
Secure Scrum and OpenSAMM for Secure
Software Development

Christoph Pohl
and Hans-Joachim Hof

MuSe - Munich IT Security Research Group
Munich University of Applied Sciences

Email: christoph.pohl0@hm.edu, hof@hm.edu

Abstract—Recent years saw serious attacks on software, e.g., the
Heartbleed attack. Improving software security should be a main
concern in all software development projects. Currently, Scrum
is a popular agile software development method, used all around
companies and universities. However, addressing IT security in
Scrum projects is different to traditional security planning, which
usually requires detailed planning in an initial planning phase.
After this planning phase, only minor adjustments are expected.
In contrast, Scrum is known for very little initial planning and for
constant changes. This paper presents Secure Scrum, an extension
to Scrum, that deals with the characteristics of security planning
in Scrum. Secure Scrum is a variation of the Scrum framework
that puts an emphasis on implementation of security related issues
without the need of changing the underlying Scrum process or
influencing team dynamics. To implement Secure Scrum in an
organization, it helps to utilize a framework for strategic security
planning. This paper uses the example of the OpenSAMM (Open
Software Assurance Maturity Model) to show how Secure Scrum
could be implemented in the field. A field test of Secure Scrum
shows that the security level of software developed using Secure
Scrum is higher then the security level of software developed
using standard Scrum and that Secure Scrum is even suitable
for use by non-security experts.

Keywords–Scrum; Secure Scrum; Secure Software Develop-
ment; SDL; OpenSAMM.

I. INTRODUCTION

This paper presents Secure Scrum and how Secure Scrum
can be used in conjunction with OpenSAMM for the develop-
ment of secure software. Secure Scrum was first presented in
[1].

In times of the Internet of Things, even refrigerators now
have network support and run a whole bunch of software. As
software is so ubiquitous today, software bugs that lead to
successful attacks on software systems are becoming a major
hassle, see, e.g., [2]. To deal with the constant presence of
attacks on systems, modern software development should focus
on developing SECURE software, meaning software with little
or no vulnerabilities.

Scrum [3][4] is a very popular software develpoment
framework at the moment [5]. Unfortunately, Scrum comes
without security support. This paper presents Secure Scrum, an
extension of the Scrum framework that supports developers in
implementing secure software. Secure Scrum is even suitable
for non-security experts.

Scrum groups developer in small developer team, which
have a certain autonomy to develop software. It is assumed
in Scrum that all developers can implement all tasks at hand.
Software development projects are split into so-called sprints.
A sprint is a fixed period of time (between 2 and 4 weeks).
During a sprint, the team develops an increment of the current
software version, typically including a defined number of new
features or functionality, which are described as user stories.
User stories are used in Scrum to document requirements for
a software project. All user stories are stored in the Product
Backlog. During the planning of a sprint, user stories from
the Product Backlog are divided into tasks. These tasks are
stored in the Sprint Backlog. A so-called Product Owner
is the single point of communication between customer and
developer team. Regular feedback of customers on the state
of the current increment of the software introduces agility to
software development. Changes of user stories reflects this
agility. The Product Owner also prioritizes the features to
implement. Traditional Scrum does not include any security-
specific parts.

One major driver of software security in Secure Scrum
is the identification of security relevant parts of a software
project. The identification of security critical system parts
is very important in any software project, because only in
this case, developers can implement appropriate security con-
trols. Traditional software development processes typically
use methods of security requirements engineering to identify
security critical components of a system. However, the plan-
ning moments of Scrum (Product Backlog Refinement, Sprint
Planning, and Sprint Review) have very tight time constraints,
hence it is very hard to apply time-consuming traditional
security requirements engineering methods. In Secure Scrum,
security relevance of parts of the emerging software is visible
to all team members at all times. This approach is considered
to increase the security level, because developers place their
focus on things that they had evaluated themselves, which they
fully understand, and when their prioritization of requirements
does not differ from prioritization of others [6][7].

Secure Scrum aims on achieving an appropriate security
level for a given software project. The term ”appropriate”
was chosen to avoid costly over engineering of IT security
in software projects. The definition of an appropriate security
level is the crucial point in resource efficient software devel-
opment (e.g., time and money are important resources during

25

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software development). For the definition of an appropriate
security level, Secure Scrum relies on the definition in [8]:
Software needs to be secured until it is no longer profitable
for an intruder to find and exploit a vulnerability. This means
that an appropriate security level is reached once the cost of an
attack is higher then the expected gain of the attack. So, Secure
Scrum offers a way to not only identify security relevant parts
of the project but to also judge on the attractiveness of attack
vectors in the sense of ease of exploitation.

The identification of security issues is not the only im-
portant part of achieving software security, the developers
also need to implement effective controls to avoid potential
security risks. In Scrum, each team member is responsible
for the completeness of his solution (Definition of Done).
However, there is a huge number of choices of methodologies
to verify completeness. Thus, Secure Scrum must be able
to integrate different verification methods. This leads to the
issue that Secure Scrum needs to support team members with
verification, but without the use of predefined verification
methods. This means that a team member can use any method
for verification (same as with normal tests, Scrum does not tell
the developer how to test). Secure Scrum helps developers to
identify appropriate security testing means for security relevant
parts of a software project.

One last challenge solved by Secure Scrum is the availabil-
ity of security knowledge when needed. In standard Scrum,
each team member is responsible for his own work, this
also means that the team member needs the knowledge to
solve the requested task. Nowadays, the availability of security
knowledge and experience among software developers does not
reflect the importance of this issue. To keep many benefits of
standard Scrum, Secure Scrum assumes that the vast majority
of requirements should and could be handled by the team
itself. However, for some security related issues, it could be
necessary or more cost effective to include external resources
like security consultants or in-house security experts in the
project. Secure Scrum offers a way to include these external
resources into the project without breaking the characteristics
of Scrum and with little overhead in administration.

