
Tailored Concepts for Software Integrity Protection
in Mobile Networks

Trust Management to Protect Software for Mobile Network Elements

Manfred Schäfer, Wolf-Dietrich Moeller
NSN CTO - Security Research

Nokia Siemens Networks GmbH & Co. KG
Munich, Germany

e-mail: manfred.schaefer@nsn.com, wolf-dietrich.moeller@nsn.com

Abstract—This paper presents research results on SW security
for network elements. Our investigations contribute to the
ongoing ASMONIA project, which is focusing on collaborative
approaches and on protection and warning mechanisms in 4G
networks. This work is dedicated to examine specific aspects
thereof, concentrating on software integrity protection (SWIP)
to securely manage SW products in mobile networks. Based on
an analysis of 3GPP standardization requirements and of
existing approaches for integrity protection, solution concepts
are proposed and discussed to meet the identified needs. These
aim at harmonized approaches for a number of different use
cases. Particular account is taken of keeping infrastructure
efforts as small as possible, both in operator network as well as
in manufacturer domain. The proposed solutions are targeting
improvements to integrate and establish efficient trust
mechanisms into mobile network elements and management
systems.

Keywords-Software integrity protection; secure execution
environment; code signing; trust management; Evolved Packet
System (EPS); autonomous validation;

I. INTRODUCTION

Software (SW) security assurance has many facets,
spread over the entire product life cycle. It has to prevent at-
tacks, arising from maliciously modified SW and associated
data, determining a product’s behavior.

In the following, the term SW may include executable
code as well as any configuration information, scripts, data,
or meta-data that might be protected together with the SW.
Roughly we could split SW security issues into two huge
areas, namely (1) to specify and to create a SW product so
that it matches given security policies and (2) to assure that
in a target system only original SW can be used. The former
demands a series of secure SW development processes
(which are not further discussed here) and organizational ef-
forts, assuring that SW is free of conceptual flaws, vulnerab-
ilities, and back-doors. The latter is to assure that after SW
creation unwanted modifications (be it by hostile intent or
inadvertently) are prevented or at least will be detected. We
concentrate on this aspect also including measures to provide
trustworthy hardware (HW) and SW co-design solutions.

Depending on contracts for commercial products SW
manufacturers are liable for the SW quality and potentially

also for damages and incidents arising from (avoidable) se-
curity leaks. Apart from negative impacts of incidents on a
manufacturers brand and on customer satisfaction there is
imperative need for identification and removal of such flaws,
for mitigation and for recovery. Altogether this requires
trustworthy SW management and protection.

Focusing on products for mobile access and core net-
works, we give an insight into balanced strategies on SW
protection measures that on the one hand are required by mo-
bile network standardization and on the other hand generally
ought to be applied to assure product reliability and trustwor-
thiness as well as to protect SW assets. This publication de-
tails the aspects addressed in earlier work [1], providing
more room for discussion of requirements and of existing
and proposed solutions. Starting with a requirements analysis
and examining existing approaches in this paper innovative
concepts are derived that beneficially enable to apply the
same security infrastructure (in manufacturer domain) to dif-
ferent use cases for SW integrity protection (see Section
II.F), while efforts in operator domain can be kept on minim-
al level.

While many of the strategies and principles addressed by
our research work may also be applicable to User Equipment
(UE) this is not targeted in this paper. But, note that our con-
tribution is closely related to and further supported by the
German BMBF sponsored ASMONIA [14] project, where a
wider context is envisaged. The project is focusing on col-
laborative protection and warning systems for 4G networks.
In addition to the network centric view as presented in this
paper, (among other issues) SW integrity protection for mo-
bile user equipment also will be researched by the consorti-
um, targeting the needs, capabilities, implementation, and in-
tegration aspects of mobile phones.

II. ANALYSIS OF SW INTEGRITY PROTECTION
NEEDS IN MOBILE NETWORKS

We first examine related security requirements in mobile
networks as stated by 3GPP standardization and then we de-
rive more general security requirements, based on an analys-
is of extended aspects for integrity protection.

A. Requirements related to 3GPP Standardization
In evolution of 3GPP (3rd Generation Partnership Project)

[11] standards the upcoming security architectures strictly
demand local security capabilities.

54

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In particular, in EPS (Evolved Packet System, see Figure
1, for an example) context requirements are stated for secure
execution-environments (specific for trusted parts of eN-
odeBs (eNB) [2]) or trusted-environments (TrE, specific for
Home-eNodeBs (HeNB) [3]). These arise due to the nature
of the EPS security architecture (which, e.g., implies termin-
ating of security relations between user equipment and net-
work and storing of session and authentication keys in EPS
base stations) and the attack-prone exposition of such base
stations also in public areas, outside the security domain(s)
of an operator.

3GPP security requirements include demands for SW in-
tegrity checks, e.g., to be applied during secure boot pro-
cesses whereas any room is left for realization alternatives.
As related solutions (if mandatory) have to be implemented
in future network products, there is urgent need to identify
and to develop efficient methods for trust establishment and
management. Essentially, these go back to reliable mechan-
isms for measuring, for verification, and for enforcement of
associated directives for SW installation, loading, and usage.

Specifically, regarding SW integrity [2] demands that
'The eNB shall use authorized data/software', 'Integrity pro-
tection of software transfer towards the eNB shall be en-
sured' (clause 5.3.2, for eNB setup and configuration) and
regarding the secure environment definition (clause 5.3.5)
that 'The secure environment shall support the execution of
sensitive parts of the boot process', 'The secure environ-
ment's integrity shall be assured', and 'Only authorised ac-
cess shall be granted to the secure environment, i.e. to data
stored and used within, and to functions executed within'.
Obviously, authorizing access to an execution environment
denotes that any SW, which is brought into it and launched
for execution must be targeted to an eNB and must come
from an authorized source, which implies proof of origin.
Typically, this involves trustworthy boot processes, each
time a eNB is started, but also applies to any SW update that
has to be made during the life-cycle of such product.

When looking into security requirements for HeNBs, we
find in [3] related statements (in clause 5.1.2), explicitly de-
manding 'The TrE shall be built from an irremovable, HW-
based root of trust by way of a secure boot process...', which
'shall include checks of the integrity of the TrE performed by
the root of trust. Only successfully verified components shall
be loaded or started..' and 'shall proceed to verify other com-
ponents of the H(e)NB (e.g., operating system and further

programs) that are necessary for trusted operation of the
H(e)NB'.

Moreover, it is required that the HeNB is enabled to act
autonomously as it is stated with 'The integrity of a compon-
ent is verified by comparing the result of a measurement ...
to the trusted reference value. If these values agree, the com-
ponent is successfully verified and can be started' and thus
needs to be securely provisioned with trusted reference val-
ues, as e.g., expressed with 'The TrE shall securely store all
trusted reference values at all times' and 'The TrE shall de-
tect un-authorized modifications of the trusted reference val-
ues'. Further, according to clauses 7.1 and 6.1 in [3], a HeNB
must support autonomous validation methods 'If the device
integrity check according to clause 6.1 failed, the TrE shall
not give access to the sensitive functions using the private
key needed for H(e)NB device authentication with the
SeGW', preventing that a malicious device (by self-check)
anyhow can connect to the mobile network.

As any trust is based on self-validation processes (which
implicitly may also apply for the eNB), very high security
expectations are seen for any implementation thereof.

B. Existing methods for SW integrity Protection
In the following, we examine available approaches to

support SW integrity protection and identify weak aspects
and open issues from a mobile network point of view.

