
Advanced Policies Management for the Support of the
Administrative Delegation in Federated Systems

Manuel Gil Pérez, Gabriel López, and Antonio F. Gómez Skarmeta
Departamento de Ingenierı́a de la Información y las Comunicaciones

University of Murcia, Spain
Email: {mgilperez,gabilm,skarmeta}@um.es

Aljosa Pasic
Atos Origin

Albarracin 25, 28037 Madrid
Email: aljosa.pasic@atosresearch.eu

Abstract—Current identity management systems are experi-
encing an increasing workload of their administrators in the
management of the system policies, mainly derived from the
sheer amount of policies they have to create and maintain.
This problem is even more relevant in federated environments,
where roaming users force them to authenticate and authorize
people coming from other institutions. In this context, it is
increasingly necessary to adopt new advanced policies for the
administrative delegation, which allow balancing this workload
among several delegates who will in turn have a much wider
knowledge in the application area where these policies will
be applied. In this paper, we present an infrastructure that
manages the entire life cycle of the administrative delegation
policies in federated environments, as well as a way for redu-
cing the complexity in their management for some scenarios,
especially on those where the delegates do not have to be
experts in the subject area. These delegates will only have to
fill in a simple template, which is automatically generated by
our infrastructure. Finally, the applicability of the proposed
infrastructure is measured with some performance results.

Keywords-administrative delegation, authorization policies,
identity federation, access control.

I. INTRODUCTION

This paper is an extended and revised version of the
conference paper entitled “Advanced Policies for the Admi-
nistrative Delegation in Federated Environments” [1]. It
contains a more comprehensive and detailed explanation
of the proposed infrastructure with delegation support, as
well as a new section with performance measurements
to demonstrate and assess the applicability of the herein
introduced prototype in real identity management systems.

Mobility of users among institutions has become more and
more common in recent years. For example, the Erasmus
Programme [2] has promoted the academic mobility of
higher education students and teachers within the European
Union. Since the Bologna accords in 1999 [3], and the
creation of the European Higher Education Area [4], it is
expected this mobility will be increased over time.

On the other hand, we are also currently undergoing the
emergence of federated identity systems with the aim of
sharing resources among different autonomous institutions.
Important examples of these systems are the establishment

of academic federations worldwide, such as eduroam [5],
HAKA [6], or SWITCH [7].

In these scenarios, access control policies are used to
manage the access of end users to services and resources
offered by an institution. However, as the number of mem-
bers of an institution increases, new institutions join to the
same federation or the relationships among them change,
the management of these policies becomes more and more
complex. This is due mainly to the great amount of policies
to manage, either access control policies, privacy policies or
validation policies based on Levels of Assurance (LoA) [8],
among others.

To reduce the complexity in the management of these
policies the administrative delegation allows system admi-
nistrators to delegate some privileges to others, named
delegates, with the aim of making part of their work by
managing a subset of the system policies [9]. In this way,
not only is the management of the system policies distributed
to other people, but also they are being delegated to people
who have better knowledge on the application area upon
which these policies will be used.

As an example, the system administrator of an institution
may delegate in the head of a department to specify which
of the members of her department can access the network.
This delegate will be also able to establish certain constraints
under which her employees can do it, e.g., they will be only
able to access the network in an specific time interval.

This new sort of policies supposes a new value-added
service to the current policy-driven systems, either federated
or not, although its use also introduces some drawbacks that
have to be treated adequately:

• The number of policies to manage increases dramati-
cally. System administrators will have to manage both
the policies that already existed (access control policies
or privacy policies, among others) and this new kind of
policies to control the administrative delegation. It will
introduce a new way of controlling which users can
create new policies (administrative policies).

• Delegates are usually users with no knowledge in policy
management, access control languages, etc. Thus, we
should make it easier for those people the generation

67

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and management of this new kind of policies.
As seen, although the workload of administrators is

reduced, or distributed considerably among several dele-
gates, the policy management (including the administrative
ones) will also be more complex. Thus, the definition of
these new policies for the administrative delegation is not
enough for its deployment in real environments, but it is
also necessary to define an infrastructure that can manage
them and help delegates to do their new tasks.

As a solution to these problems, we will include a set
of new components to existing federated identity systems
to manage the complete life cycle of the administrative
delegation policies. Moreover, we will also define a new
mechanism for the generation of templates that helps dele-
gates to carry out this new task in a simple and intuitive
fashion. These templates will be automatically generated by
our infrastructure from the administrative delegation policies
created by the system administrators.

The remainder of this paper is organized as follows.
Section II describes an example scenario that is used to
motivate this research work. The access control language
used in this proposal and its extension to enable the use
of the administrative delegation are shown in Section III.
Section IV describes in detail the infrastructure providing
administrative delegation, whereas Section V presents the
automatic generation of policies and templates for helping
delegates to do their tasks. Section VI illustrates some
performance measurements to assess the applicability of
the prototype in real identity management systems. Then,
Section VII presents the main related work and, finally,
Section VIII remarks the main conclusions and future work.

II. USE CASE

As an application example of this new kind of policies let
us suppose a scenario where an institution is going to host an
international project meeting, in which members from other
institutions need Internet access. Then, the host institution
will provide such a connection with certain Quality of
Service (QoS) assurances. All participants, coming from
various institutions, belong to the same identity federation.

Figure 1 depicts this situation, where two participants
coming from different institutions (Bob from Institution A
and Carl from Institution B), but all belonging to the same
identity federation than the host institution, want to get a
connection to the Internet.

The administrative delegation can be used in this scenario
to assign the responsibility of managing the access control
properties to a user more closely related to the mentioned
scenario. For instance, the person who is organizing the
meeting; she knows all the necessary information, such as
the identity of the audience or the meeting schedule. In this
way, the host institution’s administrator will delegate to the
meeting organizer, i.e., the delegate, the definition on which
participants will have access to the network, as well as the

schedule upon which they can do it; information the meeting
organizer perfectly knows.

