypots.
This infrastructure is used to filter noise and known (and thus
uninteresting) attacks. Only novel incidents are forwarded to
ARGOS, thus reducing the overall load on it.

D. Malware Analysis

Dynamic malware analysis utilizing virtualization can
be recognized and thus evaded by environment-sensitive
malware [9][10][14][20]. Hence, our goal is to achieve a
reasonably transparent dynamic malware analysis; however,
we also consider VMI as the most promising available ap-
proach to evade malware’s anti-debugging measures. Thus,
in order to provide the best chance at evading detection
while still gaining the benefits of VMI, we have chosen
Nitro since it offers several advantages regarding perfor-
mance and functionality when compared to other publicly
available tools such as Ether (see [17]). As Nitro is based

on KVM, we have, in addition to guest portability, full
virtualization capability, thanks to the host CPU’s virtualiza-
tion extensions; thus, we can expect reasonable performance.
During the analysis process, we expect a malicious binary
to be shellcode or a dropper rather than the actual malware
binary. This initially retrieved binary is then decoded and
usually contains a URL pointing at the resource used for
deploying the next stage of the malware. In the second
iteration, execution of this binary continues after it has been
downloaded and the VM has been resumed. The resulting
system call trace is then examined for routines related to
connection handling (e.g., NTConnectPort). If present, we
transparently pause execution of the VM and forward related
traffic to the service provisioning component.

E. Service Provisioning

Malware-driven outbound requests are evaluated to pre-
vent harm to third party systems. For these checks, we rely
upon existing measures, such as IDSs or a web application
firewall. We are aware that such measures will not be
sufficient to tell benign and malicious flows apart in every
case; thus, we may build on existing approaches [12]. We
assume that a purely passive request (e.g., a download) does
not cause harm to a third party. It is thus considered to
be benign and handed over to the external service handler
(see Figure 1). Since the external SH has Internet access,
it resides in a dedicated network segment separated from
the analysis environment. If a given request can not be
determined to be benign, it is redirected to the internal
service handler. The sole task of these SHs is to fetch, pre-
pare and provide information for the service emulator (SE).
The SE launches the requested service in order to deliver
the appropriate payload supplied by the SH. Afterwards,
execution is transparently resumed. Since these services can
be extremely heterogeneous, the SE is based on Honeyd. It
is a very flexible and scalable tool which is able to emulate
or spawn arbitrary services, given that a protocol template
exists.

The creation of templates for novel protocols is a much
more challenging task. Therefore we plan to instrument a
tool, which derives FSMs from observed traffic, such as
ScriptGen or a similar approach [4][6][15]. Each FSM rep-
resents the behavior of a given protocol at an abstract level
while not depending on prior knowledge or protocol seman-
tics. Based on the generated FSMs, service emulation scripts
for the SE can be derived. By integrating such a tool into our
approach, we aim toward adding ’self-learning capabilities’
to the service provisioning element. Obviously this requires
(at least) one-time observation of a given communication
between the honeypot and the external system. Hence we
need a (supervised) back-channel for learning about novel
protocols. Once a corresponding communication has been
recorded and the appropriate FSM has been generated, we
are able to handle the new protocol as well. While the need

70Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

for a back-channel is a clear limitation, we consider it to be
a reasonable trade-off.

IV. SUMMARY AND FUTURE WORK

In this paper, we have presented a novel approach for
integrated honeypot-based malware collection and analy-
sis which extends existing functionalities. Specifically, it
addresses the separation of collection and analysis, the
limitations of service emulation, and the operational risk
of HI honeypots. The key contribution of the approach
is the design of the framework as well as the integration
and extension of the stated tools. While this is an ongoing
research activity and thus still under development, several
modifications to ARGOS and Nitro have already been im-
plemented and successfully tested, indicating the feasibility
of our approach. Future work will include the completion
and evaluation of the service emulator and the measures to
prevent harm to third party systems.

REFERENCES

[1] M. Apel, J. Biskup, U. Flegel, and M. Meier. Early warning
system on a national level - project amsel. In Proc. of the
European Workshop on Internet Early Warning and Network
Intelligence (EWNI 2010), January 2010.

[2] M. Bailey, E. Cooke, D. Watson, F. Jahanian, and N. Provos.
A hybrid honeypot architecture for scalable network monitor-
ing. In Technical Report CSE-TR-499-04, 2006.

[3] M. Brunner, M. Epah, H. Hofinger, C. Roblee, P. Schoo, and
S. Todt. The fraunhofer aisec malware analysis laboratory -
establishing a secured, honeynet-based cyber threat analysis
and research environment. Technical report, Fraunhofer
AISEC, September 2010.