1) TPM based boot control
Existing methods for usual IT systems, such as known

with TCG (Trusted Computing Group) standards (PC-trust-
worthiness with local ownership concept) cannot be conver-
ted easily to network elements and to existing 3GPP operator
infrastructures. In particular, methods based on TPM (Trus-
ted Platform Module) paradigms [4] have to be considered
very carefully. On the one hand a clear, indisputable value of
TPMs (or comparable crypto hardware) is that these may
provide sufficient protection for storing secrets and for secur-
ity operations using such secrets. This involves using the
built-in crypto algorithms directly and exclusively without
requiring external CPU cryptographic operations, e.g., for
network element authentication. On the other hand the TPM
attestation concept and its implementation (TPM as a co-
processor) only provide partial security. There are at-
tack-windows before attestation is completed and the TPM is
not designed to parry certain physical attacks, e.g., those
modifying the CRTM (Core Root of Trust for Measurement)
in ROM or manipulating the TPM interface during the boot
process. Doing so a skilled local attacker could inject faked
PCR (Platform Configuration Register) settings – but at least
has to gain access to the TPM command interface in order to
control it.

By nature, the attestation approach is lacking autonomy
capabilities. Due to missing local reference values for valida-
tion, local systems cannot autonomously determine and take
decisions on authenticity and integrity of any SW loaded and
measured during boot. In addition, particular account needs
to be taken to the fact that managing attestation values over
an entire SW product life cycle and for many different
products is a challenge in its own.

Moreover, when exploiting extended TPM security cap-
abilities - such as sealing - this imposes a lot of SW and trust
management efforts and infrastructure invests, which are not
easy to handle. For instance, re-sealing (e.g., of parts of the

Figure 1. 3GPP EPS Architecture (partial view)

55

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An interesting aspect in this paperboot images or of internal
secrets) to a new state would require individual provisioning
per platform (i.e., due to authorization per TPM and tpm-
Proof dependency) and could not be deployed independently
from a target platform's security settings.

When looking to 3GPP standardization so far there are
no discussions and indications of TPM integration into a mo-
bile network environment. Such implementation specific
properties and manufacturer restrictions could hardly be jus-
tified and would imply technology-dependent solutions. In
best case it is imaginable that for a few very specific network
elements such impacts could be accepted but in no case as a
template for a broader scope.

 As a consequence, integration of TPM/attestation based
integrity protection may require remarkable proprietary
changes and efforts in the infrastructure, which are difficult
to motivate and to sell - apart from the fact that establish-
ment of necessary extensions and provisioning of trust man-
agement information needs to be solved by convincing tech-
nological means. In addition, regarding implementation the
required changes in existing HW (embedded platforms,
boards, ASICs) have to be balanced with other design, per-
formance, and cost criteria. Often such trade-offs render it
quite difficult or even impossible to simply implant commer-
cial off-the-shelf (COTS) TPM chips into a complex and
highly specialized HW / SW platform, which is mainly
tailored to meet feature-requirements while security efforts
may be capped by defined cost margins.

2) MTM based boot control
In 2004, the TCG initiated the Mobile Phone Working

Group (MPWG) to meet use cases and requirements of mo-
bile phones. Based on TPM principles MTM (Mobile Trus-
ted Module) specifications have been elaborated and made
publicly available [7], [8], and are clearly in scope of mobile
phone industries [12]. In contrast to TPM, the MTM is not
explicitly meant as a separate chip specification, rather than
it leaves room for different implementations, also as firm-
ware or even as protected SW. The MTM concept can be
built on a subset of TPM functionality, but comes with own
mechanisms for trustworthy boot.

An interesting aspect in this paper is to examine how and
what MTM ideas could be transferred to network elements
and how these could be extended. Advantageously, the
MTM allows remote management of authorized SW updates
by introducing new governance schemes relying on several
new types of certificates. As a newness, when compared to
TPM principles, the certificate based control (to only execute
mandatorily signed and verified software) enables a system
to autonomously take decisions during the boot process. Due
to its supposed attractiveness the MTM concept if further
discussed in Section IV.A.

3) SW integrity protection as used for IT systems
Apart from the specifications introduced by the TCG

there are several other individual technologies known, de-
veloped and widely used by commercial SW publishers as
well as by open source communities. In contrast to TCG
(which firstly focused on boot-time integrity) earlier ap-
proaches mainly concentrated on SW integrity for SW distri-
bution and installation processes. Regarding the applied se-
curity management we roughly we can distinguish three dif-
ferent types of approaches: Those relying on cryptographic
'check-sums' (pure hash values as e.g., applied by some open

source communities, such as OpenOffice [16]), those using
code signatures based on Web-Of-Trust principles (e.g.,
PGP/GPG based code signing as used with RPM [17]), and
those integrating with PKI principles (e.g., as established for
JAVA [18] or Symbian Signed [19]).

Concepts based on pure 'check-sums' suffer from the dif-
ficulty to obtain valid reference values from trusted sources
(no inherent proof of origin) and to reliably store these over a
potentially long time – thus, these reference data are always
susceptible to man-in-the-middle (MITM) attacks. Moreover,
extended security control (e.g., regarding expiry, revocation,
self-validation) is rather limited or simply not possible. Note
again, that also the TPM paradigm does not natively solve
these issues!

Considering mechanisms relying on Web-Of-Trust
(WoT) principles, one may complain that WoT based meth-
ods do not match very well with demands for vendor driven
governance and security control over network elements. As a
matter of fact also WoT inherently does not reliably exclude
MITM attacks. Everybody could create self-signed signing
certificates and keys, as there is no mandatory registration
authority established. So, trust always lies in the eyes of a
believer. Apart from this deficiency a WoT usually is neither
based on enforceable hierarchies nor on expressive and
standardized certificates. Moreover, WoT principles do not
support effective and reliable revocation schemes as usually
there are many trust relations and unclear governance
schemes involved (no public policies, no CRLs) and no 'offi-
cial' mechanisms or entities for enforcement are available.

Of course, for user centric scenarios, individual products,
or platforms (e.g., Open Source Linux distributions, based on
RPM or similar package management systems) such mech-
anisms are beneficial. But as we are looking for generic tem-
plates for remotely manageable SWIP mechanisms for mo-
bile network equipment, we do not deeply analyze these ap-
proaches in this paper. This does not mean that we generally
dislike or ignore such concepts, but we have to apply them in
the right context and scenarios.

From a vendor's perspective - who should be able to fully
control the security capabilities and integrity of its products -
potential difficulties may arise from inadequate fundamental
security building blocks and in particular from unsuited key
and trust management strategies and weak control mechan-
isms. This clearly argues in favor of PKI based approaches,
which are compliant to accepted standards and security best
practices and provide well proven governance and control
principles (e.g., as defined in X.500 [27] and in particular
with X.509 [15]).

While many of the PKI-based known signing concepts
(JAVA, Microsoft's Authenticode, Symbian Signed, IBM's
Lotus Notes, etc.) apply efficient and partially even compar-
able mechanisms, they are not directly applicable to the
needs of manageable SWIP for mobile network equipment
(which usually consists of a number of very different
products and technologies). On the one hand such ap-
proaches usually are specific for one particular product or
technology (e.g., operating system, programming language,
controlling sand-box, run-time environment, web- or IT-ap-
plications, vendor specific UE-equipment, etc.) and on the
other hand they are mostly targeted to support security re-
quirements of distributed developer communities.

In most cases they rely on outsourced PKI entities (certi-

56

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ficate and registration authorities) and on verification com-
ponents, which often allow importing of arbitrary SW pub-
lisher certificates and accept umpteen root certification au-
thorities (CA). If a user or administrator decides that these
are trustworthy he can change the trust management settings
by local administration. Vice versa, preconfigured trust-an-
chors and credentials could be removed on user decision.
Consequently, in addition to local control, such systems
chiefly target to enable tracking and juridical inquiry of mali-
cious attackers, which by hostile intent previously have ap-
plied for SW publisher keys and certificates.

Some approaches combine code signing with explicit au-
thorization concepts at application level. For instance, this is
realized by different types of certificates (e.g., using 'capabil-
ities' as introduced with Symbian Signed), which are associ-
ated with classes of API calls with appropriate scope and
privileges. Adherence to such assignments can be checked
by signing entities (before issuing a valid signature for an ob-
ject under test), as well as by the devices themselves during
verification or execution. To give more examples, mechan-
isms used by JAVA or IBM's Lotus Notes [20] control ap-
plication privileges via sand-boxing approaches, but use loc-
al administration to set policies and rules for execution.