For this example, let us suppose Alice is the meeting orga-
nizer, or delegate, who will define all access control policies
for the meeting participants. Then, the system administrator,
besides establishing this delegation of privileges to Alice,
will only have to define the QoS assurances the system
should apply. This information are network parameters too
much technical the delegate does not need to know.

We can prove with this scenario the use of the admi-
nistrative delegation, where it prevents the administrator has
to create access control policies on a group of people he
does neither know nor has information with respect to the
requirements each one needs.

Institution A

Institution B

Internet

PDP

(policies)

Carl

Alice

(delegate)

Bob

Host Institution

Figure 1. Example of an international project meeting

Another interesting example related to the administrative
delegation can be found in multi-stakeholder scenarios such
as outsourcing [10]. Some business processes are relying on
IT systems of contracted service providers, the complexity of
evidence collection is very high. The business processes that
are subject to compliance are often scattered across multiple
business units in a variety of unorganized and unmanaged
systems, so design and implementation of internal control
processes are not an easy task.

In this context, the MASTER EU-IST project [11] fo-
cuses, among other research topics, on automation of evi-
dence collection. This is done with the support of MASTER
operational infrastructure that relies on a set of indicators,
measurable and observable properties derived from system
events and configuration policies, which are set up at various
levels in order to ensure trustworthy control process. What
makes MASTER especially interesting is the possibility to
separate evidence collection from posterior evidence corre-
lation or compliance assessment.

In the emerging service delivery models, e.g., cloud com-
puting, there is often an outsourcing chain where customers
contract a service provider in order to do Business Process
Outsourcing (BPO). In its turn, these service providers can
store data in cloud or use some other cloud computing
resources, which is not necessarily belonging to the same
identity federation. As a consequence, the service provider

68

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



may not be able to offer all the required evidences to the
customer. Thus, the customer is constrained to the offered
granularity and semantics of the provided events, as well
as monitoring and enforcement capabilities of the service
provider.

Another constraint for the administration of evidence-
collection process in multi-outsourcing context is the per-
ceived lack of trust. Customers might believe that events
or related evidences provided by service providers (or their
subcontractors) are not authentic.

The administrative delegation mechanism proposed in this
paper offers novel ways to increase the trust level. On the
one hand, the trust level could be increased by applying
more distributed monitoring and configuration policy rules,
as well as fine grained access control policy to MASTER
components and policies. Increased number of policies and
decoupling of components responsible for signaling and
monitoring of events (both needed for evidence collection)
increases also complexity and administrative risks, which
in its turn can be also addressed with administrative dele-
gation where internal control process owner may delegate or
specify who can have access to which evidence collection
components. This way, each configuration of the MASTER
operational infrastructure corresponds to a set of component
access control policies, managed by the person who will
have more knowledge about her employees than the client
or service provider control process owner.

III. ADMINISTRATIVE DELEGATION IN XACML

As mentioned before, we have identified the admi-
nistrative delegation as a good alternative to manage the
policies of complex systems. This section defines the mecha-
nisms included in the eXtensible Access Control Markup
Language (XACML) [12], a standard XML-based access
control language, to allow the use of this new feature.

This proposal was defined to represent access control
policies in a standard way. It includes two different speci-
fications: the first one is an access control policy language,
which defines the set of subjects that can perform particular
actions on a subset of resources; the second one is a
representation format to encode access control requests (a
way to express queries about whether a particular access
should be granted) and their related responses.

The administrative delegation in XACML relies on the
idea that a person authorized to delegate certain privileges
does not need to use them, and vice versa; that is, that a
person owns rights to exercise a privilege does not imply
that she can delegate it to others.

As the XACML delegation profile [13] specifies, the
purpose of the delegation model is to make it possible to
express permissions about the right to issue policies and
to verify the issued policies against these permissions. This
profile defines a new XML element, named PolicyIssuer,
to indicate who has issued a specific policy. Through this

element, the system can identify and verify whether the
policy issuer is valid to delegate the given privilege before
being applied. Thus, the authority of the issuer needs to be
verified in order to consider this policy as valid. When a
policy does not include the PolicyIssuer element, the policy
is considered trusted and, therefore, it is valid.

By including this new element, the administrative dele-
gation allows the creation of delegation chains, where a
certain privilege can be delegated from one person to an-
other. For example, in the use case shown in Section II, the
meeting organizer (Alice) could in turn delegate in Bob the
generation of the access control policy for Carl, thus building
a delegation chain of three policies: an administrative policy,
created by the administrator, that delegates in Alice the
privilege of accessing to the network; another administrative
policy, created by Alice, that delegates in Bob the same
action and resource; and the access control policy, created
by Bob, that finally grants access to the network to Carl.

In a schematic way, this delegation chain would be as
follows (each arrow represents a delegation policy):

Administrator → Alice → Bob → Carl

Each delegation policy can specify another XML attribute,
named MaxDelegationDepth, to limit the depth of delegation
that is authorized by such a policy. In this example, if the
system administrator decides to restrict the delegation chain
to only one person, by defining MaxDelegationDepth=“1”,
Alice will not be able to delegate her privileges to anyone
else. Otherwise, the delegation chain will not be trusted and
Carl will not have access to the network.

Thus, besides the traditional policies for managing the
access to the resources (access policies), and the requests
the Policy Decision Point (PDP) receives, which should be
resolved based on these policies (access requests), this new
specification also defines a new set of XACML policies to
validate the issuer of another policy (administrative poli-
cies). This set of policies will be consulted to the PDP by
means of another sort of requests (administrative requests).

As an example, Figure 2 depicts the delegation model in
XACML for the use case presented in Section II. As seen
in this figure, once the PDP receives an access request, and
the policy used for its evaluation includes the PolicyIssuer
element, as the one shown in Figure 2a, it is necessary to
carry out an administrative request to verify whether the
policy issuer is trustworthy, and she has the expected per-
missions for such a delegation. This administrative request
is built from the previous access request, which will include
the attributes of both users (Alice and Bob) gathered from
their home institutions.

