
Extended Fault Based Attack against Discrete Logarithm Based

Public Key Cryptosystems

Sung-Ming Yen

Dept of Computer Science and Information Engineering

National Central University

Chung-Li, Taiwan 320, R.O.C.

Email: yensm@csie.ncu.edu.tw

Chi-Dian Wu

Dept of Computer Science and Information Engineering

National Central University

Chung-Li, Taiwan 320, R.O.C.

Email: cs122016@csie.ncu.edu.tw

Abstract—Since Bellcore’s researchers proposed fault based

attacks, these attacks have become serious threats to the imple-
mentation of cryptosystems. Boneh et al. first proposed a fault

based attack against the exponentiation algorithm for RSA,
and some variants of attack were proposed later. However, the

previous variants of similar attack are applicable only to the
right-to-left exponentiation algorithm and none of these attacks

can be successfully applied to the left-to-right alternative
algorithm since 1997. In this paper, we focus on cryptosystems

operated under prime-order groups and emphasize that an
extended fault based attack against implementations using the

left-to-right exponentiation algorithm is possible. Our attack
can also be applied to the Montgomery ladder algorithm which

is a well-known countermeasure against some critical physical
attacks.

Keywords-exponentiation algorithm; hardware fault attack;

physical attack; public key cryptosystem.

I. INTRODUCTION

In the past, cryptographers only analyzed the security of

cryptosystems by mathematics. However, when cryptosys-

tems are implemented on physical devices, it brings new

threats which had never been considered carefully. These

new threats are called the physical attacks, such as the side-

channel attack [14] and the fault based attacks [1], [4], [8].

Physical attacks utilize the power consumption and program

execution time, or disturb the program execution to infer the

secret information stored inside the devices, even though

these cryptosystems have been proved secure with mathe-

matical approach. So, when implementing cryptosystems, it

is usually essential to prevent such kinds of attack.

Both exponentiation and scalar multiplication are the most

central computations for many public key cryptosystems. To

evaluate exponentiation or scalar multiplication, the left-to-

right and the right-to-left algorithms are the two most widely

employed methods. Fault based attack was first introduced

in 1997, and afterwards many kinds of fault based attack

have been proposed to break a variety of cryptosystems.

For example, Boneh et al. [8] proposed a fault based attack

against the right-to-left exponentiation algorithm for RSA

by injecting random faults during the computation to reveal

the private exponent. Biehl et al. presented a similar attack

on elliptic curve cryptosystems (ECC) in 2000 and showed

that the secret scalar of a scalar multiplication can be

revealed by providing illegal input parameters [4]. Berzati

et al. modified Boneh et al.’s attack in 2008 [2]. Biham

and Shamir proposed a differential fault attack (DFA) [5]

against symmetric key cryptosystems, e.g., DES. All these

researches show that fault based attacks are powerful and

dangerous to cryptosystem implementations, especially for

those on smart cards.

The aforementioned fault based attacks against public

key cryptosystems target at the right-to-left exponentiation

algorithm (or the right-to-left scalar multiplication for ECC),

while in this paper we extend this kind of fault based attack

to the left-to-right exponentiation algorithm. The proposed

attack assumes the knowledge of the order of a group and

the order must be a prime. For performance reasons or

security reasons, many important public key cryptosystems,

such as Schnorr scheme [19] and ECC [13] (e.g., elliptic

curve Diffie-Hellman key exchange [17]), the group order

is a prime integer and it is a public information. So, this

attack assumption is reasonable and the proposed attack

can be applied to these widely employed cryptosystems.

Moreover, the proposed attack can also be extended easily

to the Montgomery ladder algorithm.

This paper is organized as follows. In Section II, we

first introduce RSA and Diffie-Hellman cryptosystems. We

also show the algorithms to compute exponentiation. In

Section III, the previous fault based attacks against the

exponentiation algorithm are reviewed. In Section IV, we

propose an extended attack against the left-to-right expo-

nentiation algorithm and show how to apply this attack to

the Montgomery ladder algorithm. Section V concludes the

paper.

