
245

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CincoSecurity:

Automating the Security of Java EE Applications
with Fine-Grained Roles and Security Profiles

María Consuelo Franky
Department of Systems Engineering

Pontificia Universidad Javeriana
Bogotá, Colombia

lfranky@javeriana.edu.co

Victor Manuel Toro C.
Department of Systems and Computing Engineering

Universidad de los Andes
Bogotá, Colombia

vm.toro815@uniandes.edu.co

Abstract— Almost every software system must include a
security module to authenticate users and to authorize what
elements of the system can be accessed by each user. This
paper describes a security model called “CincoSecurity” that
follows the Role Based Access Control model (RBAC), but
implementing fine-grained roles that can be grouped into
“security profiles”. This leads to a great flexibility to configure
the security of an application by selecting the operations
allowed to each security profile, and later, by registering the
users in one or several of these profiles. We describe also a
security software module (that implements the CincoSecurity
model) that we propose to be the initial code baseline for the
development of any Use Cases oriented Java EE system,
offering from the beginning a flexible, extensible and
administrable access control to the elements of the application
that is to be developed. Moreover, CincoSecurity allows
automating the generation of the additional code required to
protect the use cases and its elements of the Java EE
application being developed, with tools that add the required
security restriction code accordingly with the proposed
security model.

Keywords- Security; Access control; RBAC; Framework;
Java EE; Seam; Security automation.

I. INTRODUCTION

This paper summarizes the experience of the authors
designing and developing a reusable security module, called
CincoSecurity, that has been used for several years to control
access to the elements of web applications written in Java
Enterprise Edition (J2EE initially [9] and later Java EE 5
[10]). Currently, the module CincoSecurity is available [18]
under the GPL license, and is used by some important
software houses in Colombia.

The security model underlying CincoSecurity
implements a RBAC (Role-Based Access Control) [7],
providing high flexibility to control access to the various
elements of a Web application, such as the invocation of an
operation of a business component, the access to a web page,
or the access to elements within that page. The innovation of
CincoSecurity is the use of very fine-grained roles, each role
having a single permission associated with the invocation of
an operation (method) of a business component. From these
fine roles —whose fulfillment the Application Server can

directly control at run-time— CincoSecurity allows to define
“security profiles” as sets of fine-grained roles. This facility
of security profiles gives a great flexibility for configuring
the security of an application by selecting the operations
allowed to each profile (i.e., selecting a set of fine-grained
roles for each profile), and later, by registering the users in
one or several of these profiles.

A Java EE web application that is to be constructed with
the Seam framework [12] gets several benefits by integrating
the CincoSecurity module. When a user authentication is
performed, the Application Server is informed about the fine
roles derived from the security profiles the user belongs to,
and a personalized menu is dynamically built containing
only the entries leading to the use cases allowed for the user.
Additionally, CincoSecurity contributes to the application
being constructed with several use cases to administer the
security profiles, to manage user registration in these security
profiles and to administer passwords. Additionally,
CincoSecurity comes with use cases to register new modules,
new use cases and new services, as they become available
during the development project, for their security to be
administrable.

Figure 1: What is the CincoSecurity module?

246

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1 illustrates the CincoSecurity module as a
platform to embed and support security (and its
administration) into a new Java EE application. This means
that, after generating the very initial codebase of the new
application with the Seam framework [12], CincoSecurity
shall be the first module to be coupled into the new
application, in order to be able to include and administer
security of the forthcoming business modules.

Once embedded into the new application that begins to
be developed, the CincoSecurity module facilitates to
automate the incorporation of security into the new modules
as they are built, by the means of tools that add security
restrictions to each new use case and its elements, and with
administrative use cases (coming with CincoSecurity) that
configure the security of the whole application. With respect
to previous work of the authors [1], this paper is an extension
that explains in detail how to automate the incorporation of
security into a new Java EE application by applying the
CincoSecurity model.

In the following section, this paper presents the RBAC
security model on which CincoSecurity is based, and more
specifically, the RBAC model applied in the context of Java
Application Servers. Then, additional concepts provided by
the CincoSecurity module are introduced, as well as its
entities model. Later, there is a description of the use cases
coming with the CincoSecurity module (e.g., create a new
user, create/edit a security profile, add/delete users from a
security profile, etc.). Then, the paper provides a short
summary and references to the detailed guidelines [19] for
integrating the CincoSecurity module to a Java EE
application built with the Seam framework [12]. At the end,
the security automation of an application that uses
CincoSecurity is explained. Finally, there is a comparison
with other works, followed by the conclusion and a short
description of our future work.