The rest of this paper is structured as follows: The fol-
lowing section summarizes related work on software security
relevant for Secure Scrum. Section III shows the design of
Secure Scrum in detail. Section IV shows how Secure Scrum
can be implemented in an arbitrary organization using the
framework OpenSAMM. Secure Scrum is evaluated in a field
test in Section V. Section VI summarizes the findings of this
paper.

II. RELATED WORK

There are several methods for achieving software secu-
rity, e.g., Clean Room [9], Correctness by Construction [10],
CMMI-DEV [11][12], etc. However, these methods cannot be
used in Scrum as they do not blend well with the characteristics
of agile software development and specifically Scrum. Cor-
rectness by Construction [10], for example, advocates formal
development in planning, verification and testing. This is com-
pletely different to agility and flexible approaches like agile
methodologies. Especially Scrum has a strong focus on fast
changes to running code, the overhead of Correctness by Con-
struction would be significant. Other models like CMMI-DEV
[11][12] can deal with agile methods. The main difference is

that CMMI focuses on processes and Scrum on the developers
[12]. This means that Scrum and other agile methodologies
are developer centric, while CMMI is more process oriented.
Restricting developers by rigid processes would break the
idea of self-organization of Scrum, hence would introduce
significant overhead. Concepts like Microsoft SDL [13] are
designed to integrate agile methodologies, but is also self-
contained. It can not be plugged into Scrum or any other agile
methodology. Scrum focuses on rich communication, self-
organisation, and collaboration between the involved project
members. This conflicts with formalistic and rigid concepts.

To sum it up, the major challenge of addressing software
security in Scrum is not to conflict with the agility aspect of
Scrum.

S-Scrum [14] is a “security enhanced version of Scrum”.
It modifies the Scrum process by inserting so-called spikes.
A spike contains analysis, design and verification related to
security concerns. Further, requirements engineering (RE) in
story gathering takes effect on this process. For this, the
authors describe to use tools like Misuse Stories [15]. This
approach is very formalistic and needs lot of changes to
standard Scrum, hence hinders deployment in environments
already using Scrum. Secure Scrum in contrast is compatible
with standard Scrum, hence can be used in environments where
Scrum is already used.

Another approach is described in [16]. It introduces a
Security Backlog beside the Product Backlog and Sprint
Backlog. Together with this artifact, they introduce a new
role. The security master should be responsible for this new
Backlog. This approach introduces an expert, describes the
security aware parts in the backlog, and is adapted to the
Scrum process. However, it lacks flexibility (as described
in the introduction) and does not fit naturally in a grown
Scrum team. Also, the introduction of a new role changes the
management of projects. With this approach, it is not possible
to interconnect standard Scrum user stories with the introduced
security related stories. Secure Scrum in contrast keeps the
connect between security issues and user stories of the Product
Backlog respectively tasks of the Sprint Backlog.

In [17] an informal game (Protection Poker) is used to
estimate security risks to explain security requirements to the
developer team. The related case study shows that this is a
possible way to integrate security awareness into Scrum. It
solves the problem of requirements engineering with focus
on software security. However, it does not provide a solution
for the implementation and verification phase of software
development, hence it is incomplete. Especially, Protection
Poker does not ensure that security considerations actually
affect the code itself, which is of crucial importance [18].
Secure Scrum in contrast provides a solution for all phases
of software development, especially for the important imple-
mentation phase.

Another approach is discussed in [19]. An XP Team is
accompanied by a security engineer. This should help to
identify critical parts in the development process. Results are
documented using abuse stories. This is similar to the definition
in [20]. This approach is suitable for XP-Teams but not for
Scrum.

To sum it up, none of the related work mentioned above in-
tegrates well into Scrum, comes with little overhead for Scrum,

26

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allows for easy adaption for teams already using standard
Scrum, and focuses on all phases of software development.
Secure Scrum in contrast solves all of these problems. The
design of Secure Scrum is described in detail in the following.

III. DESIGN OF SECURE SCRUM

Secure Scrum consists of four components. These four
components are put on top of the standard Scrum framework.
Secure Scrum influences six stages of standard Scrum as can
be seen in Figure 1.

The components of Secure Scrum are:

• Identification component: The identification compo-
nent is used to identify security issues during soft-
ware development. To make security issues visible to
the team, security issues are marked in the Product
Backlog of Scrum. The identification component is
used during the initial creation of the Product Backlog
as well as during Product Backlog Refinement, Sprint
Planning, and Sprint Review.

• Implementation component: The implementation com-
ponent raises the awareness of the Scrum team for
security issues during each sprint. The implementation
component is used in Sprint Planning, as well as
during the Daily Scrum meetings. Hence, all software
developers are aware of software security issues all
the time.

• Verification component: The verification component
ensures that team members are able to test the software
with focus on the non-functional requirement software
security. The verification component gets managed
within the Daily Scrum meeting.

• Definition of Done component: The Definition of
Done component enables the developers to define the
Definition of Done for security related parts of the
software in a way compatible with standard Scrum.
The verification component especially addresses the
problem of long-running security tests, e.g., penetra-
tion tests, that could not be performed at the end of a
Scrum sprint.

In the following, each component of Secure Scrum is
described in detail.

A. Identification Component
The identification component is used to identify and mark

security relevant user stories. It is used during the initial cre-
ation of the Product Backlog as well as during Product Backlog
Refinement, Sprint Planning, and Sprint Review. As Product
Backlog Refinement, Sprint Planning, and Sprint Review have
a very tight time constraint, the identification component
does not use traditional methods of security requirements
engineering.