II. PRELIMINARY BACKGROUND

A. The RSA Cryptosystem

In the RSA [18] cryptosystem, let p and q be two large

primes kept secret to the public and N = p · q is the RSA

public modulus. The public key e should be relatively prime

to φ(N) = (p − 1) · (q − 1), and d is the corresponding

25Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

private key satisfying e · d ≡ 1 (mod φ(N)). To encrypt a

message m with the public key e, we compute C = me mod
N and to decrypt a cipher C with the private key d, we

compute m = Cd mod N . Signing a message m, the private

computation S = md mod N is performed and verification

of a signature S is to check whether m = Se mod N .

B. Public Key Cryptosystems Based on Discrete Logarithm

Many important public key cryptosystems have been

designed with their security based on solving the discrete

logarithm problem, e.g., Diffie-Hellman key exchange [9],

ElGamal scheme [10], Schnorr scheme [19], and ECC

[13] (e.g., elliptic curve Diffie-Hellman key exchange [17]).

These cryptosystems are constructed over a finite cyclic

group and solving the discrete logarithm problem over this

group is believed to be hard. The multiplicative group and

the additive group on an elliptic curve are two widely used

groups for constructing this kind of cryptosystems. The

Diffie-Hellman key exchange scheme is reviewed in the

following.

Key generation: Let G be a cyclic group of order p and g
is a generator. Each user selects a random integer xi ∈ Zp

as the private key and the public key is yi = gxi .

Key exchange: To exchange a shared key kab with another

party, user a receives the public key yb from user b and

computes the shared key kab = yxa

b .

C. Exponentiation Algorithms

Let d =
∑n−1

i=0 di 2i be the binary expression of the expo-

nent d. An exponentiation algorithm computes the value of

md given the base number m and the exponent d. A variety

of efficient exponentiation algorithms have been proposed so

far to compute md while the binary left-to-right square-and-

multiply algorithm (refer to Figure 1) and the right-to-left

square-and-multiply algorithm (refer to Figure 2) are the two

most widely employed methods [15].

In this paper, the iteration number of the left-to-right ex-

ponentiation algorithm is denoted decreasingly from (n−1)
downward towards zero and that of the right-to-left version

is denoted increasingly from zero upward towards (n− 1).

III. REVIEW OF FAULT BASED ATTACKS AGAINST

EXPONENTIATION ALGORITHM

Some fault based attacks against the exponentiation or the

scalar multiplication have been proposed [1], [2], [4], [7],

[8], [11] so far and can be classified into two categories. The

first category of attacks modify the value of the exponent

and the second category of attacks disturb the intermediate

value of the exponentiation computation, e.g., the value R[0]
in the right-to-left exponentiation algorithm.

A. Fault Based Attack on the Exponent

Bao et al. [1] proposed a fault based attack to threaten

some cryptosystems, e.g., the RSA system. The fault model

Input: m, d = (dn−1 · · ·d0)2
Output: md

01 R[0]← 1
02 for i from n− 1 downto 0 do

03 R[0]← R[0]2

04 if (di = 1) then

R[0]← R[0] ·m
05 return R[0]

Figure 1. Left-to-right exponentiation.

Input: m, d = (dn−1 · · ·d0)2
Output: md

01 R[0]← 1; R[1]← m
02 for i from 0 to n− 1 do

03 if (di = 1) then

R[0]← R[0] ·R[1]
04 R[1]← R[1]2

05 return R[0]

Figure 2. Right-to-left exponentiation.

of this attack is to induce a one-bit fault into the exponent

d such that the binary value of certain bit, say dj , will be

inverted. Let d′ be the faulty exponent and the faulty output

of the exponentiation is S′ = md′

= m(
Pn−1

i=0,i6=j
di2

i)+dj2j

where dj is the one’s complement of dj . Given the afore-

mentioned faulty output S′ and the corresponding correct

one S, the adversary can identify the value of the bit dj by

analyzing the value of S′

S
= m(dj−dj)2j

. We have S′

S
= 1

m2j

if dj = 1, and S′

S
= m2j

if dj = 0.

The attack is also applicable to the multi-bit-fault model.

Assume dj and dk are inverted, the adversary can derive

the values of both bits by analyzing S′

S
= m(dj−dj)2j

·

m(dk−dk)2k

. In [11], Joye et al. extended the attack such

that only the faulty result S′ is needed with the knowledge

of the plaintext m and additionally its order.