II. EVOLUTION OF THE RBAC SECURITY MODEL

The RBAC model introduced the concept of “role” to
control the access to computing resources. The RBAC term
was first proposed by Ferraiolo and Kuhn [3], based on
previous works of Baldwin [2]. The initial proposal of this
model creates a role for each type of job within an
organization (cashier, customer service person, office
director, ...). Then, each role is assigned with the set of
access permissions that are required for this type of job.
Finally, each user is enrolled into one or more roles (rather
than to specific permissions). This model simplifies security
management because the roles (with their associated
permissions) tend to be stable, and users can be added or
retired easily from roles. The RBAC model allows
reinforcing the “least privilege” principle by giving each user
the minimum set of permissions required to perform his
work, by enrolling him only in the appropriate roles [7].

From the initial RBAC model (called Core RBAC) the
work of Sandhu and colleagues [4] defined extended models,
such as the hierarchical RBAC (to include role hierarchy
with inheritance of permissions), and constrained RBAC (to
prevent, for example, to assign a user to two conflicting

roles, or to restrict the time interval in which a user can use
the permissions of one of its roles).

The main applications of the RBAC model have been in
Data Base management Systems, Enterprise Security
Management Systems, and Web applications that run on
Application Server s [6] [7] [8].

The wide spread of RBAC models, implemented in
numerous products from many providers, led to define an
ANSI standard [5] in 2004, aiming to standardize
terminology, promote its adoption and improve productivity.
However, the current RBAC ANSI standard (consisting of a
reference model and a functional specification) has some
limitations and gaps as indicated in the work of Bertino and
colleagues [8].

III. THE RBAC MODEL APPLIED TO JAVA EE

APPLICATION SERVERS

Since the late 90’s, the emergence of Application Servers
brought a new way to build web applications (both in the
enterprise Java platform and in Microsoft .NET), with
business components managed by containers that provide
added services for security, transaction management,
parallelism, pool of connections, logging, etc. [9].

Regarding security, Java EE Application Servers [10]
implement the Core RBAC model [7] to control the access to
resources based on the roles the user belongs to. In order to
take advantage of these security services (and not to write
additional code in the application to internally control the
access to resources), it is necessary to specify the roles of the
application, the association of resources to roles, and the
association of users to roles.

A. Enrolling users in roles

In a Java EE application that uses a database to store the
authentication and authorization information, the following
entities EJB3 (Enterprise Java Beans - version 3) are
required [11]:

• An entity “User” shall be implemented (with its
corresponding support table in the database), to store
users and passwords.

• Entities shall be implemented (with its support tables
in the database) to specify the association of each
user with one or more roles.

• A “User management” use case shall be
implemented to enroll a user in one or more roles.

These facilities are included in CincoSecurity. Similarly,

it is also possible to store users, passwords and roles in a
LDAP (Lightweight Directory Access Protocol) server.

B. Controlling access to resources

Seam is a framework to develop Java EE applications,
that is being developed by JBoss since 2005, whose principal
author is Gavin King [12] [14]. Seam allows to directly
expose and use in the Web layer the entities and business
components of the application. This simplifies enormously
the development by eliminating the intermediaries and
conversions between the layers of the application. Seam has
been widely accepted and has been incorporated in the recent

247

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Java EE 6 standard, under the name of “CDI” (Contexts
Dependency Injection).

To control access to resources in a Java EE application
that uses the Seam framework, the following strategies are
required [13]:

• An annotation is used to protect each method of the
session EJB3. This annotation indicates what roles
are authorized to invoke the method.

• The url of each JSF (JavaServer Faces) web page
[10] can be protected in the navigation flow
descriptor (pages.xml) so that it can be accessed only
by users belonging to one of the specified roles.

• Each button or element of a JSF web page can be
protected so that it is rendered only to users
belonging to one of the specified roles.

Notice that annotations must be scattered along the code

—in the declaration of methods, in the section of a page in
the navigation flow descriptor, in the buttons tags and
elements of JSF pages— to indicate what roles can access
these elements.

C. User authentication

In a Java EE application that uses Seam, the
authentication service must be specified in the descriptor
components.xml. This service shall be a method of a class of
the application, and must implement a query in JPQL (Java
Persistence Query Language) [11] to verify the user’s
password (alternatively this process can also be performed
with a LDAP server).

Additionally, the authentication service must also obtain
the roles of the authenticated user. With the Seam
component called “Identity” these roles can be added to the
session and informed to the Application Server.

D. Controlling access to a JSF page

When an http access request is received, the Application
Server verifies if the user belongs to a role allowed to access
the requested JSF page, and if so, the requested page is
displayed.