Finally, the administrative request is evaluated using the
corresponding administrative policy, as the one shown in
Figure 2b. It is worth noting that if this administrative policy
in turn contains the PolicyIssuer element, the above process
must be repeated until either reaching a trusted policy or

69

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



exceeding the maximum delegation depth defined in the
delegation chain.

In this scenario, the policy issuer (whose identifier is
Alice) authorizes, through the access policy, to another
person with identifier Bob (subject) to Access (action) the
Network (resource). It is also included a time condition
indicating the period of time within which the policy is
valid, i.e., the meeting schedule. The previous access policy
is conditioned to the issuer is recognized as valid for carrying
out such a delegation. To this end, the administrative policy
of Figure 2b permits that the access to the network can be
managed by those delegates who have the attribute schac-
UserStatus with the meeting:set value, and the additional
condition that users requesting the access own the attribute
schacPersonalPosition with the Researcher value [14]. Thus,
if Alice and Bob comply with these attributes, both policies
will be evaluated as valid and, finally, Bob will have the
requested network connection. In this case, an obligation is
also attached, a QoS requirement, which has to be enforced
in the system by the Policy Enforcement Point (PEP).

b) administrative policy

Policy
(permit-overrides)

Delegated-Subject
schacPersonalPosition=Researcher

Delegated-Resource
resource-id=Network

Delegated-Action
action-id=Access

Delegate
schacUserStatus=meeting:set

Rule Effect=Permit
Obligation=QoS Class 2

T
a
rg
e
t

administrative

request

a) access policy

Policy
(permit-overrides)

PolicyIssuer
subject-id=Alice

Subject
subject-id=Bob

Resource
resource-id=Network

Action
action-id=Access

Rule Effect=Permit
Condition=Time [9h..13h]

T
a
rg
e
t

access

request

Figure 2. Administrative delegation in XACML

As has been seen in this section, the XACML delegation
profile defines the syntax for the new elements that provide
administrative delegation support. However, it is necessary
an infrastructure that makes easy the use of this new sort
of policies, as well as some mechanisms to help, especially
to the delegates, in the management of these policies in an
easy and intuitive fashion. Both of them are described in
detail in the following sections.

Furthermore, XACML is only focused on intra-domain
systems without providing any support to federated environ-
ments. Therefore, we must also take into account the identity
management in our administrative delegation architecture for
inter-domain systems. In this case, the system administrator
will be also able to delegate part of her duties not only to
people of his very institution, but also he will be able to do

it to outsiders as long as they belong to the same federation
his institution.

IV. INFRASTRUCTURE WITH DELEGATION SUPPORT

Once the application area and the language to express
delegation have been presented, this section describes the
proposed infrastructure that makes use of delegation policies.

A. System requirements

The needs and the minimum requirements that any admi-
nistrative delegation system should comply with are sum-
marized as follows:

1) The institution wants to offer an administrative dele-
gation service is required to provide a secure reposi-
tory where to store the administrative policies.

2) The administrative policies have to be published and
stored in an internal repository through secure chan-
nels that provide features of confidentiality, authen-
tication and integrity. Moreover, it is also advisable
that these secure channels provide non-repudiation
features. This last property will avoid delegates can
refuse the creation and modification of those policies
for which they are responsible.

3) Efficient authentication methods are required. Only au-
thorized people can both access the secure repository
and exclusively create or modify the policies to which
they have permissions. In this case, administrators will
have a total access and control to all stored policies,
while delegates will be only able to create and modify
those policies to which the administrator has provided
access, creation and modification rights.

4) The secure repository with the administrative policies
has to be accessible by the service that takes the
authorization decisions, i.e., the PDP, according to
such policies.

5) The delegate should be capable of defining poli-
cies without having technical knowledge in managing
access control policies.

B. Federation environment

An identity federation system is composed by several
institutions in which a set of common services are offered,
such as the authentication and authorization of the federation
members. In this way, when a roaming user moves from
her home institution to another, the visited institution, the
later can authenticate her through the federation. In some
scenarios, this authentication phase is carried out remotely
by the user’s home institution.

For example, eduroam is one of the largest networks
for roaming worldwide, oriented to institutions involved in
research and education [5][15]. This network allows the
mobility of users across over 40 countries throughout three
continents, including China, Australia and Canada.

70

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Service

Provider

User

PDP

eduroam

System

Repository

Delegate

Repository

XACML

administrative

policy

XACML

access 

policy

Visited Institution NAP (PEP)

au
to
m
at
ic

ge
ne

ra
tio

n

Template

Server

User’s Home 

Institution

eduGAINAttribute 

Requester

AuthN

Federation
Delegate

Administrator

take authorization decisions based

on the user’s attributes + policies

authenticate a roaming user

through the federation

collect the user’s attributes

from her local institution

User’s 

database

Figure 3. Administrative delegation architecture

The eduroam network is based on a RADIUS hierar-
chy that redirects the user’s authentication request to the
appropriate home RADIUS server. During this phase, the
user receives some kind of handler to identify her in the
federation, thereby providing a way of preserving her privacy
in the federation. Later on, if the visited institution needs
some user’s attributes, to take a local authorization decision
by the PDP, an attribute request can be made through the
federation using the previous handler.

To that end, each institution of the federation must host
two different entities (see Figure 3): an AuthN module to
authenticate a remote user through the federation, returning
her a handler (opaque identifier); and an Attribute Requester
module that returns the attributes associated to the user iden-
tified by the previous handler. In our case, the authentication
is based on eduroam, whereas the attributes request is carried
out through eduGAIN [16][17]. Finally, authorization deci-
sions are locally taken in the visited institution, according
to these user’s attributes and the system policies defined by
the institution.

This identity federation system is a good testing environ-
ment to make use of delegation policies in a feasible way.

C. Components of the architecture

The two services previously defined forward the corres-
ponding requests to the user’s home institution. Apart from
them, the proposed architecture (shown in Figure 3) also
introduces a PEP in order to protect the resources, enabling
the access to the authorized users, and a PDP to take
the authorization decisions based on the defined XACML

policies. The PDP also needs the user’s attributes to evaluate
these policies, which are harvested through the Attribute
Requester for remote users and directly from the User’s
database for local users.

