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Abstract—Intrusion detection system (IDS) detects an intrusion 
by comparing with its attack signatures. The generation of IDS 
signatures is based on the analysis of attack traffic, which is a 
result of exploiting vulnerabilities in a network protocol. Thus, 
the protocol analysis becomes an effective method to find out 
protocol vulnerabilities with regard to IDS. But the problem of 
protocol analysis in IDS is that how to detect all protocol 
vulnerability conditions in protocols. In this paper, we propose 
a novel framework to identify protocol vulnerability conditions 
by utilizing existing protocol analysis techniques. In particular, 
there are three major analysis steps in our framework: 
protocol semantic analysis, protocol implementation analysis 
and protocol state transition sub-condition analysis. In the 
final step of our framework, we illustrate the use of deletion, 
addition and modification operations with the purpose of 
generating all potential protocol vulnerability conditions from 
the normal protocol transition conditions. Experimental results 
show that this framework is encouraging and feasible. 
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I.  INTRODUCTION  

Rule-based intrusion detection and prevention systems 
(RIDS/RIPS) [1, 3] are mainly based on attack signatures to 
detect an attack. The attack signatures are stored in a rule 
database and updated to the latest version periodically. What 
is more, the generation of these attack signatures heavily 
depends on an exploit of vulnerability in a protocol. Take 
Snort [2] as an example, this lightweight RIDS monitors and 
analyzes the protocol packets (e.g., UDP, TCP, IP) according 
to its rules to alert and prevent intrusions. The common rule 
format of Snort is as blow: 

Action-type protocol-type Source-ip Source-port -> 
Destination-ip Destination-port (content:"|attack signature|"; 
msg:"attack msg";) 

For an ICMP DDoS attack by using tfn2k tool, the attack 
rule or signature can be produced in terms of the detected 
characteristic as below: 

alert icmp $EXTERNAL_NET any -> $HOME_NET any 
(msg:"DDOS tfn2k icmp possible communication"; 
icmp_id:0; itype:0; content:"AAAAAAAAAA"; rev:5;) 

The content “AAAAAAAAAA” in this rule is the attack 
signature (also called characteristic) for this exploit. 

What is more, the vulnerabilities in a protocol can appear 
in different forms, e.g., the change of bit values or the 
change of packet sequence. In common cases, an attacker 

usually utilizes these forms of protocol vulnerabilities to do 
harm to the network security. 

To identify protocol vulnerabilities, protocol analysis is a 
prevalent and effective method used in intrusion detection. 
The advantages of protocol analysis are listed below: 

•   Strong capability of vulnerability detection: protocol 
analysis does not only assist IDS to analyze network 
traffic in terms of protocol specification, but also has 
the ability to identify vulnerabilities during protocol 
implementation. For example, the input length and 
special characters checking and filtering. 

•   Target detection space reduction: protocol analysis 
lightens the analysis workload by cutting down the 
target number of protocol fields, e.g., searching for 
specific parts of packet rather than entire payload.  

 
Problems. The coverage of signatures is the key problem 

for rule-based IDS in reducing the detection accuracy. The 
IDS signatures usually are easy for an attacker to evade by 
making some small modifications of the original message in 
a packet. For example, changing the size of variable-length 
fields or changing the field values in a packet with the 
purpose of mismatching the IDS signatures. 

We argue that the coverage problem of IDS signatures 
stems primarily from the variants of vulnerabilities in a 
protocol. In particular, different forms of a vulnerability in a 
network protocol usually are caused by some minor changes 
of respective protocol vulnerability conditions. As a result, 
the ideal solution to this problem is finding out all potential 
protocol vulnerability conditions that lead the protocol state 
from a normal to an abnormal state. 