C. Run-time Aspects
When looking beyond the scope of boot-time or installa-

tion-time integrity checking additional security improve-
ments are needed to provide attack resilience during long-
term operation. These have to be faced as many network ele-
ments (in particular threatened eNBs, HeNBs) may be
booted or updated only rarely. Then they have to be active
for weeks or months, whilst the trust in boot-time checks is
the more diminished the longer a system is running. Poten-
tially this is caused by attacks occurring during operation,
applying both for local, manual manipulations as well as for
remote SW attacks, which cannot be prevented by boot pro-
tection alone. Consequently, there is urgency for methods
and mechanisms assuring SW integrity at run-time at least
for critical security operations. Such critical operations (e.g.,
as needed for key and credential management, for authentic-
ation, or for verification processes) require trusted code,
which can only run if before execution it is proven to be in-
teger and to stem from an authoritative source.

Run-time integrity issues are partly covered by TPM
based improvements. For instance, with DRTM (Dynamic
Root of Trust for Measurement) mechanisms are known to
allow lately measuring and launching SW in a TPM compli-
ant execution environment [4], [5]. The DRTM mechanisms
assure that code, which is to be started, is measured properly
(e.g., Intel is using authenticated code modules for this pur-
pose [13]) and then executed, but does not prevent from
loading untrusted code. Such approach requires TPM based
attestation (with all the hurdles mentioned above) in combin-
ation with dedicated CPUs, which have to support specific
instructions and bus cycles. While an external challenger is
enabled to prove what has been executed (during run-time)
on a DRTM equipped system, the DRTM operation itself is
not able to verify any manufacturer code prior to execution.
Again we miss an autonomous mechanism enabling a local
machine to enforce rejection of manipulated code, prevent-
ing execution of any hostile operations at any time.
Moreover, the selection of DRTM enabled CPUs may be in

conflict with other CPU selection criteria to best match the
needs of the specialized embedded architectures of a mobile
network element.

The IMA approach [6] is an interesting extension of
TPM concepts, introducing TPM protected load time integ-
rity measurements of file-based executables, libraries and
data, which are aggregated into a series of TPM signed lists.
As with the native TPM principles, IMA relies on attestation
paradigms, requiring external entities for validation. Apart
from lack of autonomy the major problem of such approach
again seems to be the need to maintain a TPM specific infra-
structure as well as the efforts to interpret and validate a po-
tentially huge amount of attestation data, which is reported
on request. Such data has to be 'known (i.e., must be securely
provisioned)' externally or must be re-calculated (where re-
ferring to any sequence of loading is not required in the IMA
case).

There are other approaches such as Tripwire or Samhain
[23] following alternative principles based on file-level in-
tegrity checks, which do not rely on a TPM infrastructure.
They come with own associated, administrated client/server
architectures and self-created, protected databases with 'trus-
ted' hash values for validation. The run-time checks are
triggered periodically or based on events, while checking
modules are protected at kernel level, which may be suffi-
cient for some attacks scenarios. A particular risk may be the
fact that trusted reference values may not (or not only) be
created inside a secure developer environment at manufac-
turer side, but in the operational domain itself, which is not
only an organizational, but also a liability issue.

It is worth to mention the DigSig proposal [24] represent-
ing a load-time integrity checking solution, which relies on
PGP signed ELF binaries (as provided via the Debian BSign
utility), but is applicable to Linux systems only (due to de-
pendency on Linux kernel integration and on ELF files and
tools). The charm of such approach is the fact that signatures
are embedded into ELF binaries, thus no separate data base
is required. Moreover, signatures can be created externally,
therefore local creation of trustworthy reference values is
avoided and the system is enabled to take advantage of the
benefits coming along with a code signing approach (e.g.,
proof of origin, and signature revocation, which is also sup-
ported), even though restricted by the WoT paradigm. Such
solution is related to previous work [25], also based on
signed ELF binaries, relying on comparable principles for
run-time integrity protection.

Sand-boxing solutions such as introduced with JAVA
cover PKI based SW integrity protection during installation
and download scenarios and realize mitigation concepts dur-
ing run-time, but may be restricted due to an individual pro-
gramming language environment and due to individual sand-
box constraints. Sand-boxing is not only related to integrity
checking, but also may constrain program capabilities and
performance during execution. This may or may not be a
problem, depending on the application, but is limiting gener-
al applicability.

For reasons of completeness it should be mentioned that
there are also run-time protection methods known, which
make use of specific CPU level concepts, such as Intel's Sys-
tem Management Mode (SMM) (e.g., compare [26]). We do
not further discuss these in this paper, as they are too de-
pendent from processor capabilities (like the DRTM mech-

57

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

anisms, mentioned above) and thus are not ideal for generic
templates for SW integrity protection, we are aiming at. Of
course, it is well understood that mechanisms making use of
low level HW properties can achieve a higher protection
level - but usually at cost of flexibility and portability.

D. Autonomy and Remediation Aspects
Autonomous SW integrity protection and trust manage-

ment mechanisms are highly desirable, enabling a system to
take own, reliable decisions e.g., to deny sensitive services,
to boot to fail-safe-mode if a new SW release is defective or
to generate and transmit (or to store) signed incidence mes-
sages in case integrity violations are detected during run-time
checks. Autonomy decreases efforts in network and in-
creases security as a system knows about its own trust state,
before it connects to a network. Of course, this may be lim-
ited to attempted attacks, which can be detected before they
are effective and to non-persistent attacks, which can be
cleaned, e.g., by re-booting or re-installing, or to attacks,
which do not successfully affront and neutralize the integrity
protection mechanisms themselves.

Critical are situations where a large number of systems
are actually compromised by sudden attacks. For such cases
robust remediation mechanisms might be implemented,
which are resistant against certain classes of attack, so that
they cannot be smarted out in some way - or at least not too
easily. Such remediation mechanisms may require reliable,
autonomous local mechanisms and even interaction with
supporting network entities, assuring that affected systems
could be repaired securely from remote. The reasoning be-
hind is that in mobile networks, and in particular with the flat
architecture introduced in EPS there are a huge number of
systems in field, widely distributed and very often in se-
cluded areas. Any personnel to be sent out for emergency or
management services needs time and raises cost and efforts.
In some cases, e.g., for HeNBs, it might also be acceptable to
involve the hosting party (i.e., the user) into remediation ac-
tions, but this depends on the underlying trust model.

In particular, those attacks seem to be very precarious
that emerge from remote SW injection attacks occurring dur-
ing run-time. This is because they could be launched against
a large number of systems simultaneously, causing partial
outage of large network segments or even complete network
breakdown.

Clearly, autonomy and remediation mechanisms require
robust implementation, which might by quite expensive and
thus, efforts always have to be balanced by cost-efficiency
considerations.

E. Generalization
The above considerations may be very specific to ‘stand-

ardized’ requirements for integrity and trustworthiness of ex-
posed network elements such as eNBs and HeNBs. How-
ever, the mechanism applied should also be beneficial to de-
fend against attacks that may target or affect elements loc-
ated in a (more) secure domain. Particularly, this applies if
we want to exclude attacks that could be injected via the SW
delivery and installation chain. Therefore, for such broader
scope an important strategic goal is to re-use SWIP concepts
as well as the involved components and infrastructure at the
greatest possible extent, while efforts and changes in operat-
or networks should be minimized. Understandably, it is

hardly acceptable to apply (too many) different concepts for
different products, if this requires operator invests, be it for
organizational or operational measures or be it for technical
equipment. The ideal case would be that mechanisms for
managed SW integrity protection can smoothly be integrated
into existing nodes, protocols and do not require unnecessary
changes in standardization.

Consequently we aim at generalized and harmonized ap-
proaches for managed SW integrity protection. Such solu-
tions shall provide adequate security and shall be suited to
protect many other SW products in a mobile network (also
outside the scope of EPS), widely independent from architec-
tural aspects and from complex implementation details.