For example, in the following piece of the navigation
flow descriptor it is specified that the access to
myPage.xhtml is granted only to users having the ‘tourist’
role:

<page view-id="/myPage.xhtml" login-required="true">
 <restrict> #{s:hasRole('tourist')} </restrict>
</page>

Similarly, inside the page only the elements that the user

is authorized to see are shown (elements such as buttons and
text boxes can specify, with the attribute “rendered”, what
roles can see them). For example, in the following piece of
page it is specified that the button “View hotel” is visible
only to users with the ‘tourist’ role:

<s:button id="viewHotel" value="View hotel"
 action="#{hotelBooking.viewHotel(hot)}"
 styleClass="buttonSmall"
 rendered="#{s:hasRole('tourist')}"
/>

E. Authorizing an action from a JSF page

In a JSF page a button’s action is typically associated
with the invocation of a method of a session EJB3. The
server verifies that the user roles allow him to invoke the
associated method, assuming that the method is protected by
an annotation indicating the roles that can invoke it.

For example, in the following piece of a session EJB, the
method viewHotel is allowed only to users with the ‘tourist’
role:

@Restrict ("#{s:hasRole('tourist')}")
public void viewHotel(Hotel hot) {...}

IV. ADDITIONAL CONCEPTS IMPLEMENTED BY THE

CINCOSECURITY MODULE

In addition to the security concepts for a Java EE
application that uses the Seam framework [12] [13]
explained above, the CincoSecurity module implements
additional concepts to provide greater flexibility to define the
permissions for users.

A. Use case and services

Definition: A use case is a system’s capacity to deliver a
useful and indivisible functionality to the user.

Figure 2: Elements of a Use Case implemented in Java EE with Seam

Definition of a use case in terms of its implementation in

Java EE with Seam (see Figure 2): a use case consists of one
(or more) business entities and a group of services that act
upon them. These services are implemented as methods of a
session EJB3 (see “use case controller” pattern). One or
more JSF pages display attributes of the entities involved in
the use case, and attributes of the session EJB3 controlling it.
In those JSF pages there are actions that invoke the services
of the session EJB3. These EJB3 services (methods) are
programmed in terms of queries and modifications to the
persistent business entities. The navigation flow descriptor
contains rules to decide the next page to display.

B. Module

Definition: A module is a set of related use cases. The
CincoSecurity module comes with the following use cases,
that will be explained below: security profiles management,
users management, change of password, basic security
reports, registration of menu entries, and registration of
modules, use cases and services.

248

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Fine grained roles

The CincoSecurity module works with fine-grained
security roles:

• A role for entering to each use case. The name
assigned to this role is the same name of the use case
(which is also the Seam name of the session EJB3
that supports the use case).

• A role to invoke each service within a use case (i.e.,
each of the methods of the session EJB3 that
supports the use case). The name assigned to this
role is “use case name”_ “method name”.

D. Protection of resources

• The session EJB3 that supports a use case is
protected with an annotation indicating the role for
entering to the use case. For example, the
profileGestion use case is supported by the session
EJB3 ProfileGestionAction.java (which implements
the interface ProfileGestion.java); this EJB3 has the
Seam name “profileGestion”. Consequently, the role
for entering to this use case is called
“profileGestion” and the EJB3 class will have the
following annotation:
@Restrict("#{s:hasRole('profileGestion')}")

• Each service (method) of the session EJB3 is
protected by an annotation indicating the role
associated with the service. The name of this role is
the concatenation of the use case name with the
name of the service (with “_” between). For
example, the update method of the session EJB3
that supports the use case profileGestion will have
the following annotation:
@Restrict("#{s:hasRole('profileGestion_update')}")

• Methods get and set do not require any annotation:
they are protected with the role of entering to the use
case.

• Access to each JSF page of a use case is protected in
the navigation flow descriptor by the role for
entering to the use case. For example, the page
profiles.xhtml of the use case profileGestion has a
navigation flow descriptor called profiles.page.xml
that contains the following restriction:
<page view-id="/profileManagementInit.xhtml"
 login-required="true">
 <restrict>
 #{s:hasRole('profileManagement')}
 </restrict>
</page>

• Each button in a JSF page should be displayed only
to users having the role associated to invoke the
action of the button, which corresponds to an EJB3
service (method). For example, the profiles.xhtml
page of profileGestion use case contains a button
whose associated action is to invoke the update
method of the session EJB3 that supports the use

case. Consequently the button tag indicates that it is
showed only to the role profileGestion_update:
<h:commandButton id="update"
 value="Update" styleClass="button"
 action="#{profileGestion.update}"
 rendered="#{s:hasRole('profileGestion_update')}"
/>

E. Security profile

A security profile is a set of fine roles, each fine role
expressing the right to invoke a service belonging to a use
case. Unlike the role, the concept of security profile is not
supported directly by Application Servers and must be
implemented with additional entities.