Secure Scrum takes a value-oriented approach to security:
Software needs to be secured until it is no longer profitable
for an intruder to find and exploit a vulnerability. This means
that an appropriate security level is reached once the cost of
an attack is higher then the expected gain of the attack. Secure
Scrum focuses security implementation effort on parts of the
emerging software that are of high value for the stakeholders.
Hence, in a first step, stakeholders (may be represented by

Scrum partsSecurity parts

Initial Product
Backlog Creation

Product Backlog
RefinementIdentification

Sprint Planning

Daily Scrum

Definition of Done

Sprint Review

Implementation

Verification

Definition of Done

Figure 1. Integration of Secure Scrum components into standard Scrum

the Product Owner) and team members rank the different user
stories according to their loss value. The loss value of a user
story is not the cost of development neither the benefit of the
functionality that implements the user story. The loss value of a
user story is the loss that may occur whenever the functionality
that implements the user story gets attacked or data processed
by this functionality gets stolen or manipulated. For example,
one can formulate “Whenever someone will get access to these
data, our company will have high damage”. Even better the
cost gets listed with a numerable value like USD or Euro.
However, such money estimates tend to be imprecise.

In a next step, stakeholders and team members evaluate
misuse cases and rank them by their risk. At this point, it can
be useful to incorporate external security expertise to moderate
by asking the right questions and proposing security aware user
stories.

If an organization often develops software for the same
domain (e.g., financial service sector, medical sector), it is
advisable to compile a list of misuse cases from prior projects
in the same domain that could be used for future projects.
Also, checklists may be used. Other useful sources for risk es-
timation are other risk rating methodologies, e.g., the OWASP
Risk Rating [21].

After using the identification component, team members
and stakeholders have a common understanding of security
risks in the Product Backlog. To keep awareness for security
risks at a high level, the initial understanding about security
risks is documented in the Product Backlog. To do this, Scrum
uses so-called S-Tags. Figure 2 shows the basic principle of an
S-Tag. An S-Tag consists of one or more S-Marks, a Backlog
artifact, and a connection between the Backlog artifact and one
or more S-Tags. An S-Tag identifies Product Backlog items
that have security relevance with a marker called S-Mark.
This ensures that the security relevance of certain items in
the Product Backlog is visible at all times. The technology

27

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

User Story A
Story. . .

User Story B
Story. . .

User Story C
Story. . .

S-Tag A
Story (Description). . .

S-Tag B
Story (Description). . .

S-Mark
Connection Description

Figure 2. Usage of S-Tags to mark user stories in the Product Backlog and
to connect user stories to descriptions of security related issues.

behind the S-Mark is negligible (it can be a red background,
a dot, or something else), it only must be ensured that a
Product Backlog item with security relevance contrasts to other
Backlog items.

An S-Tag describes one security concern. A detailed
description of the security issue helps the Scrum team to
understand the security concern. The description of the security
concern itself can be formulated in a separate Backlog item.
This can be a user story, misuse story, abuse story, or whatever
a team decides to use as description technology. The descrip-
tion may include elements from a knowledge base that gives
advice on how to deal with this specific security concern. If
such a knowledge base is maintained over the course of several
projects, it is very likely a valuable source of information for
the Scrum team. A knowledge base could also increase the
time-efficiency of the identification component.

An S-Tag links one security concern to one or more
Backlog items. A security concern is any security related
problem, attack vector, task, or security principle that should be
considered during implementation. One-to-many-connections
between security concern and affected Product Backlog items
allow for grouping of items that share the same security con-
cern (and hopefully may use the same security mechanisms)
as well as expressing security on a high level. Connections
between S-Tags could be realized by using unique identifiers
for S-Tags that are part of the S-Mark (e.g., written on a red
dot that is used as S-Mark). Using meaningful identifiers helps
in understanding security concerns at one glance.

B. Implementation Component
Original Scrum has a strong focus on implementation and

running code. Hence, it is obvious that security efforts must
affect the code itself [18]. Thus, Secure Scrum makes security
concerns visible for the developers at all time. To ensure that
security concerns are visible in daily work of the developers,
they must be present in the Sprint Backlog. Subsection III-A
describes how security concerns are included in the Product
Backlog. The Product Backlog lists the required functional-
itities of the product. This includes the S-Tags. Usually, a
sprint implements a subset of these functionalities (for example
user stories). During a sprint, some user stories are broke
down to tasks (or similar conceptual parts). Whenever a user
story is marked with an S-Mark, the corresponding S-Tag must
also be present in the corresponding Sprint Backlog and the
S-Tag must be handled by the developer during the sprint.
An S-Tag can be handled like any other Backlog item. But
whenever an S-Tag gets split into tasks, these tasks must also
be marked with an S-Mark and connected to the original S-Tag.

This ensures that developers are always aware of the original
security concern and the security concern can be linked back to
the origin description. Using the implementation component of
Secure Scrum ensures that developers are aware of the relevant
security concerns of the product in each sprint and that security
concerns do not get lost during implementation.

C. Verification Component and Definition of Done Component
Increased awareness for security related concerns is not the

only advantage of the use of S-Tags. S-Tags are also very useful
when identifying requirements for verification of the emerging
software. In the first place, S-Tags clearly identify parts of
the emerging software that need security verification. In the
second place, S-Tags are useful to estimate the effort needed
for verification. Some security verifications may need a long
time (e.g., penetration testing), hence could not be performed
at the end of a sprint.

For further simplification, the term “task” is used for some
work that is performed by one developer in one sprint and that
needs one Definition of Done.

Secure Scrum proposes two different approaches for ver-
ification to deal with the problem of long running tests and,
therefore, two variants of the Definition of Done exist:

• Same-Sprint-Verification: Whenever the verification
process (whatever the developer or team chooses to
use) for one task can be performed during the same
sprint and by the same developer, the verification
must be part of the task itself. This ensures that the
verification is also part of the Definition of Done.

