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Abstract—This paper presents research results on SW security 
for  network  elements.  Our  investigations  contribute  to  the 
ongoing ASMONIA project, which is focusing on collaborative 
approaches and on protection and warning mechanisms in 4G 
networks.  This work is dedicated to examine specific aspects 
thereof, concentrating on software integrity protection (SWIP) 
to securely manage SW products in mobile networks. Based on 
an  analysis  of  3GPP  standardization  requirements  and  of 
existing approaches for integrity protection, solution concepts 
are proposed and discussed to meet the identified needs. These 
aim at harmonized approaches for a number of different use 
cases.  Particular  account  is  taken  of  keeping  infrastructure 
efforts as small as possible, both in operator network as well as 
in manufacturer domain. The proposed solutions are targeting 
improvements  to  integrate  and  establish  efficient  trust 
mechanisms  into  mobile  network elements  and management 
systems. 

Keywords-Software  integrity  protection;  secure  execution  
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I.  INTRODUCTION

Software  (SW)  security  assurance  has  many  facets, 
spread over the entire product life cycle. It has to prevent at-
tacks, arising from maliciously modified SW and associated 
data, determining a product’s behavior. 

In  the following,  the term  SW may include executable 
code as well as any configuration information, scripts, data, 
or meta-data that might be protected together with the SW. 
Roughly we could split  SW security issues into two huge 
areas, namely (1) to specify and to create a SW product so 
that it matches given security policies and (2) to assure that 
in a target system only original SW can be used. The former 
demands  a  series  of  secure  SW  development  processes 
(which are not further discussed here) and organizational ef-
forts, assuring that SW is free of conceptual flaws, vulnerab-
ilities, and back-doors. The latter is to assure that  after SW 
creation unwanted modifications (be it by hostile intent or 
inadvertently) are prevented or at least will be detected. We 
concentrate on this aspect also including measures to provide 
trustworthy hardware (HW) and SW co-design solutions.

Depending  on  contracts  for  commercial  products  SW 
manufacturers are liable for the SW quality and potentially 

also for damages and incidents arising from (avoidable) se-
curity leaks. Apart from negative impacts of incidents on a 
manufacturers  brand and  on customer  satisfaction  there  is 
imperative need for identification and removal of such flaws, 
for  mitigation  and  for  recovery.  Altogether  this  requires 
trustworthy SW management and protection. 

Focusing  on products  for  mobile  access  and  core  net-
works,  we give an insight  into balanced strategies  on SW 
protection measures that on the one hand are required by mo-
bile network standardization and on the other hand generally 
ought to be applied to assure product reliability and trustwor-
thiness as well as to protect SW assets. This publication de-
tails  the  aspects  addressed  in  earlier  work  [1],  providing 
more room for  discussion of  requirements  and of existing 
and proposed solutions. Starting with a requirements analysis 
and examining existing approaches in this paper innovative 
concepts  are  derived  that  beneficially  enable  to  apply  the 
same security infrastructure (in manufacturer domain) to dif-
ferent  use  cases  for  SW  integrity  protection  (see  Section 
II.F), while efforts in operator domain can be kept on minim-
al level. 

While many of the strategies and principles addressed by 
our research work may also be applicable to User Equipment 
(UE) this is not targeted in this paper. But, note that our con-
tribution is closely related to and further supported by the 
German BMBF sponsored ASMONIA [14] project, where a 
wider context is envisaged.  The project is focusing on col-
laborative protection and warning systems for 4G networks. 
In addition to the network centric view as presented in this 
paper, (among other issues) SW integrity protection for mo-
bile user equipment also will be researched by the consorti-
um, targeting the needs, capabilities, implementation, and in-
tegration aspects of mobile phones. 

II. ANALYSIS OF SW INTEGRITY PROTECTION 
NEEDS IN MOBILE NETWORKS

We first examine related security requirements in mobile 
networks as stated by 3GPP standardization and then we de-
rive more general security requirements, based on an analys-
is of extended aspects for integrity protection.

A. Requirements related to 3GPP Standardization
In evolution of 3GPP (3rd Generation Partnership Project) 

[11]  standards  the  upcoming security  architectures  strictly 
demand local security capabilities. 
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In particular, in EPS (Evolved Packet System, see Figure 
1, for an example) context requirements are stated for secure  
execution-environments  (specific  for  trusted  parts  of  eN-
odeBs (eNB) [2]) or trusted-environments (TrE, specific for 
Home-eNodeBs (HeNB) [3]). These arise due to the nature 
of the EPS security architecture (which, e.g., implies termin-
ating of security relations between user equipment and net-
work and storing of session and authentication keys in EPS 
base stations) and the attack-prone exposition of such base 
stations also in public areas, outside the security domain(s) 
of an operator.

3GPP security requirements include demands for SW in-
tegrity checks,  e.g.,  to be applied during secure boot pro-
cesses whereas any room is left for realization alternatives. 
As related solutions (if mandatory) have to be implemented 
in future network products, there is urgent need to identify 
and to develop efficient methods for trust establishment and 
management. Essentially, these go back to reliable mechan-
isms for measuring, for verification, and for enforcement of 
associated directives for SW installation, loading, and usage.

Specifically,  regarding  SW  integrity  [2]  demands  that 
'The eNB shall use authorized data/software', 'Integrity pro-
tection of  software transfer  towards the eNB shall  be en-
sured'  (clause 5.3.2, for eNB setup and configuration) and 
regarding  the  secure  environment  definition  (clause  5.3.5) 
that 'The secure environment shall support the execution of  
sensitive  parts  of  the  boot  process',  'The  secure  environ-
ment's integrity shall be assured',  and 'Only authorised ac-
cess shall be granted to the secure environment, i.e. to data  
stored and used within,  and to functions executed  within'. 
Obviously,  authorizing access to an execution environment 
denotes that any SW, which is brought into it and launched 
for execution must be targeted to an eNB and must come 
from an authorized source,  which implies proof of  origin. 
Typically,  this  involves  trustworthy  boot  processes,  each 
time a eNB is started, but also applies to any SW update that 
has to be made during the life-cycle of such product.