Related work. The concept of modifying the software 
testing paths has been implemented in detecting software 
vulnerability conditions [17, 6, 8] and then help identifying 
software threats. Saxena et al. [18] introduced loop-extended 
symbolic execution that broadens the coverage of symbolic 
results with loops to find out the vulnerability conditions in 
programs. Our work attempts to make use of this concept of 
detecting software vulnerability conditions through creating 
various software testing paths into the detection of protocol 
vulnerability conditions by analyzing a protocol specification. 
We aim to make progress towards systematic detection of 
possible vulnerability conditions in network protocols by 
applying three operations to normal protocol state conditions.  

Contribution. In this paper, we propose a framework to 
detect protocol vulnerability conditions by utilizing existing 
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Figure 1.  The framework for identification of protocol vulnerability conditions. 

protocol analysis techniques with the goal of identifying all 
vulnerability conditions in network protocols. In particular, 
our framework has the ability to detect protocol vulnerability 
conditions without a real attack by applying the operations 
(deletion, addition and modification) onto normal transition 
conditions of protocol states. 

To demonstrate the feasibility of our framework, we 
developed and evaluated the framework in an experimental 
environment which is constructed by Snort [2], Wireshark [8] 
and a packet generator [9]. Furthermore, we verified our 
framework by comparing our identified ICMP protocol 
vulnerability conditions with a set of ICMP Snort rules.  

The rest of this paper is organized as follows: in Section 
2, we introduce the steps in our framework that how to detect 
potential protocol vulnerability conditions and then give an 
in-depth description of operations in protocol state transition 
sub-condition analysis; Section 3 presents our experimental 
methodology and an experimental result; Section 4 states the 
future work; at last, Section 5 gives our conclusion. 

II. OUR FRAMEWORK 

In this section, we first give the definition of protocol 
vulnerability condition in our framework, and then introduce 
the representation format of protocol vulnerability condition. 

 
Protocol vulnerability: a point that causes the execution 

of a protocol to be out of normal function and make errors.  
Protocol vulnerability condition: A specific and certain 

condition that leads the protocol state to reach the protocol 
vulnerability which results in causing the protocol execution 
to an abnormal state. 

 
In addition, the specific forms of protocol vulnerability 

conditions could consist of particular triggers (e.g., network 
parameters change, packet flag values reset) that cause a 
protocol vulnerability exploited, and abnormal points (e.g., 
implementation errors, coding ignorance etc.) that possibly 
compromise the function of a protocol. 

What is more, we use the IF/THEN format to represent 
these protocol vulnerability conditions as the output in our 
framework. For example, as for Destination fragmentation 
vulnerability in ICMP (this vulnerability in ICMP packet 
due to the packet size is larger than 65536 octets, but the 
DF/Don’t fragmentation bit is set to 1), the representation of 
this protocol vulnerability condition could be (according to 
captured attack traffic): 

 
IF {Datagram greater than 65536 octets and DF=1} 
THEN {alert msg: ping of death attack} 
 

This representation is compact and at protocol level. The 
merits of this representation (IF/THEN) are:  

•   Easy for understanding, the IF part describes the 
details of vulnerability conditions in protocols, the 
THEN part gives the description and information of 
this exploit. 

•   In favor of signature generation, it is comfortable for 
rule-based intrusion detection/prevention systems to 
produce attack rules and signatures according to the 
IF/THEN representation. In general, attack signature 
can be extracted from the IF part, and alert message 
is corresponding to the THEN part. 

 
In the next two subsections, we first give details of the 

steps in our framework to account for the general procedure 
that how to detect protocol vulnerability conditions with 
high coverage by making use of current protocol analysis 
techniques. We then give an in-depth description on the use 
of operations (deletion, addition and modification) that how 
to identify potential protocol vulnerability conditions from 
known protocol state transition sub-conditions. 