• Spin-off Verification Task: This variant is used if
a developer does not have the required knowledge
for verification, or the verification needs external
resources, extra time for testing, or anything else
that hinders an immediate verification. In this case,
the verification cannot be part of the Definition of
Done. In such cases, a new task must be created that
inherits only the verification part of the original task.
This new task (”spin-off verification task”) must be
marked with an S-Mark and should be connected to
the original S-Tag, together with the original task. In
this case, the developer can define the Definition of
Done without the verification, hence a Definition of
Done compatible to standard Scrum is available. It is
of crucial importance that spin-off verification tasks
are subject of sprints in the near future. However,
if external experts are used for certain verification
tasks (see Subsection III-D), it is beneficial if spin-
off verification tasks can be pooled. In any case, it
must be ensured that there are no unhandled spin-off
verification tasks at the end of software development.

The proposed approach for the definition of the Definition
of Done ensures that the connection between an S-Mark and
its corresponding S-Tag keep existing throughout the project,
hence no security concern can get lost.

D. Integration of External Ressources
IT security knowledge may be rare in a Scrum team or

special knowledge not present in the Scrum team may be
necessary for certain parts of the emerging software (e.g.,

28

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Running Coach approach: one security team provides security
services to multiple scrum teams

implementation and testing of cryptographic algorithms, pen-
etration testing of software increments). Or a company prefers
to pool security experts in a special team that supports multiple
other scrum teams. Such a security team allows for a running
coach approach: the security team supports exactly one team
at each scrum sprint. If sprints are synchronized in a company,
this helps to have a good use of the security experts. Figure 3
shows this so-called running coach approach with one security
team that supports three Secure Scrum teams.

Secure Scrum offers ways to include external resources
(e.g., external security consultants or internal running coaches)
in all components of Secure Scrum. External resources could
have one or more of the following three functions:

• Enhance knowledge and provide guidance
• Solve challenges
• Provide external view

These three functions are described in the following.
Enhance knowledge and provide guidance: This function

includes security-related training for the Scrum team to help
them to gain a better understanding of a specific security-
related area. Doing so on the job during a project offers a
chance to teach IT security with a specific example at hand
(e.g., a certain S-Tag that is linked to many user stories)
and may be more efficient than security training between two
projects. Training may be necessary for aspects that are not part
of everyday work, e.g., the usability of security mechanisms
[22], [23].

Solving Challenges: Some S-Tags represent hard security
challenges that require special expertise or special experience,
such that it is more cost efficient to let external resources solve
this challenge. To avoid breaches in Scrum, it is necessary
that these external solutions can be handled like a tool, a well
defined part of development, a framework, or a “black box”,
which is ready to use. This means that this external solution
should be encapsulated and therefore does not influence Scrum
or the Scrum team. For example, this can be a functional part
of software (with special IT Security concerns) or parts of
the project, which can be used with an API by the Scrum
team. Another challenge is the integration of external services
like penetration testing into the development process. One way

to do so is that external resources provide test cases (e.g.,
for Metasploit [24]) that can be used for every increment of
the emerging software at any time. Results of tests can be
documented as artifacts in the Backlog. Then they can be
handled like any other change request.

Providing external view: One major part in IT Security is
to recognize ways to exploit the own system. In other words,
one must think like an attacker to recognize potential attack
vectors. Usually, it is easier for an outsider to spot potential
weaknesses of a system than it is for the developer of a
system. Hence, external resources may introduce a valuable
external viewpoint on a project. When using the identification
component of Secure Scrum, an external consultant can be
helpful to point the team to security concerns. When using the
implementation component, external resources can be helpful
in the sprint planning or could perform code reviews. When
using the verification component, an external consultant can
help to create tests for security concerns. These interventions
by external resources should not be part of the normal Scrum
processes, the external resource should only help to ask ques-
tions (in the meaning of: he should show relevant concerns
in scope of IT Security). In conclusion, the external resource
should help to set focus on problems the team is not aware of.

IV. IMPLEMENTATION OF SECURE SCRUM USING
OPENSAMM

This section gives some hints on how to successfully
implement Secure Scrum in an organization. Implementation
of a new security approach is a non-trivial task for many
organizations. Secure Scrum is compatible with many frame-
works for implementation of security strategies, and if there
is already a framework in use in an organization, it is a
good idea to use this framework to implement Secure Scrum.
Existing frameworks may be for example Microsoft SDL [25]
or CLASP (Comprehensive Lightweight Application Security
Process) [26]. This section uses OpenSAMM (Open Software
Assurance Maturity Model) [27] as an example to show
possible implementation activities. OpenSAMM was chosen
because it can be used with arbitrary security strategies, has a
small overhead, is open and flexible enough to be a good fit for
security in agile software development. One big advantage of
OpenSAMM compared to Micrsoft SDL, CLASP, and many
other frameworks is, that it it is not necessary to introduce
Secure Scrum in one big project at one time, but many small
steps are possible, using so-called maturity levels. Especially
this feature of OpenSAMM makes it a good fit for small and
medium size companies with small security budgets.

OpenSAMM consists of four business functions that are
typical for organizations developing software. Each business
function has three security practices (see Figures 5, 6, 7, and
8). Each security practices has levels between 0 (no security
yet) and 3 (mature security). The meaning of these maturity
levels is described in the following:

• Maturity level 0: No activities for this security practice
are implemented. In most organizations, this is the
starting point.

• Maturity level 1: There is a basic understanding of
the security practice and first implementations of the
security practice exist.

29

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Overview OpenSAMM (parts relevant for the implementation of
Secure Scrum in yellow)

• Maturity level 2: Efficiency and/or effectiveness of
implementations of this security practice get enhanced
at this level.

• Maturity level 3: The security practice is at a high
level of competence.

This section describes security activities for Secure Scrum
security practices on levels 1 through 3. The level approach
helps to introduce Secure Scrum in multiple steps. Open-
SAMM includes methodologies to verify the successful imple-
mentation of activities on a certain level of a security practice
before proceeding further. Also, OpenSAMM offers roadmap
templates for typical domains. Figure 4 gives an overview of
the four business functions of OpenSAMM. The four business
functions of the software development process in OpenSAMM
are:

• Governance: The focus of the business function Gov-
ernance lies on the overall processes and activities for
software development in an organization.