The use cases of the CincoSecurity module allow the
association of users to roles via security profiles:

• A user can be enrolled in one or more security
profiles, so he/she will have the set of fine roles
allowed by the union of these profiles.

• There is a many-to-many relationship between users
and security profiles.

• There is a many-to-many relationship between
security profiles and fine roles.

F. Actions after a user authentication

After a user is authenticated, CincoSecurity calculates all
the fine grained roles from the security profiles the user
belongs to, and informs them to the Application Server (by
assigning these roles to a Seam component called
“Identity”). Additionally, the EJB3 Login performs the
following actions:

• The session timeout is set, according to the
parameters stored in the database.

• The user’s menu is built, containing only the entries
leading to use cases allowed to the user.

• The security information of the user is added to the
session context, should the application logic needs it.

It is important to remark that the access to use cases not

authorized to a user by any profile is prevented in two ways.
From one side, not authorized use cases do not appear in the
user’s menu. From the other side –even if the user types in
the url of a not authorized use case– the Application Server
throws a security exception. This happens because the fine
role for entering to this use case was not included in the list
of fine roles that was informed to the Application Server.

Figure 3: User menu allowing access to all use cases of CincoSecurity

249

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The screen snapshot of Figure 3 shows the menu of a
user that is enrolled in security profiles allowing access to all
the use cases of the CincoSecurity module.

Figure 4: User menu allowing access to fewer use cases of CincoSecurity

The screen snapshot of Figure 4 shows the menu of

another user that is enrolled in security profiles allowing
access to just a few use cases of the CincoSecurity module.

V. ENTITIES MODEL OF THE CINCOSECURITY MODULE

The entities model shown in Figure 5 illustrates the
relationship one-to-many from Module to Usecase, and from
Usecase to Service.

Figure 5: Model of entities of the CincoSecurity module

Figure 5 also illustrates the relationship many-to-many
between Profile (security profile) and Service, as well as
between Profile and User (via the intermediate entity
Userprofile). Each menu entry may have submenus (only
terminal menu entries have an action for going to the entry
page of a use case).

The system parameters are arbitrary. They can be used,
for example, to record the session timeout, the path of the
directory to store reports, the address of the printer, etc.

In addition to this entity model, the CincoSecurity
module also contains a view that directly associates a user
with fine roles. The fine roles of a user are the union of the
roles associated with the profiles the user belongs to.

VI. USE CASES OFFERED BY THE CINCOSECURITY

MODULE

The following are the use cases offered by the
CincoSecurity module:

A. CRUD Use cases

The CincoSecurity module offers:
• A use case to list/add/edit and remove parameters

of the application.
• A use case to list/add/edit and remove modules of

the application:

Figure 6: Use case to list/add/edit or remove modules.

• A use case to list/add/edit and remove the use cases
of a module:

Figure 7: Use case to list/add/edit or remove use case.

• A use case to list/add/edit and remove the services
of an application’s use case.

250

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A use case to list/add/edit and remove menu entries:

Figure 8: Use case to list/add/edit or remove menu entries.

It can be easily specified what menu entries have a

submenu, as well as the use case associated with a terminal
menu entry (see Figure 8).

B. Management of security profiles

This use case allows to add/edit/remove security profiles.
Initially, the existing security profiles are listed. When a
security profile is selected, the modules, use cases and
allowed services are shown, so that the user can check or
uncheck services (see Figure 9).

Figure 9: Use case to manage security profiles.

Similarly, the user can create a new security profile. In
this case, the system displays all modules, and within it, the
use cases and services, for the user to select those allowed by
the new profile.

C. Management of users

This use case allows adding users of the application,
indicating its name, login and password. It also allows
enrolling the new user in one or more security profiles.

Figure 10. Use case to manage users.

D. Password change

This use case allows a user to change his password.
Passwords are stored encrypted. See figure 11:

Figure 11. Use case to change password.

E. Report of security profiles vs users

This use case shows, for each security profile, what users
are enrolled.

251

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 12. Use case to show a report of profiles vs. users.

F. Report of users vs security profiles

This use case reports, for each user, in what security
profiles he/she is enrolled.