It is worth noting that the protected resource in the
example shown in Figure 3 is the network, so that the PEP is
the Network Access Point (NAP) that provides both wireless
connectivity and access control capabilities according to the
PDP’s decisions.

Moreover, in this architecture we include two different
repositories to store all the institution policies:

• System Repository. This contains both the traditional
policies of the institution, e.g., access control policies
or privacy policies, and the new administrative policies.
All of them are created and managed by the system
administrators.

• Delegate Repository. This repository contains all the
access control policies generated by the delegates.

The reason of maintaining two different repositories is
mainly the prevention of some security issues. The first
repository, with the system policies, contains critical policies
for the correct operation of the institution. This means that
granting the access to other people may cause security risks.

Once the Delegate has been enabled as the person in
charge of defining some system policies on behalf of the
administrator, this user can access the Template Server to
do this task. The Template Server is a Web application
server that allows delegates to define access control policies
from the privileges the system administrator has delegated
on them. This component stores the templates, in the

71

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



form of Web-based forms, that delegates can fill out in a
straightforward manner without having technical skills about
policies management.

To do so, the Template Server maintains a third reposi-
tory, apart from the two ones introduced above, where
the templates are stored. These templates are automatically
generated from the administrative policies created by the
system administrators. Thus, delegates will then access to
this server when they need to create an access control policy,
according to the delegation model presented in Section III.

The Template Server is not very different to any other
service that the federation offers, since this server will also
make use of the defined mechanisms for controlling the
access control to the templates. This decision is based on
the credentials that the delegate owns in the institution to
which belongs.

Therefore, delegates will have to authenticate in their
home institution and, if both institutions belong to the same
federation and delegates have the appropriate credentials,
they will be able to access the Template Server.

The new components we have added in the identity
federation system, shown at the top of Figure 3, can ope-
rate both in federated environments (inter-domain) and in
autonomous institutions (intra-domain). The only difference
between them lies on where and how the users’ authentica-
tion and authorization are taken place.

In an autonomous mode of operation, all these pro-
cesses are performed in the institution locally, whereas in
a federated environment, as the one shown in Figure 3,
the authentication is performed remotely at the user’s home
institution through eduroam and the authorization is carried
out in the visited institution in a local way.

In the latter case, the authorization phase needs the
user’s attributes for the decision-making process. The visited
institution should then interact with the user’s home insti-
tution (note that both of them have to belong to the same
federation) for recovering these attributes through eduGAIN.

D. Delegation policies

In order to take advantage of the administrative delegation,
which is defined in the XACML guidelines detailed in [13],
we have to define two different kinds of policies. On the one
hand, an administrative policy expressing the delegation of
the administrative rights to the delegates and, on the other
hand, the access policies created by the delegates containing
the details of the access control rules.

Using the use case presented in Section II, we have de-
fined two example policies. The first one, the administrative
policy, shown in Listing 1, specifies that a user who holds
the schacUserStatus attribute with the meeting:set value can
act as a delegate, and grant Access to the Network to any
user who holds the schacPersonalPosition attribute with the
Researcher value.

This policy also specifies that the maximum delegation
depth is set to 1, by means of the MaxDelegationDepth
attribute. Moreover, this administrative policy specifies some
network properties to enforce; in this case, a QoS assurance
with the Class 2 value.
<Policy PolicyId=“AdministrativePolicy” RuleCombiningAlgId=“permit–overrides”

MaxDelegationDepth=“1”>
<Target>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Researcher</AttributeValue>
<AttributeDesignator AttributeId=“schacPersonalPosition”

Category=“...:delegated:...:subject–category:access–subject”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Network</AttributeValue>
<AttributeDesignator AttributeId=“...:resource–id”

Category=“...:delegated:...:attribute–category:resource”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Access</AttributeValue>
<AttributeDesignator AttributeId=“...:action–id”

Category=“...:delegated:...:attribute–category:action”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>meeting:set</AttributeValue>
<AttributeDesignator AttributeId=“schacUserStatus”

Category=“...:delegate”/>
</Match>

</AllOf>
</AnyOf>

</Target>
<Rule RuleId=“AdministrativeRulePermit” Effect=“Permit”>
<Obligations>
<Obligation FulfillOn=“Permit”>
<AttributeAssignment AttributeId=“QoS”>
Class 2

</AttributeAssignment>
</Obligation>

</Obligations>
</Rule>

</Policy>

Listing 1. Administrative policy

On the other hand, the access control policy example is
shown in Listing 2. This policy is issued by Alice, who grants
Access to the Network to Bob. This policy could also include
some conditions and network parameters that will have to
be enforced by the PEP. In this case, Alice establishes that
this access is only permitted from 9h to 13h.
<Policy PolicyId=“AccessPolicy” RuleCombiningAlgId=“permit–overrides”>
<PolicyIssuer>
<Attribute AttributeId=“...:subject–id”>
<AttributeValue DataType=“string”>Alice</AttributeValue>

</Attribute>
</PolicyIssuer>
<Target>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>

72

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



<AttributeValue DataType=“string”>Bob</AttributeValue>
<AttributeDesignator AttributeId=“...:subject–id”

Category=“...:subject–category:access–subject”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Network</AttributeValue>
<AttributeDesignator AttributeId=“...:resource–id”

Category=“...:attribute–category:resource”/>
</Match>

</AllOf>
</AnyOf>
<AnyOf>
<AllOf>
<Match MatchId=“string–equal”>
<AttributeValue DataType=“string”>Access</AttributeValue>
<AttributeDesignator AttributeId=“...:action–id”

Category=“...:attribute–category:action”/>
</Match>

</AllOf>
</AnyOf>

</Target>
<Rule RuleId=“AccessRulePermit” Effect=“Permit”>
<Target/>
<Condition>
<Apply FunctionId=“function:and”>
<Apply FunctionId=“function:time–greater–than–or–equal”>
<EnvironmentAttributeDesignator AttributeId=“current–time”/>
<AttributeValue>Wk0900</AttributeValue>