B. Bellcore’s Fault Based Attack against the Right-to-left

Exponentiation Algorithm

Bellcore’s researchers proposed the fault based attack [8]

to defeat the RSA private computation with the right-to-left

exponentiation algorithm (refer to Figure 2). The fault model

of Bellcore’s attack is a random one-bit fault injected into

the intermediate value of R[0] at the end of the iteration

(j − 1) or at the end of the Step (03) of that iteration. The

faulty result of R[0] at the end of the iteration (j − 1) can

be expressed as

R[0] = (m
Pj−1

i=0
di2

i

j)± 2b mod N

where 2b is the injected error in which 0 ≤ b ≤ n− 1 (n is

the bit length of N) and mj is the base number, e.g., the

plaintext in a signature.

26Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

The principle of Bellcore’s attack. Bellcore’s attack

consists of the following steps.

1) The adversary collects sufficient faulty signatures S′

j

with the corresponding plaintexts mj by injecting a

random one-bit fault into R[0] during each execution

of md.

2) The adversary analyzes each faulty signature S′

j with

the plaintext mj and he has

S′

j = (m
Pj−1

i=0
di2

i

j ± 2b) ·m
Pn−1

i=j di2
i

j mod N

= Sj ± (2b
·m

Pn−1

i=j di2
i

j) mod N,

or Sj = S′

j ± 2b ·mω
j mod N where ω =

∑n−1
i=j di2

i.

3) With the public exponent e and the collected pairs of

(S′

j , mj), the adversary tests all the possible candi-

dates of b and ω by checking whether

mj = (S′

j ± 2b
·mω

j)e mod N.

To derive the value of ω in each test needs a known part of

binary representation of d and at most l unknown bits where

l denotes the longest distance between two nearby iterations

at which random faults occurred. Suppose the position at

which the random fault occurred on R[0] is unknown (i.e.,

unknown 0 ≤ b ≤ n− 1) and the time at which the random

fault occurred during the exponentiation is unknown (i.e.,

unknown j) and uniformly distributed over [0, n− 1]. Let k
be the number of necessary collected pairs of (S′

j , mj). The

number of tests necessary to recover d is at most k · (n · k ·
∑l

r=1 2r) and the complexity of this attack is

O(n · k2
· 2l).

In [8, Theorem 3], Boneh et al. proved that to recover

d with probability at least 1
2

requires about (n/l) log(2n)
pairs of (S′

j , mj) and the complexity of the attack becomes

O(n3
· log2(n) · 2l/l2).

C. Berzati et al.’s Fault Based Attack

In 2008, Berzati et al. [2] modified the Bellcore’s

attack by injecting random one-byte faults into the RSA

public modulus N right after some iterations instead

of the intermediate value of R[0] of the exponentiation

computation. In Berzati et al.’s attack, the faulty modulus

N can be expressed as N ′ = N ± R8 · 2
8i where R8 is a

nonzero random byte value and i ∈ [0, n
8
− 1].

The principle of Berzati et al.’s attack. This attack needs

to collect a correct signature S and k faulty signatures S′

j .

The values of R[0] and R[1] after the computation within the

iteration (j − 1) are m
Pj−1

i=0
di2

i

mod N and m2j

mod N ,

respectively. Suppose the fault upon N occurs at the end

of the iteration (j − 1). The value of the collected faulty

signature S′

j becomes

S′

j =
(

(m
Pj−1

i=0
di2

i

mod N) · (m2j

mod N)
Pn−1

i=j
di2

i
)

mod N ′.

Let ω =
∑n−1

i=j di2
i, so the correct signature can be

expressed as S = mω+
Pj−1

i=0
di2

i

mod N . Based on the

above expression of S and all the possible candidates of

ω and N ′, the adversary can compute

S′

(ω,N′) =
(

(S ·m−ω mod N) · (m2j

mod N)ω
)

mod N ′

and the correct values of ω and N ′ can be determined by

checking whether

S′

(ω,N′) ≡ S′

j (mod N ′)

on all collected faulty outputs S′

j .

Suppose each check requires to determine l unknown bits

of ω and (28 − 1) · n
8 possible byte faults on N , hence the

complexity of Berzati et al.’s attack is

O((28
− 1) ·

n

8
· k · 2l).