VII. HOW TO INTEGRATE THE CINCOSECURITY MODULE

TO A JAVA EE SEAM APPLICATION

The CincoSecurity module is open source with GPL
License [17]. It can be downloaded from SourceForge [18]
in the form of an Eclipse project [16]. It comes ready to be
deployed on the Application Server JBoss [15], but can be
installed in any other Java EE Application Server by
following the guidelines provided in the Seam manual [14].

The documentation accompanying the CincoSecurity
module explains in detail how to deploy and execute the
module, and how to integrate it with a Java EE application
built with Seam. In particular, detailed explanations are
included for registering application’s use cases and services
in the security module. An earlier publication about the
CincoSecurity module, oriented to programmers, focused on
these technical details [19].

It is important to emphasize that to incorporate and
manage the security of an application, the modules of the
application, the use cases contained in such modules, and the
services offered by these use cases must be registered into
the CincoSecurity module (by using CincoSecurity’s use
cases provided for this). This way, the fine roles associated
with these services can be included in the security profiles,
and the access to these use cases will appears in the menu of
authorized users.

VIII. HOW TO AUTOMATE THE PROTECTION OF AN

APPLICATION THAT USES THE CINCOSECURITY MODULE

The fine roles and the naming discipline proposed above
to protect the services of the session EJBs and the web
elements that invoke these services, allow to think in
automating the protection of resources of an application that
uses the CincoSecurity module. Indeed, from the names of
the services to be protected, a tool could insert in the code
the annotations (in the java sources) and the tag elements (in
the JSF pages) required to achieve such protection.

With traditional coarse roles it is not possible to make
such automation of the protection, because each time a role

needs to be added or changed, it is necessary to review the
whole code to decide what EJB services and web elements
must be protected with the new role, thus requiring to
manually write the appropriate annotations and tag elements.

The following section describes the main ideas of a
generation framework based on Regular Expressions
techniques [24], currently being developed by the authors,
that automates the protection of a Java EE application that
uses the CincoSecurity module.

A. Techniques of Regular Expressions to build code
generators

The tool required to process Regular Expressions must be
capable of detecting in a text file the strings –either in a
single line or multi-line– that match a given tagged regular
expression, and then, transforming the detected strings using
the tags. These features are the basis for building a
framework for code generation.

Example of tools that process tagged regular expressions
are the java.util.regex library [24] [25] for Java programs and
the replaceregexp command provided by the tool ant [26].
Below is an example of using this command to add the prefix
new_ to the name of each property in a set of files that
contain properties (for example, a line with aa = some string
becomes new_aa = some string):

<replaceregexp
 match="([^\s]+)=([^\s]+)"
 replace="new_\1=\2"
 byline="true"
>
 <fileset dir=".">
 <include name="*.properties"/>
 </fileset>
</replaceregexp>

In the previous example the regular expressions [^\s]+

represents a word (one or more non-space character). The
match attribute contains a regular expression that describes a
property, enclosing in a first parenthesis the property name
(tag \1) and enclosing in a second parenthesis the value of
the property (tag \2). These tags are used in the replace
attribute, that indicates that the new_ string must be added
before the name of the property. The command also indicates
that the transformation must be done for each file of the form
*.properties in the current directory, by analyzing each line
separately.

The following example adds an annotation before the
declaration of each Java class, which specifies the restriction
that the user must be authenticated:

<replaceregexp
 match="(public class)"
 replace="@Restrict("#{identity.loggedIn}") \1"
 byline="true"
>
 <fileset dir=".">
 <include name="*.java"/>
 </fileset>
</replaceregexp>

252

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

With techniques of Regular Expressions is also possible
to extend source files. For example, the commands
replaceregex and loadfile, provided by the tool ant, allow to
assign to a property the text that matches a Regular
Expression in a first source file, and then, inserting such text
into a second source file, in the place matching a second
Expression Regular.

B. Framework of code generation based on on techniques
of Regular Expressions

The JBoss Seam generator [13] generates the initial
skeleton of a Java EE 5 application with the following
elements:

• Several control elements, based on the infrastructure
frameworks JSF [10], Seam [13] and EJB3 [11].

• Several descriptor files correctly configured.
• An ant script [26] with tasks for compiling,

packaging and deployment.
• Inclusion of many libraries providing infrastructure

frameworks.

However, the code generated by Seam is not enough to

be the basis of a serious business application. It does not
have important features, such as: the organization of the
source code into separated modules (each one with a set of
related use cases) to facilitate maintenance; the inclusion of a
module with use cases for managing the security; the
inclusion of security constraints by fine roles in order to
protect both the web pages and the business components.