• Construction: The focus of the business function Con-
struction lies on how to create software in a software
project. This business function is the most important
business function for the implementation of Secure
Scrum.

• Verification: The focus of the business function Ver-
ification lies on how to test software produced dur-
ing software development. Typical activities include
penetration testing, general software quality assurance
actions as well as manual review of source code or
even design documents.

• Deployment: The focus of the business function De-
ployment lies on how to manage releases of software.
This includes shipping of products to the end user,
installation of products as well as operational aspects
of software. There is no need to adapt this business
function for Secure Scrum as operation of software is
out of scope of Secure Scrum.

Secure Scrum needs to be included in the business func-
tions Governance, Verification, and Construction. The business
function Deployment is out of scope of Secure Scrum, but nev-

Figure 5. Security practices of business function Governance (parts relevant
for the implementation of Secure Scrum in yellow)

ertheless, it is very important for achieving software security
in general.

Figure 5 shows the security practices for the business
function Governance. They are:

• Strategy & Metrics: This security practice includes the
overall strategy for development of secure software as
well as metrics to measure progress in enhancing the
security level of software.

• Policy & Compliance: This security practice includes
setting up control mechanisms to check that all pro-
cesses for development of secure software are fol-
lowed.

• Education & Guidance: This security practice includes
all activities that enhance knowledge of software de-
velopers.

Security practice Strategy & Metrics does not need changes
for Secure Scrum. Secure Scrum can be used in many different
security strategies and all kind of metrics can be used. See [28]
for an overview of common metrics.

Security practice Policy & Compliance includes Secure
Scrum activities at the following maturity levels:

• Maturity Level 1: Establish compliance guidelines
for Secure Scrum usage. Guidelines should include
mandatory use of Secure Scrum as well as respon-
sibilities of the Scrum roles (process owner, Scrum
Master, team members) in Secure Scrum, e.g., who is
responsible for risk rating.

• Maturity Level 2: Establish compliance guidelines
for risk rating in software projects. Establish regular
audits of projects.

• Maturity Level 3: Establish a solution for audit data
collection. Establish compliance gates, e.g., check
compliance with Secure Scrum guidelines every 6th
sprint.

Security practice Education & Guidance includes Secure
Scrum activities at the following maturity levels:

• Maturity Level 1: Establish a technical guideline for
Secure Scrum. This should include a description of the
Secure Scrum components Identification, Implementa-
tion, Verification, and Definition of Done components
(see Section III), a comprehensive description of S-
Marks and S-Tags as well as a description of the
integration of Secure Scrum in Scrum. Establish a

30

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

knowledge base of security concerns as described in
Section III-A.

• Maturity Level 2: Each scrum role (product owner,
scrum master, scrum team member) gets role-specific
security training, an introduction to Secure Scrum as a
methodology as well as an introduction to the support-
ing systems. Project teams are supported by Secure
Scrum running coaches to support the transition to
Secure Scrum.

• Maturity Level 3: Establish mandatory Secure Scrum
training for all roles. Establish a role-based Secure
Scrum exam or a role-based Secure Scrum certifica-
tion.

Figure 6 shows the security practices for the business
function Construction. They are:

• Threat Assessment: Identification of threats and risk
assessment.

• Security Requirements: Specification of security re-
quirements.

• Secure Architecture: Activities to achieve a secure
software design.

All three security practices need to include Secure Scrum
related activities.

Security practice Threat Assessment includes Secure
Scrum activities at the following maturity levels:

• Maturity Level 1: Establish a knowledge base of
application-specific typical attacks for use in the iden-
tification component of Secure Scrum.

• Maturity Level 2: Adopt a system for rating relevant
attacks per application. Such a system could for ex-
ample be based on the OWASP Risk Rating [21].
Establish a knowledge base of misuse-cases that are
typical for the developed applications.

• Maturity Level 3: Include external experts in risk
assessment, see Section III-D for details.

Security practice Security Requirements includes Secure
Scrum activities at the following maturity levels:

• Maturity Level 1: Establish mandatory use of the
identification component of Secure Scrum. Use knowl-
edge base in identification of relevant attacks. Connect
affected user stories with knowledge base articles.

Figure 6. Security practices of business function Construction (parts relevant
for the implementation of Secure Scrum in yellow)

• Maturity Level 2: Establish a risk-based approach for
the identification component.

• Maturity Level 3: Audit S-Mark usage explicitly
during software development. Audit use of spin-off
verification tasks. Ensure no spin-off verification tasks
exist at the end of software development.

Security practice Secure Architecture includes Secure
Scrum activities at the following maturity levels:

• Maturity Level 1: Maintain a list of security design
principles in a knowledge base and make sure that
S-Marks for each product are connected to them.

• Maturity Level 2: Maintain a list of security design
patterns [29] and make sure that S-Marks are con-
nected to them.

• Maturity Level 3: Maintain a list of reference archi-
tectures and make sure that S-Marks connect to them.
Use audits to ensure that secure frameworks, patterns,
and platforms are used. Establish regular audits by
external security experts.

Figure 7 shows the security practices for the business
function Verification. They are:

• Design Review: Inspection of the design regarding the
use of adequate security mechanisms

• Code Review: Inspection of code to find potential
vulnerabilities.

• Security Testing: Testing of software increments pro-
duced during software development for vulnerabilities.

All three security practices need to include Secure Scrum
related activities.

Security practice Design Review includes Secure Scrum
activities at the following maturity levels:

• Maturity Level 1: Establish mandatory use of S-Marks
at the start of a project to tag security relevant user
stories.

• Maturity Level 2: Establish audit of all S-Marks by
external security experts.