It was claimed that under the assumption of known values

of all j (i.e., the time the faults occurred) [2] the complexity

of the attack becomes

O((28
− 1) ·

n2

8l
· 2l), if k =

n

l
.

IV. THE PROPOSED FAULT BASED ATTACK AGAINST THE

LEFT-TO-RIGHT EXPONENTIATION ALGORITHM

The proposed fault based attack is based on Bellcore’s

attack [8] and Berzati et al.’s attack [2], but the attack

targets at the left-to-right exponentiation algorithm with the

additional knowledge of the group order which is a prime.

A. Fault Model

The proposed fault based attack is based on modifying

the intermediate value of R[0] within the left-to-right expo-

nentiation algorithm (refer to Figure 1) by injecting random

one-byte faults. This random one-byte fault model (i.e., the

fault model #3 in [6]) has been considered practical and

widely adopted in many fault based attacks [2], [3], [20].

The faulty value of R[0] can be expressed as

R[0]′ = R[0]± R8 · 2
8i

where R8 is a nonzero random byte value and i ∈ [0, n
8 −1]

both are unknown to the adversary.

27Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

B. Principle of the Proposed Attack

The proposed attack needs to collect a correct output S
and k faulty outputs S′

j by injecting random one-byte faults

into the intermediate value of R[0] each at the end of the

iteration j where the iteration number j is unknown to the

adversary and is uniformly distributed over [0, n− 1].

The intermediate value of R[0] after the computation

within the iteration j (denoted as R[0, j]) is R[0, j] =

m
Pn−1

i=j di2
i−j

. The value of correct output S = md can

be expressed as

S = md = R[0, j]2
j

·m
Pj−1

i=0
di2

i

.

Suppose the fault upon R[0] occurs at the end of the iteration

j. The value of the collected faulty output S′

j becomes

S′

j = (R[0, j]± ε)2
j

·m
Pj−1

i=0
di2

i

= (R[0, j]± ε)2
j

·mω

where ε = R8 · 2
8i, i ∈ [0, n

8 − 1] and ω =
∑j−1

i=0 di2
i.

To derive the partial value of d, say ω, the adversary needs

a previously known
∑r

i=0 di2
i (r < j−1) and needs to guess

at most l unknown bits of d (say (dj−1, . . . , dr+1)2) where

l denotes the longest distance between two nearby iterations

at which random faults injected.

Suppose that the order of the group is a prime integer

and which is known to the adversary. The correct value of

R[0, j] can therefore be derived from the correct output S
by

R[0, j] = (S ·m−

Pj−1

i=0
di2

i

)(2
j)−1

= (S ·m−ω)(2
j)−1

.

The reason of the assumption of a known prime order is to

enable the adversary to compute (2j)−1.

Based on the derived ω, R[0, j], and all the possible

candidates of ε, the adversary can compute

S′

(ω,ε) =
(

(S ·m−ω)(2
j)−1

± ε
)2j

·mω

and the correct values of ω and ε can be verified by checking

whether

S′

(ω,ε) ≡ S′

j

on all collected faulty outputs S′

j .

Based on the above proposed attack the adversary can

recover the binary expression of the private exponent d
from the least significant bits towards the most significant

bits. However, the last few bits with the most significant

weightings cannot be derived by the attack. These few bits,

say (dn−1, . . . , dt)2 and t is the maximum value for which

a fault occurred at the iteration t, can only be obtained by

other approaches, e.g., a brute force search. Bellcore’s attack

and Berzati et al.’s attack share the same property of the

proposed attack but the brute force search happens at the

least significant bits.

C. Practicability of the Attack

We wish to point out that injecting a one-byte fault into

the intermediate value of a register of an exponentiation

algorithm assumed in the proposed attack would be more

practical than injecting a one-bit fault into a register assumed

in the Bellcore’s attack. Moreover, the aforementioned as-

sumption made in the proposed attack might be much more

practical than injecting a one-byte fault into the storage of

a cryptographic parameter, e.g., the RSA public modulus

N assumed in Berzati et al.’s attack. The reason is that

usually a cryptographic parameter will be stored in a non-

volatile storage, e.g., flash memory or ROM, and a previous

random one-byte fault once injected will be difficult to

remove and a new one-byte fault to be injected again which

is implicitly assumed in Berzati et al.’s attack. So, among

the aforementioned three fault based attacks, the proposed

attack in this paper demonstrates a higher feasibility.