When thinking of SWIP for products in core network
(i.e., those residing in the security domain of a mobile oper-
ator) essentially we can concentrate on intended SW update
and SW delivery interfaces and processes, as mainly these
may offer chances for malicious intervention. On the other
hand, physical protection and tricky implementation issues
against local attacks may be of less importance there.

Complementing the above analysis, particularly the fol-
lowing requirements are relevant for generalization:

● Ensure that SW (that may be composed of different
components and data) has not been altered after creation
process. This includes accidentally infected SW as well
as any intentionally modified code, inserted into the SW
update, maintenance or delivery path.

● Identify that SW (and associated data) is coming from a
specific, authorized source (Proof of Origin).

● Verify that code is trustworthy and authorized for a spe-
cific purpose or target system. This may be expressed
implicitly (by SW package) or by explicit verification of
meta-data or attributes.

● Allow associating SW with unmodifiable directives and
privileges for code, memory and data usage, according
to the claims of an authoritative source.

● Support 'static' (before run-time) as well as 'dynamic’
(during run-time) protection, preferably based on the
same (cryptographic) measures and mechanisms.

F. Holistic View and Intended Use Cases for SWIP
Extending the conception of generalization a visionary

idea of SW integrity protection is shown in the Figure 2 be-
low. This holistic view reflects how SW may be used in dif-
ferent execution environments and in different operational
stages, starting with SW creation and delivery processes and

Figure 2. Holistic view on SWIP: SW in different operational stages

58

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

then passing through the possible usage modes and life-
cycles.

The major use cases for SWIP include SW verification

● after delivery (at point and time of acceptance); this
use case is relevant for scenarios where chiefly SW
delivery processes need to be protected from attacks
against SW, while it is shipped from the manufac-
turer to customers or to service personnel. In some
cases one-time verification may be sufficient and
after acceptance further protection is not needed.

● during installation; this use case requires SWIP
(verification) integration into a SW installation pro-
cess, which can performed locally (self-installation)
or by a remote installation server. Protecting down-
loaded SW (which is installed at run-time) or native
SW for virtual environments might also be included
here. In dependence of requirements for the installed
system it may be beneficial to combine SWIP with
directives for the installation process, e.g., on ver-
sioning or patching, on revocation or on invalidation
of previously installed SW.

● during the boot process; this use case (which typic-
ally requires active integration into a system's boot
architecture) corresponds to mechanisms addressed
earlier, when discussing approaches as introduced by
TCG standardization bodies. Essential characteristics
comprise the sequential dependency of several SW
modules being loaded and the local control taken
over the boot process.

● while it is stored in a file system, data base or in
flash memory; this use case actually corresponds to a
run-time verification scenario on storage level,
where SW may be continuously verified, be it peri-
odically or be it triggered by events created through
actions, which may affect the stored data. Typically,
such scenario may be effective if the status of an in-
stalled system must be checked over a long time, and
may be seen as a completion to the SW installation
use case. Note that the SW verified in the file system
may either be in use currently or not, or it may even
be stored in a repository.

● while it is executed in cache or CPU memory; this
use case again is a run-time scenario. In contrast to
the preceding use case, only active SW (i.e., such
SW which has been loaded into memory) is under
examination. In practice, this use case is the most
challenging one and many efforts must be spent for
efficient implementation.

In all cases, SWIP aims at checking whether SW (i.e., in-
variant parts of it, such as executable code or initial data) in
each operational stage has been modified, when compared to
the originally created reference SW. Depending on expecta-
tions on attack resilience, efforts and methodological com-
plexity may be very different.

While partially well known or even standardized indi-
vidual methods for different aspects of integrity protection
are available, in some areas this is still requiring fundamental
research. Particularly, SWIP is the more challenging the
more we aim to inspect a system during (long) execution
time and the deeper we look into a system's CPU memory

space. However, at the same time the achievable security and
trust-level will remarkably increase when moving from a
static view on system integrity towards a dynamic one (i.e.,
SW module loading and execution). In the context of mobile
networks the latter may become of significant importance,
regarding indispensable long-lasting trustworthy operation of
systems in field (e.g., operating several months per boot).

As conditions of target systems and SW environments
are varying, actually a huge number of product specific solu-
tions is required, in particular when confronted with the HW
and SW particularities of our systems (e.g., SW installation
and update processes, run-time environments and operating
systems) where the SW is verified and used.

Consequently, it is not surprising that currently a har-
monized, integrative approach is missing, which could cover
all the use cases above with a unified or adaptive method.
Nevertheless, this would be very beneficial and from the be-
ginning we should aim at unification and adaptability of
methods as far as possible and this particularly requires
identifying those aspects which are widely independent from
platform or implementation specific solutions.

The guiding principle of our approach is the cognition
that by applying certificate based SW signing schemes (the
manufacturer's) infrastructure efforts could be harmonized,
while we still have to accept remarkable differences for sys-
tem specific implementation and secure anchoring of trust
and verification mechanisms. Such infrastructure involves,
e.g., managing certificates, PKI extensions, signing mechan-
isms and entities, certificate policy guidelines and rules, key
management principles, approval work-flows, secure SW de-
velopment processes, data structures, conceptual templates,
common verification and measurement tools, and so on.

As this all could be provided by the manufacturer and to
a large extent could be driven by the products themselves or
by (product specific) network management components, im-
pacts on an operator's infrastructure could be kept minimal,
e.g., limited to manageable changes in existing mobile net-
work equipment.

III. SWIP PROCESSES AND TARGET SYSTEMS

In the following, we will propose and discuss strategies
and concepts to match the requirements and visions as intro-
duced above. Firstly, we consider processes as relevant for
SWIP and secondly, on a conceptual level (i.e., without ref-
erence to concrete network elements) we examine influences
of SWIP on target systems in the network environment.

A. SWIP Processes
For SW integrity the following four processes are essen-

tial and have to be realized for all the use cases mentioned:

(i) The protection process where the SW becomes ‘integ-
rity protected’, e.g., by applying cryptographic methods;

(ii) the verification process where it is checked (verified)
whether the protection has been broken or not;

(iii) the enforcement process where the SW is securely
stored, distributed, installed, or executed, following in-
structions that may be part of the protection paradigms;

(iv) infrastructure processes, which are required to enable
and support the others listed above.

59

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Ideally, protection (i) is applied as early as possible (i.e.,
directly after SW is created, tested, and released, e.g., in the
build environment). Verification (ii) and enforcement (iii)
are done as late as possible (i.e., just before the SW is used
or executed) and even better continuously as long as the SW
is installed (or is running). It is evident that these processes
are closely related to each other and must follow common
mechanisms and paradigms that may require information ex-
change among each other (e.g., keys for encryption or sign-
ing mechanism or trusted reference parameters for hash val-
ues). Preferably (for a manufacturer dominated approach) the
process (i) is executed in a secured domain at vendor side,
while the processes (ii) and (iii) are executed in the operator
network, but based on manufacturer-provided SW, key ma-
terial, credentials, and mechanisms implemented within net-
work elements. There may also be other constellations (e.g.,
where a system itself is responsible to run local protecting
processes (i)), but these are not discussed in this paper.

In addition to the above processes, preparatory and oper-
ative infrastructure support and management processes (iv)
are required, in particular to establish PKI and signing com-
ponents and to control key material and credentials (in case
SWIP is based on certificates) or to provide reliable refer-
ence values and trusted sources and secure management and
validation capabilities for these (if SWIP is based on pure
hash values or attestation principles).

Regarding harmonization certainly the focus lies on in-
frastructure impacts, but also the above processes (i, ii, iii)
would profit from a common methodological framework, as
involved tools and data structures to a large extent could be
made similar and adaptive.

B. Target Systems
We define a target system (TS) as the ‘consuming end-

point’ (the platform for which the SW is designed and which
hosts the execution environment where the SW is running).