A. Framework Design 

In Fig. 1, the framework illustrates that how to identify 
potential protocol vulnerability conditions by using protocol 
analysis techniques. The framework consists of three major 
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steps: protocol semantic analysis, protocol implementation 
analysis and protocol state transition sub-condition analysis. 
The first step aims to produce a generic protocol state 
transition graph in terms of protocol specification (e.g., 
RFC [12], or use other intermediate language [10]); the 
second step considers the protocol implementation note to 
enrich and extend generic protocol state transition graph to 
a specific protocol state transition graph; and the goal of the 
last step is to produce potential protocol vulnerability 
conditions with operations (such as deletion, addition and 
modification) onto normal transition conditions of protocol 
states according to specific protocol state transition graph 
and then analyze the generated results to identify real 
protocol vulnerability conditions. 

 
Protocol Information. According to the Fig. 1, this is the 

data source in our framework. The protocol information 
contains both essential details of Protocol Specification [4] 
and Protocol Implementation note [5]. 

•   Protocol Specification: All semantic information of 
network protocols can be found in RFC (Request for 
Comments) [12], in which a series of documents that 
collect Internet information, UNIX and Software 
documents of Internet community. The extraction of 
protocol specification can be referred to previous 
work for details [4, 6, 7, 11]. In addition, it is useful 
and effective to find out lots of public specification 
in Vulnerability Database (e.g., NVD [13], CVE [14], 
OSVDB [16]).  

•   Protocol Implementation Note: This note contains 
the implementation details of network protocols (e.g., 
according to RFC documents, how to program the 
protocol). Moreover, we need to notice that the real 
implementation of a protocol may be changed a bit 
from the standard document due to the specific 
network environment and demands. We refer the 
reader to [5, 15, 17] for details of the extraction of 
protocol implementation note. 

 
In practice, the network protocol implementations are 

usually distinct from the RFC documents due to practical 
environment. In this case, we could retrieve the essential 
protocol information with the method of protocol reverse 
engineering [6, 11, 19, 20], which is an effective method to 
find out the principles of a protocol by analyzing the relative 
structure, function, operation etc. 

 
Step1: Protocol Semantic Analysis. The purpose of 

this step is to draw a generic protocol state transition graph 
by using protocol specification. State transition graph [20] 
(also called state transition diagram) is a graph that indicates 
the relationship between two states indicating that an object 
will take certain actions from the first state to the second 
state. Obviously, protocol state transition graph (PSTG) is a 
particular instance of the state transition graph in network 
protocols. 

Generic protocol state transition graph (GPSTG). The 
term of generic means that this graph only contains 
indispensable protocol states and fewer transition conditions 
which shows the generic transition relationship among 
protocol states. This generic protocol state transition graph 
is easier to be drawn according to protocol specification, 
since there is no need to identify all specific state transition 
conditions in practical scenarios. 
 

Step2: Protocol Implementation Analysis. This step 
aims for generating a specific protocol state transition graph 
by using protocol implementation note and relevant generic 
protocol state transition graph. Actually, the generation of 
the specific protocol state transition graph heavily depends 
on the information in protocol implementation note from 
which the specific protocol state transition conditions can be 
indicated.  

Specific protocol state transition graph (SPSTG). The 
term of specific means that this graph contains all protocol 
states, as well all specific protocol state transition conditions. 
From another view, the SPSTG is an extended graph that 
emerges from GPSTG by utilizing much more information 
provided by the protocol implementation note.  

 
Step3: Protocol State Transition Sub-Condition 

Analysis. The main purpose of this step is to analyze sub-
conditions in the specific protocol state transition graph and 
generate potential protocol vulnerability conditions.  

To facilitate the illustration of this analysis work, we 
give definitions of atom condition and compound condition. 
 

Atom Condition: a certain kind of condition that cannot 
be decomposed further in semantic level (e.g., {DF=1}, 
{Datagram greater than 65535 octets}). 

Compound condition: a kind of condition that consists 
of more than one atom condition (e.g., {Datagram greater 
than 65536 octets and DF=1}). 