</Apply>
<Apply FunctionId=“function:time–less–than–or–equal”>
<EnvironmentAttributeDesignator AttributeId=“current–time”/>
<AttributeValue>Wk1300</AttributeValue>

</Apply>
</Apply>

</Condition>
</Rule>

</Policy>

Listing 2. Access control policy

E. Conditions and obligations

As seen before, both policies define two sets of conditions
and obligations (one per policy), which should be managed
by the PDP. Thus, these conditions have to be combined
each other and check them later to know they do not enter
in conflict, or they are not contradictory. For example, the
administrative policy could indicate that the user can only
access the network from 8h to 14h, whereas the access
control policy created by a delegate can restrict this period of
time from 9h to 13h. In the policy evaluation process, which
is carried out by the PDP, the conditions of the access control
policies will be checked first, and the ones of the delegation
policies later. As a result, the intersection of both constraints
will be enforced, which is a correct way of operation.

On the other hand, the network parameters can produce
some kind of inconsistency if the ones included in the access
control policy are inconsistent with the ones established
in the administrative policy. Although the correct way of
managing the different kinds of network parameters depends
on their type, in general, the values derived from the access
policies can only be a subset of the ones derived from the
administrative policy.

In this sense, delegates cannot grant wider privileges than
the ones specified by the administrator in the administrative

policy. In case of conflict between the properties stated
by both policies, the PDP must ensure that the properties
provided by the access control policy will be enforced
iff they are less or equal than the ones permitted by the
administrative policy.

V. AUTOMATIC GENERATION OF POLICIES AND
TEMPLATES

The first step in the system is to define the administrative
policy. This is done by the system administrator in a usual
way, although in order to make this task easier the adminis-
trator could use any kind of XACML policy editor.

Among the available policy editors, all of them developed
under an open source license, we can stand out:

• XACML-Studio [18]. This is an authorization policy
editor implemented as a Web application to import,
create, edit and export polices in XACML 2.0 format.

• XACML.NET [19]. This editor is completely devel-
oped in .NET/C#, which implements almost the entire
XACML 1.0 standard, excepting the regexp-string-
match function.

• eXist [20]. eXist-DB is a database capable of storing
and managing information in XML format in a native
way, as well as processing XQuery and XPath queries
on the database itself. The policy editor is embedded
within the editor itself that eXist provides to manage
all the policies stored in its database. Anyway, this
supposes a dependency drawback since it forces our
infrastructure to use such a database to manage the
policies from this editor. Moreover, it only supports the
versions 1.1 and 1.0 of the XACML format.

• UMU-XACML-Editor [21]. This editor is implemented
in Java with the aim of creating policies by following
the XACML 2.0 standard.

Although UMU-XACML-Editor, as previous ones, does
not support the latest XACML specification (version 3.0) we
have chosen it as the policy editor for this research work.

This solution is the policy editor most updated of the
existing ones, in addition to some interesting technical
features such as defining references to other policies and
supporting the SchemaLocation element to validate polices
against their XML schemes. Thus, the UMU-XACML-
Editor policy editor has been extended to support the new
XACML delegation profile, as presented in Section III.

Once the administrator has defined the administrative
policy by using the UMU-XACML-Editor, the next step is
the definition of the access control policies by the delegate.
But as indicated previously, how the delegate is going to
create the access control policies is a tricky aspect, because
she is a common user and not a security expert with skills
on policy languages.

Therefore, instead of building this policy from scratch,
some kind of template (in our case, Web-based forms) can
be provided to the delegate to help her in this administrative

73

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



task. In this way, the delegate will only have to fill in this
template to create the appropriate access control policy.

A. Generation of templates

To perform this process is necessary to use a Policy
Management Tool (PMT) with the aim of building the access
policy templates. In our case, we have decided to extend
the UMU-XACML-Editor policy editor to include this new
feature. This tool will use an XSLT [22] transformation that
extracts the appropriate fields from the delegation policy to
generate the template.

The PMT needs to search for the action and resource
elements specified in the administrative policy, which are
identified by the “...:delegated:...:attribute-category:action”
and the “...:delegated:...:attribute-category:resource” cate-
gories (see Listing 1). The rest of data needed for the access
control policy, such as the subject identifier, are included in
the template as input fields for being filled in by the delegate.
The identifier of this delegate is automatically added in the
new policy as the issuer thereof.

This process is depicted in Figure 4. Note that the text
enclosed in parentheses indicates which element of the
infrastructure (the administrator, the delegate or the system
itself) generates each piece of information.

access policy

(automatically generated)

Policy
(permit-overrides)

PolicyIssuer
subject-id=Alice

Subject
subject-id=Bob

Resource
resource-id=Network

Action
action-id=Access

Rule Effect=Permit
Condition=Time [9h..13h]

T
a
rg
e
t

administrative policy

(administrator)

Policy
(permit-overrides)

Delegated-Subject
schacPersonalPosition=Researcher

Delegated-Resource
resource-id=Network

Delegated-Action
action-id=Access

Delegate
schacUserStatus=meeting:set

Rule Effect=Permit
Obligation=QoS Class 2

T
a
rg
e
t

Delegate (Alice)

Subject
Bob

Resource
Network

Action
Access

Condition
Time [9h..13h]

template

(delegate)

Figure 4. Administrative delegation process

Besides, the template must allow the delegate to specify
the conditions and obligations. The most common condition
is the time constraints although, however, other conditions
such as a maximum number of connected users could be
included in it. Regarding the network parameters, the tem-
plate can also show to the delegate the different parameters
defined in the system that she can assign, e.g., QoS or
bandwidth, together with their possible values.

Once the PMT has generated this template, it is necessary
to make it available to the delegates on some server or
repository. But the access to this template must be restricted
to the appropriate delegates, so that the PMT should also
generate an XACML policy to control the access to it. In this
case, the PMT must search for the “...:delegate” category in
the administrative policy, which specifies the restrictions for
the delegates. This field is then used to specify the subject

of the policy to control the access to the template. Finally,
both the administrative policy and the access control policy
to the template are stored in the System Repository to be
used later.