Figure 3 shows a SWIP system where (ii), (iii), and par-
tially (iv) are shared between the TS and an extra, external
node, e.g., a verification server residing in the network
(NW). Into this category fall systems that

● implement trusted boot, following attestation principles
and TPM technology (both based on CRTM or on
DRTM);

● realize Integrity Measurement Architecture (IMA) [6], a
load-time extension using TPM attestation principles;

● act as monitoring systems interacting with network,
such as Tripwire, Afick, Samhain or also IMA;

● follow principles as applied with TCG’s trusted network
connect (TNC) [9].

As explained such use cases (when based on external val-
idation) may impose remarkable difficulties – regarding ap-
plied security paradigms and trust managements –, which are
costly to manage in a mobile network environment. Even if

these are not seen as our preferred solutions, some principles
could be used, if appropriate.

In Figure 4 the ideal case is shown, where (ii) and (iii) to
the greatest possible extent are assigned to the TS. This
would be the best solution regarding effort minimization for
the network (also regarding (iv) for setup and provisioning).
This category includes the following use cases for self-sub-
sistent SWIP-aware TSs, which are enabled to autonomously

● implement secure boot, doing verification and enforce-
ment during the start-up process, e.g., as introduced by
the Mobile Trusted Module (MTM) specification, issued
by TCG [7], [8], see Section IV;

● verify and enforce SW integrity at installation-time,
every time before a SW component is installed or stored
into a local SW base. Typically, this can be integrated in
installation systems, such as packet managers;

● verify and enforce SW integrity, each time a SW com-
ponent is loaded into system memory and then executed;

● self-monitor and verify SW while a system is running,
triggered periodically or by system events (e.g., file ac-
cess, socket activity, system call). Both, memory-images
or files could be checked by such monitoring process;

● … and only occasionally need additional support from
SW-repository (or an OAM server) for individual cases,
e.g., for autonomous SWIP related SW update pro-
cesses, for remediation or security management (e.g., re-
mote exchange of secrets, credentials, or of trust an-
chors).

Considering generalization also SWIP-unaware TS (see
Figure 5) are of interest, i.e., those where processes (ii), (iii),
and (iv) are completely treated outside a TS. SWIP then is
concentrated in network entities (such as operator side repos-
itories o-repos, e.g., an OAM or SW management system)
and the TS systems security architecture remains unaffected.
It is essential that there must be a strict trust relation between
the o-repos and the TS, which simply plays a passive role for
SWIP.

Such unaware TSs cannot protect themselves and must
fully rely on secure domains and on the network entities they

Figure 5. SWIP-unaware target system, supported by network

Figure 3. SWIP-aware target system, verified by network

Figure 4. SWIP-aware autonomous target system

60

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are connected to. It is obvious that such solutions cannot be
applied in insecure domains, unless some basic security,
such as for secure communication of raw data or SW is
provided (here the major use case is to protect the regular
SW delivery and update processes, managed by NW entities,
like o-repos).

It is evident that for the latter case, some of the targeted
use cases cannot be applied, but this might be acceptable in
accordance with the risk assessment and cost considerations
of involved network elements.

IV. CERTIFICATE BASED APPROACHES

As already implied earlier we are convinced that a frame-
work based on certificates and PKI entities would be most
suited to fulfill the requirements of managed SWIP for mo-
bile network equipment. In addition to autonomy aspects (as
explained in Sections II.D and III.B), we expect positive ef-
fects for generalization and harmonization (see Sections II.G
and II.F) as well as for vendor dominated governance prin-
ciples and the expectations we may have on security, regard-
ing the use cases and product-life cycle aspects as intro-
duced.

As an example in the following we discuss an existing
approach and make proposals for further improvements, be it
from methodological point of view, be it for implementation.

A. The MTM approach
As already mentioned in Section II.B an inspiring idea

has been proposed by TCG to assure trustworthiness for mo-
bile phones. Aligned with (basic) TPM paradigms the MTM
specification defines certificate based mechanisms for veri-
fying and running trusted software on mobile phones. The
new idea behind the MTM specification is to support secure
boot, allowing local verification (ii) and enforcement (iii)
during the boot process, which again may involve several
mutually dependent modules (i.e., to be loaded sequentially).
MTM introduces so-called RIM (Reference Integrity Metric)
certificates containing integrity measures and references to
public keys (assigned to so-called RIM_Auths), to verify a
complex certificate chain against a (e.g., built-in) root veri-
fication key. According to this, the MTM specification en-
ables a system to act autonomously, particularly to identify
and to verify downloaded SW, to perform proof of origin and
to take decisions in case of detected integrity violations.

As implied, MTMs can be built upon the TPM architec-
ture, but only need a subset of the TPM functionality. As
RIM certificates integrate measurement values (as specified
with TPM) - in addition to secure boot mechanisms - attesta-
tion protocols still can be applied, involving external entities
if needed.

Regarding SWIP there are many correlations between the
requirements for a mobile phone and managed SW integrity
protection for NEs within a network infrastructure as deman-
ded above. The certificate based integrity protection prin-
ciples of the MTM specification can be exploited and benefi-
cially be applied in the context of SWIP strategies and re-
lated trust concepts in a mobile network. Such ideas per-
fectly harmonize with the autonomous and generalized use
cases as depicted in Figure 4 and Figure 5, while manage-
ment support in network infrastructure can be kept at a min-
imal level (certificates are self-describing and attestation
might not stringently be required).

As further explained SWIP based on adapted MTM con-
cepts might very well support both, EPS security needs (as
specified with eNB or HeNB), as well as generalization as-
pects, as explained in Sections II.E-G. In Section IV.B we
propose required extensions or adaptations, taking the MTM
approach as an exemplary framework. Alternatively, we also
could found our concepts on another PKI / certificate based
method, but the MTM seems to be a suited start point and
might be 'easier' to extend, due to existing ideas on imple-
mentation in embedded systems (including TPM mechan-
isms underneath), to (multi-) vendor centric governance
schemes and to solutions for the 'secure boot' use case.

Note that additional local security requirements beyond
the scope of SWIP, e.g., related to uniqueness and ‘secure or
trusted environment’ (such as secure key management, stor-
age, and usage, and device authentication to prevent HW
cloning etc.) must also be fulfilled, but are not described in
all details by the solutions below. However, we give some
hints on the relevant implementation aspects.

B. Adaptations of the MTM idea
We consider useful adaptations of the initial MTM idea

to extend and improve SWIP methods for mobile network
elements:

1) Focusing on secure boot
When applying secure boot, the additional value of at-

testation may be rather limited as compared to the organiza-
tional efforts and equipment to be invested in network infra-
structure. Based on self-validation it must be assured that a
system connects to a network only if the boot-time verifica-
tion was successful. Otherwise, the system shall deny any in-
teraction with the network, except, e.g., for OAM purposes.
As a precondition a highly secure root of trust (e.g., non
over-writable verification key) must exist. Further secure
key-storage (e.g., read and write protection for private au-
thentication keys) and secure usage for such keys in a secure
(execution) environment must be guaranteed. The secure
boot process is part of the establishment of such a secure en-
vironment.

The value of an additional attestation is questionable (if
done to reveal a system's trust state during long-time opera-
tion), but it has some relevance if we just want to know if a
new SW version successfully has been installed. See Section
V for alternative approaches, which avoid involving a com-
plete and difficult to manage TPM infrastructure and deploy-
ment.

2) Implementation aspects
Just as with TPM any security heavily depends on a se-

cure implementation of a CRTM, in a similar way this ap-
plies to the MTM. The initial ‘immutable’ code in the MTM
case is called ‘Root of Trust for Verification / Enforcement’
(RTV / RTE). Based on a risk assessment it has to be de-
cided in each case separately which foundation for the secur-
ity of RTV / RTE and the root verification keys has to be se-
lected. In many cases (e.g., regarding remote SW attacks) it
might be sufficient if these data are not over-writable or are
only mutable via strong authorization mechanisms that can-
not be surmounted via instructions executed by a CPU.