Consequently, once the skeleton of a new application is
generated with Seam, it is necessary to reorganize this initial
skeleton and to couple it with the security module. An
appropriate tool could incorporate the source code of the
CincoSecurity module into the application. We have
developed such tool based on techniques of Regular
Expressions. The tool takes a copy of code pieces of
CincoSecurity module, and then it adds or transforms the
text, and incorporates the result into the software project
under construction.

Other tools, also based on techniques of Regular
Expressions, can add to the project use cases skeletons that
facilitate to use JMS message queues [27], or to use report
generator capabilities, or to produce pdf files, etc..

The set of all these tools is what we call a Code
Generation Framework based on techniques of Regular
Expressions. Each tool works from proven source code,
which is copied, transformed and incorporated into the
project that is being constructed.

C. Generator to couple the CincoSecurity module

The current version of the CincoSecurity module can be
incorporated only to a Java EE 5 application that was
initially created with JBoss Seam generator [13].

The CincoSecurity module can be directly taken as the
generation model for the new application. The generator tool
will look for certain strings in the source files of the module
and will replace these strings with the appropriate strings for
the new application. Examples of the strings that must be
replaced are: the name of the project; the package name of

the application; the name of the database, and so on. The
descriptors of the new application must also be extended to
incorporate the CincoSecurity module.

Figure 13. Generator of the security module, based on techniques of
Regular expressions.

Figure 13 shows the process followed by the generator of

the security module for an application previously generated
with Seam.

Summarizing, the security module generator is composed
by the tasks of text replacement, the tasks of copying the
resulting files into the new application, and the tasks of
extending the descriptors. These tasks must be expressed
following the conventions of the tool used to process regular
expressions.

D. Automatic protection of new use cases by using the
elements of CincoSecurity

After incorporating the CincoSecurity module to an
application, the Seam generator of CRUDs [14] can be used
to generate the skeleton of new use cases. To facilitate the
maintenance of the resulting application, this generation
must be complement with a refactoring tool that reorganizes
the generated code into subdirectories for modules,
containing subdirectories for its use cases. This refactoring
can be done with (Regular Expression) tasks that move the
files to the appropriate directory, and (Regular Expression)
tasks that fix the references in the web pages.

To take advantage of the security facilities provided by
the CincoSecurity module (i.e., fine-grained roles and
security profiles), the new use cases must be registered by
the means of the use cases provided by CincoSecurity. After
that, both the services of business components (EJBs) as the
pages elements can be easily protected. A task, also based on
Regular Expressions, provides:

• Registration of the new use case and each one of its

services, associating each one with a fine-grained
role.

• Registration of the menu item associated with the
new use case.

• For each method of the EJB business component that
controls the use case, an annotation with a security
constraint is added, associating it with a fine-grained
role.

• In the descriptors of the application, a security
restriction for accessing the corresponding web
pages is added, with the role of entering into the use
case.

253

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• A condition is added to each button on each web
page of the use case, to make them visible only for
users with the fine-grained role associated with the
invoked service.

Thanks to the concept of fine-grained role and to the

discipline of names proposed by CincoSecurity, the
protection of the resources of the new application (use cases,
services and page elements) can be added automatically.
Subsequently, the administrator user can update the security
profiles by selecting the services of old and new use cases
(by the means of the use case of Management of security
profiles, provided by CincoSecurity).

IX. COMPARISON WITH OTHER WORKS

There are other security modules proposed for the Java
EE technology. Currently, in the SourceForge portal there is
a dozen of software projects related with security for Java EE
5 applications, but most of them are proposals without
implementation (i.e., they are in planning status). Two
relevant projects with implementation and good acceptance
from users are the following:

• JPA Security [20] is an Access Control Solution for
the Java Persistence API (JPA) [11] with support for
role-based access control, access control lists
(ACLs) and domain-driven access control.
Compared with CincoSecurity, this project does not
offer access control to web pages as CincoSecurity
does. JPA Security uses access rules in terms of
database operations, which provides less flexibility
than CincoSecurity, where security profiles are
defined in terms of the services offered by the use
cases of the application.

• [fleXive] [21] is a Java EE 5 open-source framework
for the development of complex and evolving web
applications. It offers an administration module that
manages users and security. Some fleXive
characteristics are a reliable data store backed by a
relational database, native JavaEE 5+ support,
complex data structures, fine-grained security,
WebDAV and CMIS interfaces, and fully open
source. It implements an access control list based
approach, combined with roles; user accounts can be
assigned to any number of user groups. Access
control lists –which are assigned to user groups–
define a list (Read, Edit, Create, etc.) of permissions
attached to an arbitrary object. Compared with
CincoSecurity, this project uses 10 coarse roles with
predefined permissions related to the administration
module, while CincoSecurity lets to define any
number of security profiles, each one as a set of fine
roles related to the services of the application (not
only to the security services). We believe it is more
intuitive to associate the users to these security
profiles and not to the [fleXive] Access control lists
(ACL), that define lists of permissions attached to
arbitrary objects. [fleXive] does not offer access
control to elements of web pages, as CincoSecurity
does.