• Maturity Level 3: Establish periodic audits (e.g., every
6th Scrum sprint) by all roles of Scrum as well as by
external security experts to review the user stories and
assign S-Marks.

Security practice Code Review includes Secure Scrum
activities at the following maturity levels:

Figure 7. Security practices of business function Verification (parts relevant
for the implementation of Secure Scrum in yellow)

31

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Security practices of business function Deployment (parts relevant
for the implementation of Secure Scrum in yellow)

• Maturity Level 1: Establish spin-off verification gates:
At certain points during the software development
make sure, that spin-off verification task in backlogs
are cared for.

• Maturity Level 2: Offer support of security experts to
verify verification artifacts.

• Maturity Level 3: Use experts to verify all verification
artifacts (e.g., running coaches, see Section III-D, or
external penetration testers).

Figure 8 shows the security practices for the business
function Deployment. They are:

• Vulnerability Management: Establish processes to han-
dle vulnerability reports.

• Environment Hardening: Increase security level of
systems that run software provided by the organization

• Operational Enablement: Provide security information
to administrators that use the organizations software.
This information includes secure configuration, secure
deployment, and security operation.

None of these security practices is relevant to Secure
Scrum. However, the three security practices of the business
function Deployment are very important for software security
in general, hence should hold activities appropriate for the
implementing organization.

The OpenSAMM Guide [27] offers several roadmap tem-
plates, giving a schedule for security practice level changes.
In most cases, the roadmap template ”Independent Software
Vendor” is a good fit.

V. EVALUATION

The evaluation presented in this paper focuses on the
following questions:

• Is Secure scrum a practicable approach to develop
secure software?

• Is Secure Scrum easy to understand? Does Secure
Scrum raise the complexity for applying Scrum?

• Does Secure Scrum increase the security level of the
developed software?

For a test setting, 16 developers were asked to develop
a small piece of software. The developers were third year
students in a computer sciences and business informatics (BSc)
study program. They were not aware that they are part of

this evaluation. The students showed programming skills that
were on the usual level of a third year bachelor student. No
participant attended a specialized course in IT Security before
beside the compulsory lecture in IT Security (basic level)
in the second year of the bachelor. When asked about their
practical experience in IT security, all students said that they
have no practical experience. Hence, it is expected that none
of the students has IT security as a hobby and all students
are on the same level concerning IT security knowledge and
experience. All developers had average theoretical knowledge
about Scrum. Only two students had practical experiences (less
than 2 months) with Scrum.

The developers were divided into three groups:

1) Team 1 (T1): The Anarchist group: They could man-
age themselves as they like, except using Scrum.

2) Team 2 (T2): The Scrum group: They should use
standard Scrum.

3) Team 3 (T3): The Secure Scrum group: They should
use Secure Scrum.

To avoid influences on the evaluation, teams 1 and 2
thought that team 3 also uses standard Scrum. All groups got
a list of six basic requirements for a new software product.
They were asked to develop a prototype for a social network
with the following features:

• registration,
• login and logout,
• personal messages,
• wall messages,
• bans, and
• friend lists.

Each group had only one week to develop a prototype
of this application using Java and a preconfigured spring
framework template (based on BREW (Breakable Web Ap-
plication) [30]). Each group was asked to implement as many
requirements as possible. However, it was known that it is
impossible to implement all requirements for the final version
of the application considering the harsh time constraints. This
setting of the evaluation assures a high time pressure (as in
real projects), hence allows to observe the prioritization of
security-related tasks. Developers were also told that they need
to “sell” their prototype on the last day of the experiment in
front of a jury. In fact they should learn how to present their
prototype and act like a team that wants to have a contract for
further development. This should ensure that every team needs
to define for itself the selling points of their prototype, putting
a high pressure on feature richness. Again, this setting helps to
evaluate the prioritization of security-related task. Team 3 has
a short Secure Scrum briefing of about one hour. Every team
is advised to produce a proper documentation. This includes
all produced artifacts, the sources, and a short description of
their development process.

Table I summarizes some basic findings of the experiment.
All three teams had a rough definition of the six basic

requirements, which should be implemented. They were told
that whenever the requirements list should be enhanced to deal
with the 6 requirements given by the customer, they are free
to define new requirements. Team 1 did not define any new
requirements. Team 2 defined one new requirement to enhance

32

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Results of the evaluation of the efficiency and effectiveness of
Secure Scrum

Metric T1 T2 T3

1 Lines of code 1149 758 458
2 Number of basic requirements 6 6 6
3 Number of additional requirements defined 0 1 8
4 Number of basic requirements documented 0 6 6
5 Number of basic requirements implemented 6 5 4
6 Number of requirements documented 0 7 14
7 Number of requirements implemented 6 6 9
8 Number of vulnerabilities sp 18 12 3
9 Group size 6 5 5

performance. Team 3 defined 8 new requirements that had a
focus on IT Security. These requirements are an excerpt of
the descriptions for the S-Tag. Overall, they defined 29 new
stories focused on IT Security. This shows that even with
beginner skills in computer sciences and only basic skills in IT
Security, it is possible to define a high amount (compared to
the original requirements) of security related requirements. It
also shows that it is possible to describe the most problematic
vulnerabilities or problems with the help of risk identification.

Metrics 4 − 7 of Table I are used to evaluate if the
teams documented all requirements and how many of the
requirements were implemented. The evaluation shows that the
teams did not take care of any further requirements when not
specified by the customer. This sounds trivial, but it also shows
that the developer did not take care of IT Security when not
specified. The Secure Scrum team (team 3) is the only team
that did not implement all given basic requirements. Instead,
they obviously prioritized some of the security requirements
over the basic requirements as some of the additional require-
ments that were added by the team were implemented. This
finding shows that Secure Scrum succeeds in putting focus on
software security.