The computation time of an exponentiation algorithm

dominates the performance of many cryptosystems. To im-

prove the performance of cryptosystems, especially for those

with their security based on solving the discrete logarithm

problem, the group G is usually replaced by a subgroup

with a prime order q of which when binary represented

the number of bits is much smaller than that of p. This

technique was first employed in the Schnorr scheme [19].

For security reasons, elliptic curve based cryptosystems, e.g.,

elliptic curve Diffie-Hellman key exchange [17], usually

choose a prime order [16]. Both the aforementioned prime

order of a multiplicative subgroup and the prime order of

an elliptic curve are public informations. So, the assumption

made in the proposed attack is reasonable.

D. Complexity of the Proposed Attack and Comparison with

Other Attacks

Suppose the byte-fault pattern R8 ∈ [1, 28− 1], the byte

position i ∈ [0, n
8 − 1] at which the random byte fault

occurred on R[0], and the time (say, the iteration number

j ∈ [0, n − 1]) at which the random byte fault occurred

during the exponentiation are all unknown to the adversary.

In the proposed attack, to perform test of the relationship

S′

(ω,ε) ≡ S′

j , the adversary needs to try all the possible

candidates of ω and ε to identify the correct values of both

ω and ε.

A segment of at most l least significant bits of d will be

derived first when the correct value of ω can be identified,

and the exact value of the corresponding iteration number j
will be found as well. At most

∑l

r=1 2r possible ω will be

tested. Other portion of the binary representation of d can be

derived in the same approach towards the most significant

bits. The correct value of ε can be identify from one of the

possible (28 − 1) · n
8 one-byte faults occurred on R[0]. All

in all, the number of tests necessary to recover d is at most

k · ((28 − 1) · n
8 · k ·

∑l

r=1 2r) and the complexity of this

28Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

attack becomes

O((28
− 1) ·

n

8
· k2
· 2l).

The complexity of the proposed attack is basically similar

to Bellcore’s attack, and the difference is that we assume

random one-byte faults while Bellcore’s attack assumes

random one-bit faults. The numbers of possible fault patterns

in the proposed attack and Bellcore’s attack are (28− 1) · n
8

and n, respectively. However, the numbers of necessary

faulty outputs (i.e., k) of both attacks are different, and both

attacks assume different fault models.

With the knowledge of all values of iteration number j
(i.e., the time the random byte faults occurred) as assumed

in Berzati et al.’s attack [2], the complexity of the proposed

attack can be reduced to O((28 − 1) · n
8
· k · 2l). Let k = n

l
,

the complexity becomes

O((28
− 1) ·

n2

8l
· 2l)

which is the same as Berzati et al.’s attack.

E. Attack Extension to the Montgomery Ladder

In [12], an exponentiation algorithm based on the Mont-

gomery ladder was proposed to prevent the SPA attack [14],

the computational safe-error attack [22], and the memory

safe-error attack [21]. The Montgomery ladder algorithm

shown in Figure 3 behaves regularly and accordingly it

is secure against the SPA attack. Most specially, there

is no dummy computation within the Montgomery ladder

algorithm so it can be secure against the computational safe-

error attack. Any random computational fault occurred will

lead to a faulty result of md.

Input: m, d = (dn−1 · · ·d0)2
Output: md

01 R[0]← 1; R[1]← m
02 for i from n− 1 downto 0 do

03 R[di]← R[0] · R[1]
04 R[di]← R[di]

2

05 return R[0]

Figure 3. Montgomery ladder algorithm.

The proposed fault based attack can be extended to

the Montgomery ladder algorithm with the same random

one-byte fault model. The byte fault will be injected into

the intermediate value of R[0] at the end of a specific

iteration j during the exponentiation. The adversary needs

to collect sufficient faulty outputs S′

j and a correct output S.