While the specification allows integration of TPM hard-
ware underneath, the MTM concept is also intended for sep-
arate firmware or SW implementation. For reasons explained

61

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

above, this is of particular interest for systems that cannot
simply make use of commercial TPM hardware solutions.

However, in all cases 'sufficient protection' has to be pro-
vided for using and managing local secrets and credentials,
as well as for sensitive processes (e.g., for local measuring
and reporting). Apart from TPM or comparable crypto-HW,
simpler ASICs or CPU-level integration are effective to
achieve higher security levels against pertinacious attacks.
See related proposals in Section V.

Evidently, for some scenarios (e.g., where we do not ex-
pect highly motivated and perfectly skilled attackers) it
might be sufficient to make use of efficient SW integration
techniques like kernel-space protection, system level attack
mitigation or virtualization for implementation. In practice,
accurate shaping of these mechanisms must be based on an
individual threat and risk analysis

However, due to the focus of this paper (which concen-
trates on the conceptual approach) we do not step into details
hereto.

3) Extending certificate concepts and use cases
When thinking of generalization for SWIP, the following

modification of the MTM principles is gaining importance:
While RIM certificates are perfectly tailored to implement
secure boot, they are not designed to support the needs of
other SWIP use cases (e.g., SW installation, run-time aspects
or SW delivery, as well as bundling with extended authoriza-
tion concepts). A more flexible and adaptive structure in-
stead of RIM certificates (which actually is not a certificate
in PKI sense, but 'standardized' signed data for a specific
context) is required, which is adaptive to the needs of a spe-
cific SWIP use case or to the particularities of a SW product.

In Figure 6 we introduce a generic Signed Object (SO) to
substitute RIM certificates. SO preferably might be imple-
mented as XML signed objects to gain profit of the power
and flexibility of XML and the associated XML signing
framework [10], but alternatively, CMS [21] implementa-
tions could be taken as well.

 Apart from verification information (e.g., intermediate
certificates of signing entities) or other public data, a SO
consists of one or more signed Measurement Objects (MO),
which essentially contain information, which is measured
and gathered by the SW protection process (i). Such inform-
ation may also contain meta-data (descriptors, circumstanti-
ating the MO) and measured objects, which are representat-
ives of referenced objects (e.g., hash values of one or more
SW modules). As shown in Figure 7, such MO meta-data
may include

● Object descriptors, specifying the measured objects to-
gether with references to associated policies.

● Measurement descriptors, specifying the format and
syntax of the MO and of MO elements.

● The Measured Objects (MdO) themselves; either this
can be hash values of referenced objects (e.g., a SW
module or archive) or even embedded data, such as a
small script or configuration information. Also, other
existing external MdO or MO information might be ref-
erenced, supporting a hierarchical approach (e.g., an
archive together with individually protected files stored
in this archive).

● Entity descriptors, specifying the responsible entities
(e.g., company), together with legal implications (e.g.,
disclaimers or warranty clauses).

● Crypto descriptors, specifying the applied cryptography,
e.g., hashing and signing algorithms.

● Policies, which express directives according to claims of
the authoritative (signing) source. Policies may include
explicit rules for verification and enforcement processes
or they may describe general dependencies between SW
modules (including compatibility information or rules
for ‘sequential loading’ as used with RIM certificates).
Another scope of policies could be expiry or revocation
of individual SW packages (which need not necessarily
imply revocation of a signing key and the associated
certificate). Polices can be static ('do not load module x
together with y') or conditional ('if the target platform
CPU is ABC, do not load driver Z'), i.e., may depend on
information, time, or the state of the system to which
they are applied.

● As such SOs are much more flexible and expressive
than RIM certificates, they perfectly match with the re-
quirements and visions as stated in Section II. Depend-
ing on the meaning of the descriptors and in particular
of the associated, static or conditional policies, very dif-
ferent rules can be stated to influence and to control the
processes in the SWIP endpoint (e.g., an OAM server)
or within a trusted (i.e., verifying and enforcing) TS it-
self.

In addition to directives and conditions for SW usage,
policies may express directives for the usage of MOs them-
selves, e.g., by specifying governance rules that have to be

Figure 7. Measurement Objects (MO), specifying measured data

Figure 6. Generic Signed Objects (SO), describing the protection context

62

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

applied for a specific object (such as invalidation, deletion,
upgrade, required patches, etc.).

The syntax and semantic of such SO may be associated
with a company or with a specific use case or product being
managed by an individual responsible party. It should be em-
phasized again that SOs may cover the full meaning of RIM
certificates as a specific sub-case.

4) Governance principles
While the native MTM specification is not mandatorily

aligned with X.509 and general PKI principles, we recom-
mend to adapt the MTM governance principles to a (poten-
tially vendor controlled) X.509 compliant PKI infrastructure.
This only applies to the so-called RIM_Auths and the upper
hierarchy up to the root CA. It should be noted that this part
of the MTM specification could be easily integrated into
X.509 elements and could be adapted to be governed via spe-
cific PKI policies, according to the needs of an individual
manufacturer. The MTM specifications mention this, but do
not specify any details.

V. HW LEVEL TRUST IMPROVEMENTS

In the following Sections, we discuss HW level improve-
ments increasing security and flexibility of trusted systems
like the ones alluded above.

A. Authorized SW Update
The first method locally enables authorized updating to

new versions of protected SW and data that only after suc-
cessful verification will be written to non-volatile storage,
e.g., Flash EEPROM or hard disk.

In real systems run-time attacks enabled by vulnerable
SW (e.g., exploits) are likely to happen. However, solutions
for boot time protection cannot not directly provide preven-
tion against (later) run-time attacks, which intend to take
control over a system and to run with malicious functional-
ity. Certain exploits could even try to prevent reliable and
verifiable SW updates of the system, which for the future
could leave the system with an old, flawed SW version. This
would hold the device in a vulnerable state where the old,
vulnerable SW version is still booted during next secure
boot, and still accepted as a valid version, even if the new
SW version should already be installed. Therefore an unac-
ceptable security leak may arise.

Moreover, it must be prevented that a more sophisticated
SW or even local attack could change the content of any per-
sistent trusted (i.e., already verified) code.

For external entities (i.e., regarding secure connection to
a network) it is essential that either reliable attestation or

one-time proof of a successful secure SW update process can
be established.

In the following, we describe a solution that can be estab-
lished without the need to build up and to maintain an attest-
ation infrastructure and to deal with TPM integration. In ad-
dition to authorization and autonomous integrity protection
the proposed solution provides a mechanism against specific,
persistently implanted or repeated run-time attacks (against
required SW updates).

The solution uses Flash EEPROMs protected by an Au-
thorized Flash Update Process (AFUP) depicted in Figure 8,
communicating via the system CPU. The control part of this
process (the AFUP controller) can be implemented via dedi-
cated hardware (e.g., an ASIC), which by design is the only
unit that controls flash programming (at least for critical
parts of the flash memory), and could not be affected by
defined classes of attacks (e.g., CPU driven SW exploits or
even certain physical attacks). For verification it can rely on
‘roots of trust’ residing in the flash memory.

In its fundamental operation, AFUP uses pre-configured
secrets and credentials for a protected communication with
an external requester, which initiates the communication by
sending an update request (1). The delivered SW (that may
also be the CRTM or RTV/RTE SW) is integrity protected
(i.e., accompanied by signed objects SO) and is only updated
(written into flash memory) upon a successful verification by
the AFUP controller (2). On success the AFUP controller
sends a confirmation (3) to the external requester which now
can be sure that after a next boot the system is updated to an
‘invulnerable’ SW version and can be trusted again.

In Figure 9, an implementation example is shown detail-
ing the AFUP communication relying on a certificate based
security protocol. According to this the AFUP controller is
personalized with a (well protected) private key and a built-
in, write protected certificate list (this list could be stored,
e.g., in the protected memory), which initially have to be im-
planted by a secured process, e.g., during manufacturing.
The certificate list might contain the manufacturer's root CA
(Certificate Authority) certificate under which certificates for
a SW provider are issued, denoted here as SW CertSWP.