 
In this step, the analysis work falls into three types. The 

first type is to analyze the specific protocol state transition 
graph and divide the protocol state transition conditions into 
sub-conditions until all atom conditions are identified within 
each protocol state transition.  

The second type is to pick up overlap atom conditions 
since these conditions affects more than one state transition. 
As a result, these overlap conditions are more likely to be 
utilized to create protocol vulnerability conditions.  

The last type of analysis work is to operate (delete, add 
and modify) on these atom conditions (not only the overlap 
atom conditions but also the other atom conditions) to form 
potential protocol vulnerability conditions. To delete, add or 
modify an atom condition has the possibility to change the 
contents of relevant compound condition and cause a flaw in 
the state transition. In this case, these changed conditions 
(which may cause a flaw in protocol state transitions) are 
protocol vulnerability conditions that an attacker can utilize.
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Figure 2.   Operations of deletion, addition and modification. 

B. Operations in Protocol State Transition Sub-Condition 
Analysis  

In Fig. 2, we assume a specific protocol state transition 
graph and then illustrate the operations (deletion, addition 
and modification). In Fig. 2 (a), a specific protocol state 
transition graph is assumed that State1 can change to State2 
and State3 if Condition1 and Condition2 are satisfied 
respectively. State2 converts to State3 as long as Condition3 
is fulfilled. In Fig. 2 (b), we assume that Condition1 could 
be divided into three atom conditions {AC11, AC12, AC13}. 
Similarly, Condition2 and Condition3 have atom conditions 
{AC21, AC22, AC23} and {AC31, AC32} respectively.  

Look for overlap atom conditions. As shown in Fig. 2 
(b), AC13 is the same as AC23, and AC31 is equal to AC21. 
Thus, AC13/AC23 and AC31/AC21 are the overlap atom 
conditions. The advantage of finding out these overlap atom 
conditions is that these overlap atom conditions have more 
chances to affect the state transitions among State1, State2 
and State3. Moreover, the overlap atom conditions are used 
in the addition operation in our framework. We then define 
the three operations of deletion, addition and modification. 

Deletion of atom conditions. According to a specific 
protocol state transition graph, deleting or omitting an atom 
condition in a relevant compound condition could change 
the original contents of this compound condition and result 
in a fault or error during the state transition. As shown in 
Fig. 2 (c), if an atom condition AC32 is deleted, some errors 
may be occurred in the protocol state transition between 
State2 and State3.  

Addition of atom conditions. Similar to deletion, adding 
an atom condition to a state transition condition may cause 
the state to an abnormal state as well. In Fig. 2 (c), adding 
an atom condition AC33, the State2 could do not know how 
to deal with the additional condition and thus produces a 
flaw during the protocol state transitions. In our framework, 
we use the overlap atom conditions for addition operation.  

Empirically, the overlap atom conditions are much more 
vulnerable in the protocol state transitions. To ensure the 
feasibility and effectiveness of this operation, we thus utilize 
the overlap atom conditions to generate potential protocol 

vulnerability conditions for the operation of addition in our 
framework. For example, the AC13/23 and AC31/21 are 
overlap atom conditions according to Fig. 2 (b), we then can 
attempt to add AC13/23 to Condition3 instead of the AC33 
(which is only a generic atom condition) to guarantee that 
our produced conditions are limited. Like this, we can add 
AC31/21 to Condition1 in evaluating the effects of these 
changes as well. 

Modification of atom conditions. To change the original 
content of an atom condition is an effective way to cause 
some errors in the protocol state transitions. In Fig. 2 (d), if 
we modify AC31 to AC31’ in Condition3, the errors may be 
caused between the protocol state transition between State2 
and State3. The major modification skill is to set the packet 
bit values to an opposite value or another different value. 
For example, if DF=0 in original ICMP packet, the DF bit 
will be set to 1 (DF=1) during the modification. 

If deleting, adding or modifying an atom condition can 
cause a normal protocol state to an abnormal state, this atom 
condition or the relevant compound condition is regarded to 
a real protocol vulnerability condition. 