With respect to recent proposals for extending the RBAC
model, some research works as [22] [23] try to statically
validate the correctness of roles usage in an application, for
solving what they call the fragility of traditional dynamic
checks. In [23], Fisher et al. argument that traditional RBAC
does not easily express application-level security
requirements. For instance, in a medical records system it is
difficult to express that doctors should only update the
records of their own patients. Further, traditional RBAC
frameworks rely solely on dynamic checks, which makes
application code fragile and difficult to ensure correct. They
introduce ORBAC, a generalized RBAC model allowing
roles to be parameterized by properties of the business
objects being manipulated, with static validation of a
program’s conformance to an ORBAC policy. Centoze et al.
[22] present a theoretical foundation for correlating an
operation-based RBAC policy with a data-based RBAC
policy. They have built a static analysis tool for Java EE that
analyzes bytecode to determine if the associated RBAC
policy is location consistent, and reports potential security
problems.

CincoSecurity does not implement static checks, but its
strategy of fine grained roles enables to automate the correct
incorporation of security in a web application. In effect, by
following the names discipline explained in this paper, it is
possible to automatically add annotations to each method of
the session EJB3 controlling a use case, in order to permit its
access only to users having the associated fine role; it is also
possible to automatically modify button tags of JSF pages for
rendering them only to users having the corresponding fine
role. This automation has been explained in section VIII.

On the other hand, it is important to note that Seam offers
a complete security module [14], that is based on (coarse)
roles, permissions and rules, that achieves a very flexible
control of resources. The CincoSecurity module takes
advantage of the Seam security by using some of its facilities
related with authentication, restriction annotations for roles,
and tags of JSF pages for rendering only for the appropriate
role. However, we believe that for an administrator it is more
difficult to write rules for granting fine permissions to roles
(as is done in the Seam module), than to configure security
profiles by checking the services of the application to be
granted (as is done in the CincoSecurity module). Also,
given that CincoSecurity does not use permissions nor rules
(only fine grained roles), the incorporation of security to a
web application can be automated, as it was explained
above; with the Seam module it seems more difficult to
automate the incorporation of security.

X. CONCLUSION AND FUTURE WORK

Needless to say that developing a secure Java EE
application is a difficult job, where dozens of subtle details
must be handled coherently. The CincoSecurity module
provides a complete code baseline to develop a Java EE
application with the Seam framework, incorporating, from
the beginning of the development process, a full and flexible
access control to the use cases and services of the application
being developed. The CincoSecurity module also provides
the use cases required to administer the users and their access

254

International Journal on Advances in Security, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

permissions to the use cases and services of the application
being developed.

With respect to the Core RBAC model [7], an access
permission is materialized in CincoSecurity as the right to
invoke a method (service) of a business component. Fine
grained roles are defined and implemented, each one having
just one permission to invoke a single method (service) of a
business component (session EJB3). There is also a fine
grained role to allow entrance to each use case, as well as a
fine grained role to grant access to each one of the services
provided by the use case. The concept of “security profile” is
defined and implemented as a set of fine grained roles.

The CincoSecurity module takes advantage of the low
level access control principle implemented by any
Application Server, by feeding the Application Server with
the fine grained roles included in the security profiles the
authenticated user belongs to. Additionally, the
CincoSecurity module dynamically builds a customized
menu containing only the entries leading to the application’s
use cases authorized for the user.

The CincoSecurity module is a Java EE 5 application
built using the Seam framework [12] [13]. It is distributed
under the GPL license and can be freely downloaded from
[18]. CincoSecurity is used by several software houses in
Colombia.

CincoSecurity module may be modified or extended to
incorporate more complex security policies (e.g., elaborated
policies for password handling), permissions to access the
different attributes of a persistent entity, or to implement
extended RBAC models (hierarchical roles, constraints).

As future work, CincoSecurity will be extended to further
automate and simplify the incorporation and administration
of the security of a web application, as well as to include
other capabilities of the Seam security module, like Identity
management, in a compatible way with our approach.