In accordance with the scheme shown in Figure 8, the
communication is started by a SW update request (1), sent by
an OAM server, which typically is located in the operator

Figure 8. Authorized Flash Update Process (AFUP)

Figure 9. Example for AFUP communication protocol

63

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

network. This request may contain the new SW itself or may
also provide a link to a location where it can be fetched from.
The SW itself is protected by a signature, issued by the SW
provider SWP and the associated certificate, which -in this
example- is part of the update message .

To prevent from replay attacks and to assure a trusted
source the OAM server adds a nonce and signs the message,
which can be verified by a root certificate, which is stored in
the AFUP's certificate list depending on the key material the
OAM server is provisioned with. In the simplest case this
could be the manufacturer's root CA certificate, too. But also
an operator root CA certificate is imaginable.

Depending on the result of the verification and update
process (2) enforced by the AFUP an update response mes-
sage (3) is signed by the AFUP using its built-in private key
PrKAFUP. This also includes the nonce and additional para-
meters to assure freshness and to support this process by oth-
er, optional means (e.g., logging and confirming exact ac-
tions that have been taken by the AFUP, reporting of failure
events, or even inserting time stamps if these can be
provided).

Thus, the OAM server knows the exact state of the
AFUP as well of the SW version stored in the network ele-
ment and can continue with further service actions (which
may or may not be transmitted over protected protocols, de-
pending on the security relevance of such action), for in-
stance by initiating a reboot process, as indicated by (4).

Note that such mechanism may involve (and support) ad-
ditional security and key management processes, which im-
ply, e.g., a secure time base (or at least monotone time coun-
ters) for expiry control or for revocation or secure processes
to exchange the root CA certificates or private keys, in case
this is needed. Also encryption of the SW transfer can be
used if confidentiality of the SW is required. Realization and
implementation of such issues is a matter of a refined secur-
ity security specification, which is not further discussed here.

If not done during the reliable boot phase, initiation of
the AFUP depends on the HW-SW function split and the
CPU involvement for message transport, which at run-time
may be influenced by SW attacks (potentially causing denial
of service).

To prevent such influence the security design might rely
on a more sophisticated realization of the AFUP process, in
combination with autonomous basic communication capabil-
ities. This would enable reliable enforcement of SW updates
at any time, even in case the network element is comprom-
ised by dangerous attacks (e.g., remote SW attacks that how-
ever, cannot be directed against the AFUP mechanism if
isolated by well designed logic). Accordingly, the AFUP
supports remote remediation measures, which cannot be cir-
cumvented by such attacks.

B. Protected CPU / Flash-Memory integration
The solution presented above needs separate logic for the

AFUP mechanism and in its simpler shape (without
autonomous communication) it is mainly targeted to assure
SW integrity through a (re-)boot process. As an alternative,
we can also think of a more flexible realization, where the
AFUP is realized by protected firmware being processed by
the system CPU.

In the following, we present initial ideas for realization:
For security reasons a suited CPU or CPU core is integrated

together with an isolated Flash EEPROM, e.g., using Mul-
ti-chip modules or dedicated ASICs, as shown in Figure 10.
The flash memory might only be accessible in a privileged
CPU mode P1 (e.g., controlled by an MMU or by some lo-
gic).

Trusted functions can only be invoked via a protected
API (e.g., by SW-interrupt), assuring that the CPU runs in P1
mode with specific security settings (e.g., indivisible opera-
tions, cleared CPU registers etc.). In P1 mode the CPU ex-
ecutes the AFUP process in accordance with the methods
and protocols introduced in Figures 8 and 9. Neither extern-
al, nor remotely injected SW, nor a local attacker could read
or modify any content of the protected flash memory, unless
the integrated CPU-Memory device is physically analyzed,
requiring extremely high efforts.

In addition to supporting secure boot and the AFUP
mechanism this approach could also be used to allow secure
run-time integrity protection. To that purpose, trusted API
functions could be designed to run checks over parts of the
memory content (declared to be invariant), during system op-
eration. Moreover, 'executable' parts of the memory content
could be checked and reloaded - periodically or based on
events -, in order to wipe out potential hostile modifications
that could have been injected during long time operation.

By expanding the above idea on the AFUP functionality
for boot-time and run-time checking (of loaded SW) the
functionality could also be extended to securely launch any
security code (such as a crypto-algorithms) - or even small
parts of sensitive general purpose code - at run-time, after
successful validation of integrity and authorization. This
would be an improvement over the DRTM idea, only allow-
ing for trusted measurements on launched code. Such 'au-
thorized SW' could (at run-time) be installed into the trusted
memory and externally made available via an extended or
updated API.

In addition, such SW could be associated with policies
for usage and memory control (e.g., implemented as signed
MMU instructions, which could not be changed by 'normal'
user-land SW). This would enable a SW security designer to
instantiate individual shielded areas of memory, for instance
to read- or write protect memory areas being private to a cer-

Figure 10. Flexible, protected CPU/Flash memory integration

64

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tain SW module (e.g., to contain derived session keys or
even secrets, which could be imported in encrypted form).

VI. PKI AND INFRASTRUCTURE ASPECTS

The presented SWIP concept essentially can be built on
(proprietary) Signed Objects SO and on X.509 certificates
assigned to signing entities. A X.509 compliant PKI hier-
archy might be established, beneficially in manufacturer en-
vironment, together with manufacturer specific governance
schemes for SWIP. The following observations may substan-
tiate such reasoning:

PKI governance is executed essentially by applying
policies associated with the PKI infrastructure, with regard to
key and credential management, as well as by organizational
control over the involved entities. In accordance with the
principles mentioned in Section II.B and E, the conditions
for SW signing necessarily must be aligned with the needs
for products in mobile network, where each manufacturer in-
dividually is responsible for. One impact is the long-term us-
age (which may be 20 years and more), requiring, e.g., root
CA certificates with long expiry periods and related security
parameters and capabilities of involved keys. Despite long
validity periods there must be an overlapping scheme of val-
id root CA certificates, which also implies secure exchange
of these for products in field for a very long time. Typically
this requires issuing of cross certificates as a base for (auto-
mated) secure exchange processes, be it via CMP [22] or be
it by local means, and sufficient attack protection of the veri-
fying endpoint storing the trust anchor.

Control over the root CA certificates in verifier compon-
ents is a closely related issue. It must be assured that exclus-
ively such root CA certificates (as well as all intermediate
certificates) are accepted, which are compliant with the man-
ufacturer's certificate policies. Such requirements are diffi-
cult to fulfill with 'public CAs' (but not impossible, depend-
ing on contractual conditions), which typically are designed
to meet the requirement of distributed developer scenarios
for products with shorter life cycles than those in network
environment. Moreover, each product individually may set
different conditions for validity (of the SO), for revocation
and invalidation, and for SW management and versioning, as
well as for the exact mechanisms and rules for verification
and enforcement.

In addition to requirements for daily use, it also has to be
assured that for exceptional cases (such as 'loss of key mater-
ial' due to defects or in case of security incidents) disaster
and recovery plans are in place and in emergency situations
these can be realized very quickly. Even if such incidents
(hopefully) are very unlikely to happen, customers may re-
quire related features.

Within the manufacturer's development infrastructure
protected signing entities have to be established assuring
proper usage of associated private keys to sign the SOs for
the different products, in accordance with a secure approval
work-flow. Such approval work-flow is required to avoid
misuse of signing processes for other purposes than those in-
tended by the manufacturer for an individual product. This
not only involves personal responsibilities, but also security
control such as by appropriate authentication and authoriza-
tion principles.

Altogether, and in particular with regard to harmoniza-
tion and generalization (i.e., the different use cases that

should be covered) it seems to be the only economic (and
perhaps technical) way that manufacturers themselves fully
control the environmental conditions and policies for the
SWIP infrastructure.