The merits of these operations are: 1) the effects and 
results of applying these operations onto atom conditions 
could be able to cover all possible forms of protocol 
vulnerability conditions (which may consist of an atom 
condition or more than one atom condition). Namely, these 
operations have the ability to generate all potential protocol 
vulnerability conditions; 2) it is more likely to identify the 
variants of known exploits and has the chance to discover 
unknown vulnerability conditions by applying these three 
operations and analyzing the produced conditions. 

III.  EVALUATION  

In this section, we evaluated our framework in a 
constructed environment by using existing tools such as 
Snort [2], Wireshark [8] and a packet generator [9]. The 
environment is shown in Fig. 3. 

In the following parts, we begin by discussing our 
experimental methodology to explain that how to launch our 
evaluation and achieve the results. Then we show the results 
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Figure 3.  Experimental environment and deployment. 

of our experiment on the protocol of ICMP to demonstrate 
the feasibility of our framework.  

A.  Experimental Methodology  

In Fig. 3, we developed a protocol vulnerability condition 
generator (the input is protocol atom condition, thus we 
should draw SPSTG in advance) in Host 1 that generates a 
majority of potential protocol vulnerability conditions with 
deletion and addition operations. But as for the modification 
operation, it is more laborious to obtain the results. The PUC 
database provides a passive storage space for the generated 
potential protocol vulnerability conditions. Then, we used a 
packet generator to create packets according to the potential 
vulnerability conditions in the PUC database (e.g., setting the 
bit value in the packet to an opposite or different value, 
changing the sequence of bits). At last, the crafted packets 
are sent to the Host 2 through routers. 

The Host 2 is the target for the experiment. Therefore, we 
deployed two open source tools Wireshark and Snort into 
this host with the purpose of monitoring network traffic and 
detecting abnormal packets that come from Host 1. The 
Wireshark is a powerful tool to capture network traffic and 
perform packet analysis while the objective of Snort is to 
detect abnormal packets according to its rules and signatures. 

In this experiment, we used Snort rule database (version 
2.8) to verify our identified potential protocol vulnerability 
conditions. In practice, we evaluate our framework on ICMP 
by comparing our identified protocol vulnerability conditions 
with the ICMP Snort rules. Based on these conditions, we 
can create specific ICMP packets to challenge the Snort.  In 
this case, if the number and contents of our detected potential 
protocol vulnerability conditions can cover all of the ICMP 
Snort rules, we can show that our framework is feasible. 

B.  Analysis with an Example on the detection of protocol 
vulnerability conditions  

Based on our experimental methodology, we give an 
example to illustrate the experiment on ICMP. According to 
the description part of page 5 in RFC 792 [12], we produce 

normal transition conditions (a compound condition) 
manually that trigger State1 (send packet) to State2 (wait for 
response). The conditions have then been divided into three 
sub-conditions: SubC1 {the distance to the network is finite}, 
SubC2 {indicated protocol module or process port is active} 
and SubC3 {datagram need fragmented and DF=0}.  

Furthermore, we identify atom conditions as follows: 
{distance finite}, {protocol module is active}, {process port 
is active}, {datagram must be fragmented} and {DF=0}. To 
better understanding, all these atom conditions are presented 
at semantic level. There are no overlap atom conditions in 
this example since there are only two protocol states. 

  Subsequently, we apply operations (deletion, addition 
and modification) into these atom conditions to affect related 
transition conditions.  

  Deletion: delete any one or more above atom conditions. 
For instance, deleting {distance finite}, the remaining 
conditions will be {SubC2 and SubC3}. If deleting two atom 
conditions such as {distance finite} and {process port is 
active}, the result is {protocol module is active and SubC3}.  

  Addition: this operation is based on expert knowledge to 
some degrees. In our method, the atom condition for addition 
comes from the overlap atom conditions. Since there is no 
overlap condition in this example, we can skip this operation. 