REFERENCES
[1] M. C. Franky, V. M. Toro, “CincoSecurity: A Reusable

Security Module Based on Fine Grained Roles and Security
Profiles for Java EE Applications”, ICIW 2011: The Sixth
International Conference on Internet and Web Applications
and Services, St. Maarten-The Netherlands Antilles, March
2011, pp. 118-123, ISBN: 978-1-61208-004-8

[2] R. L. Baldwin, “Naming and Grouping Privileges to Simplify
Security Management in Large Databases”, Proceedings of
the 1990 IEEE Symposium on Research in Security and
Privacy (Oakland, CA), IEEE Computer Society Press, pp.
116-132, 1990.

[3] D. F. Ferraiolo and D. R. Kuhn, “Role-Based Access
Control”. Proc. 15th Nat’l Information Systems Security
Conf., Diane Publishing Company, pp. 554–563, 1992.

[4] R. Sandhu, C. L. Feinstein, and C. E. Youman, “Role-Based
Access Control Models”. IEEE Computer Magazine, pp. 38-
47, 1996.

[5] American National Standard for Information Technology –
Role Based Access Control, ANSI INCITS 359-2004, 2004.

[6] B. Messaoud, “Access Control Systems: Security, Identity
Management and Trust Models”, Springer Science+Business
Media, Inc., 2006.

[7] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli, “Role
Based Access Control”, Artech House 2003, 2nd Edition
2007.

[8] N. Li, J. W. Byun, and E. Bertino, “A Critique of the ANSI
Standard on Role-Based Access Control”, IEEE Security and
Privacy, Volume 5, Issue 6, pp. 41-49, 2007.

[9] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns: best
practices and Design Strategies”, Sun Microsystems - Prentice
Hall, 2001.

[10] Oracle, “The Java EE 5 Tutorial”,
http://docs.oracle.com/javaee/5/tutorial/doc/ 01.23.2012

[11] M. Keith and M. Schincariol, “Pro EJB 3: Java Persistence
API”, Apress, 2006.

[12] M. Yuan and T. Heute, “JBoss Seam: Simplicity and Power
Beyond Java EE”, Prentice Hall, 2007.

[13] D. Allen, “Seam in Action”, Manning Publications Co., 2009.
[14] JBoss Seam Group, “Reference manuals of JBoss Seam”,

http://seamframework.org 01.23.2012
[15] JBoss Community, “JBoss Application Server”,

http://www.jboss.org/jbossas 01.23.2012
[16] Eclipse Open source development platform comprised of

extensible frameworks, tools and runtimes,
http://www.eclipse.org 01.23.2012

[17] General Public License, http://www.gnu.org/licenses/gpl.html
01.23.2012

[18] M. C. Franky, V. M. Toro, and R. López, “CincoSecurity
Module”, http://sourceforge.net/projects/cincosecurity
01.23.2012

[19] M. C. Franky, V. M. Toro, and R. López, “CincoModule:
Módulo de seguridad basado en roles finos y en perfiles de
seguridad para aplicaciones Java EE 5”. Quinto Congreso
Colombiano de Computación (5CCC), Cartagena-Colombia,
Abril 2010. ISBN: 978-958-8387-40-6.

[20] “JPA Security”, http://jpasecurity.sourceforge.net 01.18.2011
[21] D. Lichtenberger, M. Plesser, G. Glos, J. Wernig-Pichler, H.

Bacher, A. Zrzavy, and C. Blasnik, “[fleXive]™ 3.1
Reference Documentation”, Copyright © 1999-2010 UCS -
unique computing solutions gmbh,
http://www.flexive.org/docs/3.1/xhtml/index.xhtml 23.01.2012

[22] P. Centonze, G. Naumovich, S. J. Fink, and Marco Pistoia,
“Role-Based access control consistency validation”,
Proceedings of the 2006 international symposium on Software
testing and analysis (ISSTA’06). ACM, New York, NY,
USA, pp. 121-132, 2006

[23] J. Fischer, D. Marino, R. Majumdar, and T. Millstein, “Fine-
Grained Access Control with Object-Sensitive Roles”,
ECOOP 2009 – Object-Oriented Programming, Lecture Notes
in Computer Science, Volume 5653/2009, pp. 173-194, 2009.

[24] J. Friedl, “Mastering Regular Expressions”. O'Reilly, 2002.
[25] M. Habibi, “Java Regular Expressions: Taming the

java.util.regex Engine”. Apress Publishing, 2004.
[26] The Apache Software Foundation, “Apache Ant™ 1.8.2

Manual”, http://ant.apache.org/manual 01.23.2012
[27] M. Richards, R. Monson-Haefel, and D. A. Chappell, "Java

Message Service”, O'Reilly, 2009.