[4] J. Caballero, P. Poosankam, C. Kreibich, and D. Song. Dis-
patcher: enabling active botnet infiltration using automatic
protocol reverse-engineering. In Proc. of the 16th ACM
Conference on Computer and Communications Security, CCS
’09, pages 621–634, New York, NY, USA, 2009. ACM.

[5] D. Cavalca and E. Goldoni. Hive: an open infrastructure for
malware collection and analysis. In proc. of the 1st Work-
shop on Open Source Software for Computer and Network
Forensics, 2008.

[6] W. Cui, V. Paxson, Nicholas C. Weaver, and Y H. Katz.
Protocol-independent adaptive replay of application dialog.
In 13th Annual Network and Distributed System Security
Symposium (NDSS), 2006.

[7] M. Dornseif, T. Holz, and C.N. Klein. Nosebreak - attacking
honeynets. In Information Assurance Workshop, 2004. Proc.
from the Fifth Annual IEEE SMC, June 2004.

[8] M. Engelberth, F. Freiling, J. Göbel, C. Gorecki, T. Holz,
R. Hund, P. Trinius, and C. Willems. The inmas approach.
In 1st European Workshop on Internet Early Warning and
Network Intelligence (EWNI), 2010.

[9] P. Ferrie. Attacks on virtual machine emulators. In AVAR
Conference, Auckland. Symantec Advanced Threat Research,
December 2006.

[10] C. M. Fuchs. Deployment of binary level protocol identi-
fication for malware analysis and collection environments.
Bacherlor’s thesis, Upper Austria University of Applied Sci-
ences Hagenberg, May 2011.

[11] X. Jiang and D. Xu. Collapsar: a vm-based architecture
for network attack detention center. In Proc. of the 13th
conference on USENIX Security Symposium - Volume 13,
SSYM’04, Berkeley, CA, USA, 2004. USENIX Association.

[12] C. Kreibich, N. Weaver, C. Kanich, W. Cui, and V. Paxson.
Gq: practical containment for measuring modern malware
systems. In Proc. of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference, IMC ’11, pages 397–412,
New York, NY, USA, 2011. ACM.

[13] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an auto-
mated script generation tool for honeyd. In Proc. of the 21st
Annual Computer Security Applications Conference (ACSAC),
Washington, DC, USA, 2005. IEEE.

[14] M. Lindorfer, C. Kolbitsch, and P. Milani Comparetti. De-
tecting environment-sensitive malware. In Recent Advances
in Intrusion Detection (RAID) Symposium, 2011.

[15] P. Milani Comparetti, G. Wondracek, C. Kruegel, and
E. Kirda. Prospex: Protocol specification extraction. In Proc.
of the 30th IEEE Symposium on Security and Privacy, pages
110–125, Washington, DC, USA, 2009.

[16] G. Ollmann. Behind today’s crimeware installation lifecy-
cle: How advanced malware morphs to remain stealthy and
persistent. Whitepaper, Damballa, 2011.

[17] J. Pfoh, C. Schneider, and C. Eckert. Nitro: Hardware-based
system call tracing for virtual machines. In Advances in
Information and Computer Security, volume 7038 of Lecture
Notes in Computer Science. Springer, November 2011.

[18] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. In Proc. ACM
SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

[19] Niels Provos. A virtual honeypot framework. In Proc. of the
13th USENIX Security Symposium, 2004.

[20] J. Rutkowska. Red pill... or how to detect vmm using (almost)
one cpu instruction, 2004. http://invisiblethings.org [retrieved:
July, 2011].

[21] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. Gyung
Kang, Z. Liang, J. Newsome, P. Poosankam, and P. Saxena.
Bitblaze: A new approach to computer security via binary
analysis. In Proc. of the 4th International Conference on
Information Systems Security., 2008.

[22] M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C.
Snoeren, G. M. Voelker, and S. Savage. Scalability, fidelity,
and containment in the potemkin virtual honeyfarm. In Proc.
of the 20th ACM Symposium on Operating Systems Principles,
SOSP ’05, New York, NY, USA, 2005. ACM.

[23] J. Zhuge, T. Holz, X. Han, C. Song, and W. Zou. Col-
lecting autonomous spreading malware using high-interaction
honeypots. In Proc. of the 9th International Conference on
Information and Communications Security, ICICS’07, Berlin,
Heidelberg, 2007. Springer-Verlag.

71Copyright (c) IARIA, 2012. ISBN: 978-1-61208-209-7

SECURWARE 2012 : The Sixth International Conference on Emerging Security Information, Systems and Technologies