Principle of the attack. According to the basic principle

of Montgomery ladder, the intermediate values of R[0]
and R[1] after the computation within the iteration j are

R[0, j] = m
Pn−1

i=j di2
i−j

and R[1, j] = m(
Pn−1

i=j di2
i−j)+1 =

R[0, j] ·m, respectively. So, the output of the algorithm can

be expressed as

S = md = R[0, j]2
j

·m
Pj−1

i=0
di2

i

.

Providing two initial values B0 = ma and B1 = ma+1 for

some integer a, and a k-bit binary bit string (ek−1 · · ·e0)2
representing an exponent e =

∑k−1
i=0 ei2

i, we define a

function Mont(B0 , B1, (ek−1 · · ·e0)2) which represents the

output Be
0 of the Montgomery ladder algorithm. The out-

put S = md of the Montgomery ladder algorithm can

therefore be expressed as Mont(1, m, (dn−1 · · ·d0)2) or

Mont(R[0, j], R[1, j], (dj−1 · · ·d0)2). If a fault ε is injected

into R[0] at the end of the iteration j, then the faulty output

S′

j of the Montgomery ladder algorithm becomes

S′

j = Mont(R[0, j]± ε, R[1, j], (dj−1 · · ·d0)2)

where ε = R8 ·2
8i, i ∈ [0, n

8
−1] and ω represents the value

∑j−1
i=0 di2

i. Here we also assume that the order of the group

is a public prime integer, hence the values of R[0, j] and

R[1, j] can therefore be derived based on the correct output

S by

R[0, j] = (S ·m−

Pj−1

i=0
di2

i

)(2
j)−1

= (S ·m−ω)(2
j)−1

R[1, j] = R[0, j] ·m.

Based on all the possible candidates of bit string

(dj−1 · · ·d0)2 (accordingly the value ω =
∑j−1

i=0 di2
i) and

injected byte fault ε, the adversary can compute

S′

(ω,ε) =

Mont

(

(Sm−ω)(2
j)−1

± ε, (Sm−ω)(2
j)−1

m, (dj−1 · · ·d0)2

)

.

The correct values of ω and ε can be verified by checking

whether S′

(ω,ε) ≡ S′

j on all collected faulty outputs S′

j .

The complexity of the above attack on the Montgomery

ladder algorithm is basically the same as that attacking

the left-to-right exponentiation algorithm. An alternative

attack approach is that the byte faults are injected

to the intermediate value of R[1] instead of R[0]
and in this case the faulty output is assumed to be

S′

j = Mont(R[0, j], R[1, j]± ε, (dj−1 · · ·d0)2).

Practicability of the attack. The proposed fault based

attack can break not only the well-known conventional

left-to-right exponentiation algorithm but also the enhanced

algorithm against side-channel attack and safe-error attack,

say the Montgomery ladder algorithm. In fact, the Mont-

gomery ladder algorithm might be more vulnerable to the

proposed attack because the algorithm behaves regularly in

each iteration.

In the Montgomery ladder algorithm, each iteration per-

forms two similar operations and the total number of oper-

ations to be performed within the algorithm is always 2n.

Therefore, a very precise estimation of the computation time

29Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

for a single iteration is accessible after a few experiments.

These experiments can even be performed upon other similar

devices. From the view point of controllability of fault

occurrence time (e.g., fault injected at the end of an iteration)

and accordingly the feasibility of an attack, the proposed ex-

tended attack on the Montgomery ladder algorithm becomes

more practical than all the previous attacks.

V. CONCLUSION

In this paper, based on the previous fault based attacks

against the right-to-left exponentiation algorithm, we pro-

pose a new attack against the left-to-right exponentiation

algorithm on some public key cryptosystems, such as Diffie-

Hellman key exchange and ECC, if they are constructed

under a group with a prime order. The complexity of

the proposed attack is the same as that of the previous

related attacks. Moreover, the proposed attack can also be

extended to threaten the Montgomery ladder algorithm and

this extended attack could be even more practical than all

other related attacks.

ACKNOWLEDGMENT

This research was supported in part by the National

Science Council of the Republic of China under contract

NSC 98-2221-E-008-047-MY3.