Following such principles the entire SWIP approach is
self-contained and may be remotely managed without requir-
ing new specific network infrastructure nodes, neither for
modified MTM concepts for secure boot, nor for generalized
use cases, such as SW installation or secure SW delivery.

Instead, processes running in TS, OAM or SW manage-
ment systems might be adapted appropriately. We expect
that this could be done in a manufacturer specific way,
without the need to standardize commonly agreed solutions.

Note that with the presented approach also protection for
SW coming from third parties could be integrated, applying
suited extensions for protection, verification, enforcement or
infrastructure processes, e.g., by a OEM sided sub-CA, by a
manufacturer signed policy that allows a second root , by re-
signing SW, or by cross signing of root CAs.

VII. CONCLUSION AND FUTURE WORK

The authors feel that above concepts open a promising
way to cover many use cases for SWIP with a harmonized,
certificate based approach. It is suited both to cover require-
ments coming from 3GPP standardization, as well as those
that in general increase SW security and reliability for SW
products in mobile networks.

One essential benefit is that the same PKI and signing in-
frastructure could be re-used for many different use cases
(e.g., secure boot, SW installation, or integrity monitoring),
mainly determined by shaping content, syntax and semantic
of SOs and by secure anchoring of adapted verification and
enforcement components.

While key points are identified and promising ideas on
HW level improvements are tangible (beyond the scope of
the native AFUP functionality, as introduced in Section
V.B), further research is required, in particular, to solve se-
curity issues emerging from cost effective implementation
and from long-term operation of network elements.

In practice, trade-offs have to be balanced between
achievable security level and efforts for additional HW or
CPU modifications, which should be portable among differ-
ent platforms and CPU types. In our future research work in
ASMONIA these issues will be examined, also including
virtualization principles. This will go in line with further de-
tailing methods and mechanisms for smooth integration of
SWIP management concepts into mobile network elements
and security infrastructure.

VIII. ACKNOWLEDGMENTS

Parts of the work presented in this article has been sup-
ported by the ASMONIA research project, partially funded
by the German Federal Ministry of Education and Research
(BMBF).

The authors acknowledge the incitations and assistance
through the ASMONIA consortium and also like to thank
their colleagues at Nokia Siemens Networks for the valuable
ideas, discussions, and comments contributing to this work.

65

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Schäfer and W.-D. Moeller, “Strategies for Managed Software
Integrity Protection - Managing SW Protection and Trust in Mobile
Networks”, Proceedings SECURWARE 2010, Fourth International
Conference on Emerging Security Information, Systems and
Technologies; Venice, Italy, July 2010.

[2] 3GPP TS 33.401, 3GPP System Architecture Evolution (SAE),
Security architecture; http://www.3gpp.org/ftp/Specs/html-
info/33401.htm, last accessed: January 2011.

[3] 3GPP TS 33.320, Security of Home Node B (HNB) / Home evolved
Node B (HeNB); http://www.3gpp.org/ftp/Specs/html-
info/33320.htm, last accessed: May 2011.

[4] Trusted Computing Group (TCG), TPM Main Specification, Parts 1-
3, Specification Version 1.2, Level 2, Revisions 103, July 2007.

[5] B. Kauer, “OSLO: Improving the security of Trusted Computing”;
16th USENIX security symposium, proceedings, pp. 6-10, August
2007; http://os.inf.tu-dresden.de/papers_ps/kauer07-oslo.pdf, last
accessed: May 2011.

[6] R. Sailer, X. Zhang, T.Jaeger, and L. van Doorn, “Design and
Implementation of a TCG-based Integrity Measurement
Architecture”. Proceedings of 13th Usenix Security Symposium, pp.
223-238, San Diego, California, August, 2004.

[7] Trusted Computing Group (TCG), Mobile Reference Architecture,
specification version 1.0, revision 1, June 2007.

[8] Trusted Computing Group (TCG), Mobile Trusted Module (MTM)
Specification, version 1.0, revision 6, June 2008.

[9] Trusted Network Connect; http://www.trustedcomputinggroup.org/
developers/trusted_network_connect, last accessed: May 2011.

[10] W3C Recommendation, “XML Signature Syntax and Processing
(Second Edition)”, June 2008; http://www.w3.org/TR/xmldsig-core,
last accessed: May 2011.

[11] 3GPPP (3rd Generation Partnership Project), http://www.3gpp.org/,
ast accessed: May 2011.

[12] J. E. Ekberg and M. Kylänpää, “Mobile Trusted Module (MTM) - an
introduction”, Nokia Research Center Helsinki, Finland, NRC-TR-
2007-015, 2007.

[13] Intel® Trusted Execution Technology (Intel® TXT), Software
Development Guide, Measured Launched Environment Developer’s
Guide, December 2009 (in particular, see Section 1.2.1 therein).

[14] ASMONIA, “Attack analysis and Security concepts for MObile
Network infrastructures, supported by collaborative Information
exchAnge”, BMBF sponsored project; since September 2010,
http://www.asmonia.de/, last accessed: May 2011.

[15] ITU-T Recommendation X.509, “Information technology – Open
systems interconnection – The Directory: Public-key and attribute
certificate frameworks“, 2008-11.

[16] Online article, “Using Md5 checksums”,
http://www.openoffice.org/dev_docs/using_md5sums.html, last
accessed: May 2011.

[17] Online article, “Maximum RPM: Taking the Red Hat Package
Manager to the Limit”, Chapter 17. Adding PGP Signatures to a
Package, http://www.rpm.org/max-rpm/s1-rpm-pgp-signing-
packages.html, last accessed: May 2011.

[18] Entrust Certificate Services, “Java Code Signing”,User Guide
http://www.entrust.net/ssl-resources/pdf/ECS_Java_Code_Signing_
Guide.pdf , November 2010, last accessed: May 2011.

[19] Online Article, “SymbianSigned”,
http://wiki.forum.nokia.com/index.php/Category:Symbian_Signed,
last accessed: May 2011.

[20] K. E. Sanders, SANS Institute, InfoSec Reading Room,
Understanding Lotus Notes Security; Execution Control List (ECL)
Settings, http://www.sans.org/reading_room/whitepapers/commerical/
understanding-lotus-notes-security-execution-control-list-
eclsettings_785, last accessed: May 2011.

[21] Cryptographic Message Syntax (CMS), IETF document, Network
Working Group, September 2009; http://tools.ietf.org/html/rfc5652,
last accessed: May 2011.

[22] Certificate Management Protocol (CMP), IETF document, Network
Working Group, September 2005; http://tools.ietf.org/html/rfc4210,
last accessed: May 2011.

[23] R. Wichmann, “The Samhain Host Integrity Monitoring System”,
Samhain User Manual, 2002-2009; http://www.la-samhna.de/
samhain/MANUAL-2_3.pdf, last accessed: May 2011 .

[24] A. Apvrille, D. Gordon, S. Hallyn, M. Pourzandi, and V. Roy,
“DigSig Novelties”, Libre Software Meeting 2005 – Security Topic,
slides, July 4-9 2005.

[25] L. Catuogno and I. Visconti, “An Architecture for Kernel-Level
Verification of Executables at Run Time”, The Computer Journal,
Oxford Press, Vol. 47, no. 5, pp. 511-526, September 2004;
also: http://www.dia.unisa.it/~luicat/publications/tcj04.pdf, last
accessed: May 2011.

[26] T. Schluessler, H. Khosravi, P. Rajagopal, R. Sahita, G.
Nagabhushan, and U. Savagaokar, “OS Independent Run-Time
System Integrity Services”, Corporate Technology Group, Intel
Corporation, 2005, see http://www.thefengs.com/wuchang/work/
courses/cs592_spring2007/SystemIntegrityServices.pdf, last
accessed: May 2011.

[27] ITU-T Recommendation X.500, “Information technology – Open
Systems Interconnection – The Directory: Overview of concepts,
models and services “, 2008-11.

66

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