Metric 8 shows the number of security problems that were
created by the developers. The number of security problem is
calculated as follows:

Let sl be a vulnerability listed in the OWASP Top 10 list
OTT (sl ∈ OTT). The OWASP Top 10 project [31] lists the
most common security vulnerabilities for web applications:

• Injection,
• Broken Authentication and Session Management,
• Cross-Site Scripting (XSS),
• Insecure Direct Object References,
• Security Misconfiguration,
• Sensitive Data Exposure,
• Missing Function Level Access Control,
• Cross-Site Request Forgery,
• Using Components with Known Vulnerabilities, and
• Unvalidated Redirects and Forwards.

Let OS be the complete source code of the developed
software and SC the part of the software written by the
students (SC ⊂ OS). Let cf be a Java function. Let cpf(sl)
be a function that counts the amount of sl for one cf . By
definition, cpf(sl) increments a vulnerability counter by one

TABLE II. Results of the evaluation of the practicality of Secure Scrum

Metric Team 2 Team 3

1 Number of requirements 7 14
2 Number of user stories 7 (13) 14 (62)
3 Number of tasks 18 35
4 Number of user stories with S-Mark - 14
5 Number of tasks with S-Mark - 8(35)

whenever the current function is the source ms function for
a vulnerability. A function cf is considered as a source ms
whenever cf ∈ SC and when the function is the reason for
the vulnerability or it calls a function cf1 where cf1 /∈ SC
and cf1 is the reason for the vulnerability. The amount of
vulnerabilities sp is the sum of all cpf(cf). Such a definition
of the number of security problems only counts code that
is responsible for vulnerabilities of a software system. It
also takes into consideration the use of vulnerable code. For
example, when a developer creates an SQL statement with a
potential SQL Injection vulnerability, the function holding the
database call with this statement is regarded as the reason of
the vulnerability.

The results of the evaluation shows that team 1 and team
2 had a high amount of vulnerabilities in their software (team
1: 18, team 2: 12). Both teams built software exploitable
by SQL Injection, XSS, CSRF, and had a vulnerable session
management. Team 3 had significantly less vulnerabilities. It
should be noted that every team has the same level of security
knowledge. The benefit of team 3 is, that their usage of Secure
Scrum raised the awareness for security issues. Hence, the
evaluation shows that the use of Secure Scrum increase the
security level of the developed software.

The first metric (Lines of Code (LOC)) of Table I shows the
amount of code, which was generated during the week. There
are significant differences between the three teams. The teams
that identified additional requirements (performance (team 2)
and security (team 3)) were not as productive as the other
teams. The difference between team 2 and team 3 shows that
Secure Scrum raises the complexity of applying Scrum. This
shows the overhead that comes with a broadened focus on
software quality, especially on non-functional requirements.
However, it should be noted that it is expected that the over-
head of Secure Scrum decreases over time as team members
get used to it and as a knowhow transfer over project takes
place, e.g., in the form of knowledge base entries on security
issues (see Section III-A) or security checklists from previous
projects (see Section III-A).

Secure Scrum is considered to be easy to use and practi-
cable, if even students with a weak background in IT security
are able to identify security relevant parts of the software.
To evaluate ease of use and practicality of Secure Scrum,
the documentation of the Scrum teams was evaluated. The
documentation consists of the Backlogs and a timetable. There,
it can be seen if the Secure Scrum team did identify security
relevant parts of the software.

Table II summarizes the results of this evaluation for team
2 (Scrum) and team 3 (Secure Scrum) to compare standard
Scrum to Secure Scrum.

Numbers in braces give the total amount of user stories.
The numbers not in braces (aggregated number) show the

33

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

amount of user stories when grouped together. This means
a group of user story is a “bigger” user story, which reflects a
requirement. Team 2 broke down every user story to a different
task. Team 3 broke down tasks for only the stories that they
also implemented. This is why they defined more user stories
than tasks. Team 3 found for every user story some security
concerns, this is why they tagged all user stories. Metric 5
shows that all tasks also had S-Marks, overall they had 8
different groups in the tasks. Team 3 decided to create the links
by grouping, they simply used red cards for the descriptions
to show security problems (S-Mark). This also shows that the
proposed tools are simple enough to adapt them very fast in a
Scrum process.

In conclusion, the evaluation shows that Secure Scrum is
able to improve the security level of the developed software.
Secure Scrum is easy to understand, can be used in practice,
and is even suitable for teams that have no deepened security
knowledge. The evaluation also shows that it is possible
to have a proper documentation through all stages of the
experiment. The tools of Secure Scrum harmoniously blend
into the standard Scrum toolset without the need of much
overhead for training.

VI. CONCLUSION

This paper presents Secure Scrum, an extension of the soft-
ware development framework Scrum. Secure Scrum enriches
Scrum with features focusing on building secure software. One
of the main contributions of Secure Scrum are S-Tags, a way
to annotate Backlog items with security related information.
Such annotations help software developers to keep security in
mind during software development. The paper also presents
how OpenSAMM can be used to implement Secure Scrum in
an organization. The maturity level approach of OpenSAMM
helps to implement Secure Scrum step by step, hence does
not overburden organizations. Secure Scrum was evaluated in
a small software development project. The evaluation shows
that Secure Scrum can be used in practice, is easy to use and
understand, and improves the level of software security.

REFERENCES

[1] C. Pohl and H.-J. Hof, “Secure Scrum: Develpoment of Secure Software
with Scrum,” in SECURWARE 2015: The Ninth International Con-
ference on Emerging Security Information, Systems and Technologies.
Venice, Italy: IARIA XPS Press, 2015, pp. 15–20.

[2] Symantec, “2015 internet security threat re-
port.”, retrieved: 05, 2016 [Online]. Available:
https://www4.symantec.com/mktginfo/whitepaper/ISTR/21347932 GA-
internet-security-threat-report-volume-20-2015-social v2.pdf

[3] K. Beck, M. Beedle, K. Schwaber, and M. Fowler, “Manifesto for
agile software development,”, retrieved: 05, 2016 [Online]. Available:
http://www.agilemanifesto.org/

[4] K. Schwaber, “SCRUM development process,” in Business Object
Design and Implementation, D. J. Sutherland, C. Casanave, J. Miller,
D. P. Patel, and G. Hollowell, Eds. Springer London, pp. 117–134.