REFERENCES

[1] F. Bao, R. H. Deng, Y. Han, A. Jeng, A. D. Narasimbalu,
and T. Ngair, “Breaking public key cryptosystems on tamper
resistant devices in the presence of transient faults,” in Proc.
Security Protocols Workshop 1997, LNCS 1361, Springer-
Verlag, pp. 115–124.

[2] A. Berzati, C. Canovas, and L. Goubin, “Perturbing RSA
public keys: an improved attack,” in Proc. CHES 2008, LNCS
5154, Springer-Verlag, pp. 380–395.

[3] A. Berzati, C. Canovas, and L. Goubin, “(In)security against
fault injection attacks for CRT-RSA implementations,” in Proc.
Workshop on Fault Diagnosis and Tolerance in Cryptography

– FDTC 2008, pp. 101–107.

[4] I. Biehl, B. Meyer, and V. Muller, “Differential fault attacks on
elliptic curve cryptosystems,” in Proc. CRYPTO 2000, LNCS
1880, Springer-Verlag, pp. 131–146.

[5] E. Biham and A. Shamir, “Differential fault analysis of secret
key cryptosystems,” in Proc. CRYPTO 1997, LNCS 1294,
Springer-Verlag, pp. 513–525.

[6] J. Blömer, M. Otto, and J. P. Seifert, “A new CRT-RSA
algorithm secure against bellcore attacks,” in Proc. ACM CCS
2003, ACM Press, pp. 311–320.

[7] J. Blömer, M. Otto, and J. P. Seifert, “Sign change fault
attacks on elliptic curve cryptosystems,” in Proc. Workshop
on Fault Diagnosis and Tolerance in Cryptography – FDTC

2006, LNCS 4236, Springer-Verlag, pp. 36–52.

[8] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the impor-
tance of checking cryptographic protocols for faults,” in Proc.

EUROCRYPT 1997, LNCS 1233, Springer-Verlag, pp. 37–51.

[9] W. Diffie and M. E. Hellman, “New directions in cryptogra-
phy,” IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654,
1976.

[10] T. ElGamal, “A public key cryptosystem and a signature
scheme based on discrete logarithms,” in Proc. CRYPTO 1984,
LNCS 196, Springer-Verlag, pp. 10–18.

[11] M. Joye, J. J. Quisquater, F. Bao, and R. H. Deng, “RSA-
type signatures in the presence of transient faults,” in Proc.

Cryptography and Coding 1997, LNCS 1355, Springer-Verlag,
pp. 155–160.

[12] M. Joye and S. M. Yen, “The Montgomery powering ladder,”
in Proc. CHES 2002, LNCS 2523, Springer-Verlag, pp. 291–
302.

[13] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of
Computation, vol. 48, pp. 203–209, 1987.

[14] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Proc. CRYPTO 1999, LNCS 1666, Springer-Verlag, pp. 388–
397.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of Applied Cryptography. CRC Press, 1997.

[16] National Institute of Standards and Technology, Recom-
mended Elliptic Curves for Federal Government Use. In the
appendix of FIPS 186-2.

[17] National Institute of Standards and Technology, Special Pub-
lication 800-56A: Recommendation for Pair-Wise Key Estab-

lishment Schemes Using Discrete Logarithm Cryptography.
March, 2006.

[18] R. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public key cryptosystems,”
Comm. of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[19] C. P. Schnorr, “Efficient identification and signatures for smart
cards,” in Proc. Crypto 1989, LNCS 435, Springer-Verlag,
pp. 239–252.

[20] D. Wagner, “Cryptanalysis of a provably secure CRT-RSA
algorithm,” in Proc. ACM CCS 2004, ACM press, pp. 311–
320.

[21] S. M. Yen and M. Joye, “Checking before output may not
be enough against fault-based cryptanalysis,” IEEE Trans.
Computers, vol. 49, no. 9, pp. 967–970, 2000.

[22] S. M. Yen, S. Kim, S. Lim and S. Moon, “A countermeasure
against one physical cryptanalysis may benefit another attack,”
in Proc. ICISC 2001, LNCS 2288, Springer-Verlag, pp. 414–
427.

30Copyright (c) IARIA, 2011. ISBN: 978-1-61208-010-9

SECURWARE 2011 : The Fifth International Conference on Emerging Security Information, Systems and Technologies