  Modification: this action aims to change the contents of 
atom conditions. For example, atom condition {distance 
finite}, {DF=0} could be modified to {distance infinite}, 
{DF=1}. The purpose of these changes is to reverse the 
meaning of atom conditions or to set condition values to 
another different value.  

We use the IF/THEN to represent the generated potential 
protocol vulnerability conditions. For instance, during the 
experiment, we can detect a protocol vulnerability condition 
through modifying the atom condition {DF=0} to {DF=1} in 
affecting Sub3. Thus, the representation of this protocol 
vulnerability condition in our framework is: 

  
IF {datagram must be fragmented and DF=1},  
THEN {alert msg: host crack down}.  
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In the experiment, these oversized packets can cause the 
host to be crashed or rebooted since the host does not know 
how to deal with these oversized packets. What is more, we 
find out the relevant rule in Snort rule database to verify this 
is a real protocol vulnerability condition. The snort rule is: 

 
alert icmp $EXTERNAL_NET any -> $HOME_NET 

any (msg:"ICMP Destination Unreachable Fragmentation 
Needed and DF bit was set"; icode:4; itype:3; 
reference:cve,2004-0790;reference:cve,2005-0068; 
classtype:misc-activity; sid:396; rev:7;) 

 
The meaning of this rule is to alert that ICMP message 

needs fragmentation but the Don't Fragment flag is on, which 
is the same to our detected protocol vulnerability condition. 
 

Performance Analysis. In the experiment, we evaluated 
our framework by the use of 115 ICMP Snort rules (in the 
icmp.rules and icmp-info.rules folders). In particular, we 
classified the ICMP Snort rules into 7 types such as ICMP 
fragmentation, ICMP ping, ICMP redirect, ICMP parameter 
problem, ICMP unreachable problem, ICMP TTL and ICMP 
conversion error.  

The experimental results on the protocol of ICMP show 
that our detected ICMP vulnerability conditions cover 100% 
of the ICMP Snort rules except for those software oriented 
ICMP rules. We discovered that one protocol vulnerability 
condition at protocol level could cover more than one Snort 
rule since the Snort rules are very specific at byte-level. That 
is, our approach can generate some new exploits based on 
the variations of the protocol vulnerability conditions at byte 
level. By analyzing attack patterns of these new exploits, we 
might be able to discover more new attack signatures, and 
thus the Snort rules, before the new attacks actually arrive. 

IV.  FUTURE WORK 

While the evaluation demonstrates the analysis steps in 
our framework, it does reflect some limitations which we 
could work in the future. First of all, the number of protocol 
vulnerability conditions increases exponentially by using the 
three operations. The benefits are high vulnerability coverage 
and unknown protocol vulnerability condition detection, but 
it does need much more storage space and is hard to avoid 
redundant conditions that have the same effects as well. To 
overcome this issue, we plan to develop a reference engine to 
correlate these potential protocol vulnerability conditions 
with the goal of reducing the unreasonable conditions. A 
second area for future work is the design of a system to 
generate byte-level IDS rules from the detected protocol 
vulnerability conditions automatically. In addition, we plan 
on applying our framework into other network protocols to 
further evaluate its feasibility. 

V. CONCLUSION 

In this paper, we proposed a framework aiming to detect 
all protocol vulnerability conditions in a network protocol. 
There are three steps in our framework: protocol semantic 
analysis, protocol implementation analysis and protocol state 
transition sub-condition analysis. In particular, we describe 

the relationship among these steps of the framework and 
define three operations of deletion, addition and modification 
in the final step that are used to generate potential protocol 
vulnerability conditions from normal transition conditions of 
protocol states. In the experiment, we develop and evaluate 
our framework on the protocol of ICMP in a constructed 
network environment by using Snort, Wirewark and packet 
generator. The experimental results show that our framework 
is feasible and encouraging. 
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