[5] VersionOne, “9th Annual State of Agile Survey.”, retrieved: 05,
2016 [Online]. Available: http://info.versionone.com/state-of-agile-
development-survey-ninth.html

[6] C. Riemenschneider, B. Hardgrave, and F. Davis, “Explaining software
developer acceptance of methodologies: a comparison of five theoretical
models,” IEEE Transactions on Software Engineering, vol. 28, no. 12,
Dec. 2002, pp. 1135–1145.

[7] L. Vijayasarathy and D. Turk, “Drivers of agile software development
use: Dialectic interplay between benefits and hindrances,” Information
and Software Technology, vol. 54, no. 2, Feb. 2012, pp. 137–148.

[8] C. Herley, “Security, cybercrime, and scale,” Communications of the
ACM, vol. 57, no. 9, Sep. 2014, pp. 64–71.

[9] H. D. Mills and R. C. Linger, “Cleanroom Software Engineering:
Developing Software Under Statistical Quality Control - Encyclopedia
of Software Engineering - Mills - Wiley Online Library,” 1991.

[10] A. Hall and R. Chapman, “Correctness by construction: developing a
commercial secure system,” IEEE Software, vol. 19, no. 1, 2002, pp.
18–25.

[11] M. B. Chrissis, M. Konrad, and S. Shrum, CMMI for Development, ser.
Guidelines for Process Integration and Product Improvement. Pearson
Education, Mar. 2011.

[12] H. Glazer, J. Dalton, D. Anderson, M. D. Konrad, and S. Shrum,
“CMMI or Agile: Why Not Embrace Both!” 2008, pp. 1–48.

[13] M. Howard and S. Lipner, The security development lifecycle. O’Reilly
Media, Incorporated, 2009.

[14] D. Mougouei, N. F. Mohd Sani, and M. Moein Almasi, “S-scrum: a
secure methodology for agile development of web services.” World of
Computer Science & Information Technology Journal, vol. 3, no. 1,
2013, pp. 15–19.

[15] G. Sindre and A. L. Opdahl, “Eliciting security requirements with
misuse cases,” Requirements Engineering, vol. 10, no. 1, Jan. 2005,
pp. 34–44.

[16] Z. Azham, I. Ghani, and N. Ithnin, “Security backlog in scrum security
practices,” in Software Engineering (MySEC), 2011 5th Malaysian
Conference in. IEEE, 2011, pp. 414–417.

[17] L. Williams, A. Meneely, and G. Shipley, “Protection poker: The new
software security,” IEEE Security & Privacy, no. 3, 2010, pp. 14–20.

[18] S. B. Lipner, “Security Assurance - How can customers tell they are
getting it?” Communications of the ACM, vol. 58, no. 11, 2053, pp.
24–26.

[19] G. Boström, J. Wyrynen, M. Bodn, K. Beznosov, and P. Kruchten,
“Extending XP practices to support security requirements engineering,”
in Proceedings of the 2006 international workshop on Software engi-
neering for secure systems. ACM, 2006, pp. 11–18.

[20] J. Peeters, “Agile security requirements engineering,” in Symposium on
Requirements Engineering for Information Security, 2005.

[21] Open Web Application Security Project (OWASP), “OWASP Risk
Rating Methodology.” , retrieved: 05, 2016 [Online]. Available:
https://www.owasp.org/index.php/OWASP Risk Rating Methodology

[22] H.-J. Hof, “Towards Enhanced Usability of IT Security Mechanisms
- How to Design Usable IT Security Mechanisms Using the Example
of Email Encryption,” International Journal On Advances in Security,
vol. 6, no. 1&2, 2013, pp. 78–87.

[23] H. J. Hof, “User-Centric IT Security - How to Design Usable Security
Mechanisms,” in The Fifth International Conference on Advances
in Human-oriented and Personalized Mechanisms, Technologies, and
Services (CENTRIC 2012), 2012, pp. 7–12.

[24] Rapid7, “Metasploit,” 2015, retrieved: 05, 2016. [Online]. Available:
http://www.metasploit.com/

[25] M. Howard and S. Lipner, The Security Development Lifecycle: SDL:
A Process for Developing Demonstrably More Secure Software (De-
veloper Best Practices), ser. Secure Software. Microsoft Press, Jun.
2006.

[26] Open Web Application Security Project (OWASP),
“CLASP (Comprehensive, Lightweight Application Secu-
rity Process).”, retrieved: 05, 2016 [Online]. Available:
https://www.owasp.org/index.php/Category:OWASP CLASP Project

[27] P. Chandra, “Software assurance maturity model.”, retrieved: 05, 2016
[Online]. Available: http://www.opensamm.org/downloads/SAMM-
0.8.1-en US.pdf

[28] N. Fenton and J. Bieman, Software Metrics - A Rigourous and Practical
Approach. CRC Press, 2015.

[29] E. Fernandez-Buglioni, Security Patterns in Practice: Designing Secure
Architectures Using Software Patterns(Wiley Series in Software Design
Patterns). John Wiley & Sons, 2013.

[30] C. Pohl, K. Schlierkamp, and H.-J. Hof, “BREW: A Breakable Web
Application for IT-Security Classroom Use,” in Proceedings: European
Conference on Software Engineering Education 2014. ECSEE, 2014,
pp. 191–205.

34

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] Open Web Application Security Project (OWASP), “OWASP
Top Ten Project.”, retrieved: 05,2016 [Online]. Available:
https://www.owasp.org/index.php/Top10#OWASP Top 10 for 2013

35

International Journal on Advances in Security, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/security/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