As we can see in Figure 5, from the administrative policy
created by the administrator, the PMT is also capable of: (1)
generating the template for the delegate; and (2) generating
the corresponding policy to control the access to such a
template. Both policies are stored in the System Repository
with the system policies, whereas the template is stored in
the internal repository of the Template Server.

Administrator PMT
System

Repository

Template 

Server

generate 
template

load available generators

generate 
administrative
policy

define & publish

administrative policy

generate 
access policy 
to template

XSLT files

administrative 
policy

template

access policy 
to template

Figure 5. Generation of automatic templates

In order to control the access to these templates, the Tem-
plate Server has to query the PDP to take an authorization
decision according to the access control policies to templates
previously generated by the PMT.

B. Generation of access control policies

Figure 6 shows the complete process for the generation
of access policies from the previously generated templates.
Before allowing delegates to access to these templates,
the Template Server should determine whether the delegate
owns the required credentials and privileges to take advan-
tage of an administrative delegation.

To do so, the delegate must first be authenticated through
the AuthN module (see Figure 3). At this point, it is worth
pointing out that this user will be authenticated in her home
institution, either locally if the delegate belongs to the same
institution or remotely through eduroam if she belongs to
a remote institution with which the visited institution has a
close relationship through the same identity federation.

If the authentication has been successful, the Template
Server has to collect the delegate’s attributes to decide if this
user owns the minimum privileges to complete this admi-
nistrative task. This harvest process is performed through
the Attribute Requester module (see Figure 3), which will

74

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Delegate PDP
System

Repository

Template 

Server

Delegate

Repository

credentials

AuthN
Attribute

Requester

authentication

Templates AuthZ
request

get attributes

retrieve all 
templates 
from database

access policy 
to template

fill in form

generate 
access policy

list of templates

chosen template

generate
Web form

show form

access
control policy

take an access 
decision

Templates AuthZ
response

Figure 6. Process of using templates by the delegates

gather them from the home institution to which the delegate
belong. As before, this process will be done either locally
or remotely (in this case, through eduGAIN), depending on
which the delegate’s institution is.

After this harvesting process, the Template Server re-
trieves all the defined templates from its internal repository.
Then, the Template Server builds an authorization decision
request that sends to the PDP to know which of these
templates the delegate can fill in.
<Request>
<AuthorizationDecisionQuery Resource=“Template-11”>
<Subject>
<NameIdentifier NameQualifier=“https://idp.um.es/shibboleth/idp”>
Alice

</NameIdentifier>
</Subject>
<Action Namespace=“urn:segura:umu:actions”>Fill-in</Action>
<Evidence>
<Assertion>
<AttributeStatement>
<Attribute AttributeName=“eduPersonPrincipalName”

AttributeNamespace=“urn:segura:edugain:attributes”>
<AttributeValue>alice@um.es</AttributeValue>

</Attribute>
<Attribute AttributeName=“schacUserStatus”

AttributeNamespace=“urn:segura:edugain:attributes”>
<AttributeValue>meeting:set</AttributeValue>

</Attribute>
</AttributeStatement>

</Assertion>
</Evidence>

</AuthorizationDecisionQuery>
</Request>

Listing 3. Access request to verify if the delegate can fill in a template

This authorization decision request must include:
• the attributes of the delegate in the Assertion element;
• the template to be accessed in the Resource element;

• and the Action element with the Fill-in value.
An example for the use case presented in Section II can

be found in Listing 3. In this case, the PDP is evaluating
whether Alice can fill in the template number 11 or not. If so,
the PDP will return to the Template Server a signed autho-
rization decision response stating that Decision=“Permit” to
the Resource=“Template-11” for the Action=“Fill-in”.

During this decision-making process, the PDP makes use
of the access control policies to templates, which have been
previously stored in the System Repository by the PMT.

Finally, the Template Server will show to the delegate the
list of templates that can fill in according to the presented
credentials. A screenshot of this Web page can be found in
Figure 7. At the top of this figure is shown the graphical
result obtained by Alice after entering her credentials in
a previous phase. In this case, Alice can only fill in the
template number 11 with the “Meeting Segur@ Internet
Connection” description. At the bottom of the same figure,
we can see the logging server output to check the different
steps explained in this section.

Once the delegate selects one of the available templates,
the Template Server internally generates the Web form that
will return her so it can be finally filled in. Continuing the
previous example, Figure 8 depicts another screenshot where
Alice has already filled in the Web form with the requested
information. As can be seen, the administrative definition of
a new access control policy is a very straightforward process
that does not require special skills in managing policies.

Finally, and after filling in the template, the Template
Server internally generates the access control policy and

75

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 7. List of templates the delegate can fill in

stores it in the Delegate Repository for uses in future
requests from Bob to Access to the Network, provided this
request is from 9h to 13h. For this generation we also make
use of XSLT transformations, as seen in the right-hand side
of Figure 4.

VI. PERFORMANCE RESULTS

The infrastructure with delegation support proposed in
Section IV has been implemented and deployed in a lab
testbed to demonstrate its applicability in a real scenario.

In these tests, we have assumed that both the adminis-
trator and the delegate belong to the same institution, so
no authentication process is carried out remotely through
eduroam. As a consequence, the remote harvesting process
for getting the delegate’s attribute is not performed through
eduGAIN. In its stead, all these processes are taken in the
same institution.

This validation has been performed through some per-
formance measurements, which have been taken directly
from this testbed, depending on different factors that might
have an important impact on the proposed administrative
delegation process. These tests are:

• Retrieve the list of templates from the Template Server
that a delegate can fill in. In this process, we also

Figure 8. Template filled in by the delegate

include the authentication and authorization phases of
the delegate when she accesses to the Template Server
for first time.

• Validation of an access control policy sent to the PDP
by a user.

In both cases, we have assumed for these tests our
infrastructure is configured with the policies and features
presented throughout this paper. The list of hardware and
software requirements deployed in our lab testbed is shown
in Table I.

A. Retrieve the list of templates from the Template Server

This first test aims to assess the time a delegate needs to
access the Template Server in order to fill in some of the
templates for which she is responsible. It will give us an idea
about the time consuming on the different phases involved
in this process, as detailed in Section V-B, which have been
divided in four different steps (all of them corresponding to
the arrows depicted in Figure 6):

• User AuthN. Time needed by the infrastructure to
authenticate the delegate. This step corresponds to the
authentication row depicted in Figure 6.

• User AuthZ. This step represents the time needed to re-
trieve the delegate’s attributes by means of the Attribute
Requester. This corresponds to the get attributes arrow.

• DB Templates. It corresponds to the retrieve all tem-
plates from database arrow. This retrieval is internally
done from the internal repository of the Template
Server.

• Templates AuthZ. This step pertains to the decision-
making process that the PDP has to do to know which
templates the delegate can fill in.

76

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



0

50

100

150

200

250

300

350

Templates AuthZ

DB Templates

User AuthZ

User AuthN

0

100

200

300

400

500

600

1 11 21 31 41 51 61 71 81 91

T
im

e 
(m

s)

a) Times to retrieve the list of Web forms from the Template Server b) Percentil of the 100 access requests performed by this test

Figure 9. Administrative delegation process

 Hardware Software 

Template Server 

Intel Pentium 4 CPU 640 
CPU: 3.20 GHz, 32 bits 
Cache size: 2048 KB L2 
Total memory: 1024 MB 

Windows XP SP3 
Tomcat 6.0.10 

PDP 
Ubuntu 9.10 
Tomcat 5.5.27 
eXist-DB 1.2.6 

AuthN & IdP 

Ubuntu 9.10 
Apache 2.2/mod_ssl 
MySQL 5.0.75 
OpenLDAP 2.3.28 

Attribute Requester 

AMD Opteron CPU 246 
CPU: 2.0 GHz, 64 bits 
Cache size: 1024 KB L2 
Total memory: 1024 MB 

Ubuntu 9.10 
Tomcat 5.5.27 

 
Table I

HARDWARE AND SOFTWARE REQUIREMENTS

The testing process has been performed by means of send-
ing 100 sequential requests, from which we have extracted
the average times of each these four steps. Note that all times
have been measured in milliseconds (ms). The partial times
of each of them are shown in Figure 9a, while Figure 9b
illustrates the total times for the 100 requests.

We can observe in Figure 9a what is the time distribution
for each case. At first sight, we can assert that the decision-
making process performed by the PDP is the longer time
of all, as expected, being the 63,81% of the total time. The
Templates AuthZ step takes 224 ms, on average, for the 100
tests performed, while the total time takes 351 ms. For this
process, the PDP only needs to evaluate the access control
policies to templates, so no delegation chain is used by it.

It is worth noting that these times have been taken from
the Template Server. This means that the PDP does not really
take these 224 ms, because we have to take in consideration
the network traffic and delays. We have measured this time,
and the PDP really takes 198 ms on average in this process
of making a decision. With this last time, it would be now
a 54% of the total time. Apart from that, this time is very
reasonable since the PDP has to take its decision, build the

corresponding SAML response and sign it digitally.
In any case, as a conclusion, these times are perfectly

acceptable and assumed by the delegate.

B. Validation of access control policies

As have seen in the previous test, the PDP is the critical
component that can slow down the performance of the
overall system. Then, for this second test we have taken into
consideration how the delegation chain defined in Section III
can influence in this performance.

That delegation chain stated that the administrator dele-
gated to Alice the definition of the access control policies for
such a scenario. Thus, once Bob tries to access the network
the PDP should check both the administrative policy, created
by the administrator, and the access control policy created
by Alice. In this process, the PDP will also have to retrieve
the Alice’s attributes for making the corresponding decision.
Note that the retrieval of these attributes will be done
through the Attribute Requester.

For this test, as before, we have performed 100 sequential
request. The results for this test can be found in Figure 10.

440

450

460

470

480

490

500

510

520

1 11 21 31 41 51 61 71 81 91

T
im

e 
(m

s)

Figure 10. Percentile times for validating a delegation chain

In this case, the PDP takes 489 ms on average to validate
the complete delegation chain. This process includes: the
retrieval of both policies from their corresponding reposito-
ries, the administrative policy from the System Repository
and the access control policy from the Delegate Repository;

77

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the harvesting process of the Alice’s attributes through the
Attribute Requester component; the internal validation from
both policies; and, finally, the building and digital signing
of the SAML response.

Among these steps, the largest computational load corres-
ponds to the retrieval of the policies from their repositories,
taking 196 ms on average. This supposes the 40% of the
total time. Thus, and depending on the scenario we are
considering, some optimizations could be implemented, e.g.,
by caching these policies in the PDP, to reduce these times
in a real production system.

VII. RELATED WORK

The XACML delegation profile specified in [13] is very
recent, so there are not many works making use of it.
However, the idea of delegation of rights has existed for
several years, and there are a lot of works trying to include
this feature in different ways. For example, in PKI systems,
two initiatives stood out in the use of delegation [23]:
SPKI/SDSI defines a standard way for digital certificates
whose main purpose is authorization rather than authen-
tication; and X.509 proxy certificates are another way of
providing restricted proxying and delegation within a PKI-
based authentication system.

In the latest years, authorization systems are making use
of XACML because it is standard, and besides it provides
an expressive access control language. Before the apparition
of the XACML delegation profile, several proposals to add
these features to XACML were made. For example, in [24]
the authors presented a system permitting controlled policy
administration and delegation using XACML in combina-
tion with a second access control system. This system is
Delegent, which has powerful delegation capabilities. But
contrary to our proposal, this system does not define how
delegates manage the XACML policies.

Another proposal to add dynamic delegation to XACML
is presented in [25]. But unlike the XACML delegation
profile, this system is based on the delegation of roles
instead of the delegation of policy administration. This
system defines a validation service whose purpose is to
validate a set of credentials for a subject, issued by multiple
dynamic attribute authorities from different domains. Finally,
it returns a set of valid attributes that are used in the XACML
system in the standard way.

VIII. CONCLUSION AND FUTURE WORK

This work shows that although the administrative dele-
gation is a helpful tool for managing policies in complex
systems, it also introduces some drawbacks that hinder its
use in real existing environments. Therefore, this paper des-
cribes an infrastructure that makes use of the administrative
delegation in an effective way, thus simplifying the work
of both the system administrators and the delegates. On the
one hand, the workload of the administrators is reduced by

distributing the policy management among the appropriate
users in the system, i.e., the delegates. On the other hand, the
delegates, who are not concerned about policy management,
only have to fill in the appropriate templates to generate
these policies in an automatic way.

Currently, as a statement of direction, we pretend to study
in depth the management of delegation chains in highly
distributed authorization systems.

ACKNOWLEDGMENT

This work has been partially funded by the CENIT
Segur@ (Seguridad y Confianza en la Sociedad de la In-
formación) project and the MASTER EU-IST project (IST-
2001-34600) within the EC Seventh Framework Programme
(FP7). Authors would finally like to thank the Funding
Program for Research Groups of Excellence with code
04552/GERM/06 granted by the Fundación Séneca.

REFERENCES

[1] M. Gil Pérez, G. López, A.F. Gómez Skarmeta, and A. Pasic.
“Advanced Policies for the Administrative Delegation in
Federated Environments”. In DEPEND’10: Proceedings of
the 3rd International Conference on Dependability, pages 76–
82, July 2010.

[2] The ERASMUS Programme Web site, European Commis-
sion. http://ec.europa.eu/education/programmes/llp/erasmus
25.05.2011.

[3] Confederation of EU Rectors’ Conferences and the Asso-
ciation of European Universities (CRE). “The Bologna
Declaration on the European Space for Higher Education: an
Explanation”, June 1999.

[4] European Higher Education Area (EHEA) Web site 2010-
2020. http://www.ehea.info 25.05.2011.

[5] K. Wierenga and S. Winter (main editors). “Inter-NREN
Roaming Architecture: Description and Development Items”.
GÉANT2 JRA5, Deliverable DJ5.1.4, September 2006.

[6] Haka Federation Web site, CSC-IT Center for Science Ltd.
http://www.csc.fi/english/institutions/haka 25.05.2011.

[7] SWITCH Federation Web site. http://www.switch.ch/aai
25.05.2011.

[8] M. Sánchez, O. Cánovas, G. López, and A.F. Gómez
Skarmeta. “Levels of Assurance and Reauthentication in
Federated Environments”. In EuroPKI’08: Proceedings of the
5th European PKI Workshop on Public Key Infrastructure:
Theory and Practice, pages 89–103, June 2008.

[9] E. Rissanen and B.S. Firozabadi. “Administrative Delegation
in XACML - Position Paper”. Swedish Institute of Computer
Science, September 2004.

[10] A. Pasic, J. Bareño, B. Gallego-Nicasio, R. Torres, and
D. Fernandez. “Trust and Compliance Management Models in
Emerging Outsourcing Environments”. In Software Services
for e-World, volume 341 of IFIP Advances in Information
and Communication Technology, pages 237–248. November
2010.

78

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[11] The MASTER EU-IST Project (Managing Assurance, Se-
curity and Trust for Services). http://www.master-fp7.eu
25.05.2011.

[12] T. Moses (editor). “eXtensible Access Control Markup
Language (XACML) Version 2.0”. OASIS Standard, February
2005.

[13] E. Rissanen (editor). “XACML v3.0 Administration and
Delegation Profile Version 1.0”. Committee Specification 01,
August 2010.

[14] J. Masa (editor). “SCHema for ACademia (SCHAC): At-
tribute Definitions for Individual Data Version 1.4.0”. Work-
ing Draft, March 2009.

[15] Education Roaming (eduroam) Web site, TERENA Associa-
tion. http://www.eduroam.org 25.05.2011.

[16] D.R. Lopez (main editor). “GÉANT2 Authorisation and
Authentication Infrastructure (AAI) Architecture Second
Edition”. GÉANT 2 JRA5, Deliverable DJ5.2.2,2, April 2007.

[17] Education GÉANT Authorisation Infrastructure (eduGAIN)
Web site. http://www.edugain.org 25.05.2011.

[18] O. Gryb. “XACML-Studio (XS) Reference”, November 2009.
http://xacml-studio.sourceforge.net 25.05.2011.

[19] D. González and A. Neisen. “XACML.NET Version 0.7”,
March 2005. http://mvpos.sourceforge.net 25.05.2011.

[20] M. Harrah. “Access Control in eXist”, September 2009.
http://exist-db.org/xacml.html 25.05.2011.

[21] University of Murcia. “UMU-XACML-Editor Version 1.3.2”.
http://sf.net/projects/umu-xacmleditor 25.05.2011.

[22] M. Kay (editor). “XSL Transformations (XSLT) Version 2.0”.
W3C Recommendation, January 2007.

[23] M.R. Thompson, A. Essiari, and S. Mudumbai. “Certificate-
Based Authorization Policy in a PKI Environment”. ACM
Transactions on Information and System Security (TISSEC),
6(4):566–588, November 2003.

[24] L. Seitz, E. Rissanen, T. Sandholm, B.S. Firozabadi, and
O. Mulmo. “Policy Administration Control and Delegation
Using XACML and Delegent”. In GRID’05: Proceedings of
the 6th IEEE/ACM International Workshop on Grid Comput-
ing, pages 49–54, November 2005.

[25] D.W. Chadwick, S. Otenko, and T.-A. Nguyen. “Adding
Support to XACML for Dynamic Delegation of Authority in
Multiple Domains”. In CMS’06: Proceedings of the 10th IFIP
TC-6 TC-11 International Conference on Communications
and Multimedia Security, pages 67–86, October 2006.

79

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