When looking into security requirements for HeNBs, we 
find in [3] related statements (in clause 5.1.2), explicitly de-
manding 'The TrE shall be built from an irremovable, HW-
based root of trust by way of a secure boot process...', which 
'shall include checks of the integrity of the TrE performed by  
the root of trust. Only successfully verified components shall  
be loaded or started..' and 'shall proceed to verify other com-
ponents of the H(e)NB (e.g., operating system and further  

programs) that are necessary for trusted operation of  the  
H(e)NB'. 

Moreover, it is required that the HeNB is enabled to act 
autonomously as it is stated with 'The integrity of a compon-
ent is verified by comparing the result of a measurement ...  
to the trusted reference value. If these values agree, the com-
ponent is successfully verified and can be started' and thus 
needs to be securely provisioned with trusted reference val-
ues, as e.g., expressed with 'The TrE shall securely store all  
trusted reference values at all times' and 'The TrE shall de-
tect un-authorized modifications of the trusted reference val-
ues'. Further, according to clauses 7.1 and 6.1 in [3], a HeNB 
must support autonomous validation methods 'If the device  
integrity check according to clause 6.1 failed, the TrE shall  
not give access to the sensitive functions using the private  
key  needed  for  H(e)NB  device  authentication  with  the  
SeGW',  preventing that  a  malicious device (by self-check) 
anyhow can connect to the mobile network. 

As any trust is based on self-validation processes (which 
implicitly may also apply for the eNB), very high security 
expectations are seen for any implementation thereof.

B. Existing methods for SW integrity Protection
In  the  following,  we  examine  available  approaches  to 

support  SW integrity protection and identify weak aspects 
and open issues from a mobile network point of view.

1) TPM based boot control
Existing methods for usual  IT systems, such as known 

with TCG (Trusted Computing Group) standards (PC-trust-
worthiness with local ownership concept) cannot be conver-
ted easily to network elements and to existing 3GPP operator 
infrastructures. In particular, methods based on TPM (Trus-
ted Platform Module) paradigms [4] have to be considered 
very carefully. On the one hand a clear, indisputable value of 
TPMs (or  comparable  crypto  hardware)  is  that  these  may 
provide sufficient protection for storing secrets and for secur-
ity  operations  using  such  secrets.  This  involves  using  the 
built-in  crypto  algorithms directly  and exclusively without 
requiring  external  CPU cryptographic  operations,  e.g.,  for 
network element authentication. On the other hand the TPM 
attestation concept  and its  implementation (TPM as a co-
processor)  only  provide  partial  security.  There  are  at-
tack-windows before attestation is completed and the TPM is 
not  designed  to  parry  certain  physical  attacks,  e.g.,  those 
modifying the CRTM (Core Root of Trust for Measurement) 
in ROM or manipulating the TPM interface during the boot 
process. Doing so a skilled local attacker could inject faked 
PCR (Platform Configuration Register) settings – but at least 
has to gain access to the TPM command interface in order to 
control it. 

By nature, the attestation approach is lacking autonomy 
capabilities. Due to missing local reference values for valida-
tion, local systems cannot autonomously determine and take 
decisions on authenticity and integrity of any SW loaded and 
measured during boot. In addition, particular account needs 
to be taken to the fact that managing attestation values over 
an  entire  SW  product  life  cycle  and  for  many  different 
products is a challenge in its own. 

Moreover, when exploiting extended TPM security cap-
abilities - such as sealing - this imposes a lot of SW and trust 
management efforts and infrastructure invests, which are not 
easy to handle. For instance, re-sealing (e.g., of parts of the 

Figure 1. 3GPP EPS Architecture (partial view)
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An interesting aspect in this paperboot images or of internal 
secrets) to a new state would require individual provisioning 
per  platform (i.e., due to authorization per TPM and tpm-
Proof dependency) and could not be deployed independently 
from a target platform's security settings.

When looking to 3GPP standardization so far there are 
no discussions and indications of TPM integration into a mo-
bile  network  environment.  Such  implementation  specific 
properties and manufacturer restrictions could hardly be jus-
tified and would imply technology-dependent solutions. In 
best case it is imaginable that for a few very specific network 
elements such impacts could be accepted but in no case as a 
template for a broader scope.

 As a consequence, integration of TPM/attestation based 
integrity  protection  may  require  remarkable  proprietary 
changes and efforts in the infrastructure, which are difficult 
to motivate and to sell - apart from the fact that establish-
ment of necessary extensions and provisioning of trust man-
agement information needs to be solved by convincing tech-
nological means. In addition, regarding implementation the 
required  changes  in  existing  HW  (embedded  platforms, 
boards, ASICs) have to be balanced with other design, per-
formance, and cost criteria.  Often such trade-offs render it 
quite difficult or even impossible to simply implant commer-
cial  off-the-shelf  (COTS)  TPM chips  into  a  complex  and 
highly  specialized  HW  /  SW  platform,  which  is  mainly 
tailored to meet feature-requirements while security efforts 
may be capped by defined cost margins.

2) MTM based boot control
In 2004, the TCG initiated the Mobile Phone Working 

Group (MPWG) to meet use cases and requirements of mo-
bile phones. Based on TPM principles MTM (Mobile Trus-
ted Module) specifications have been elaborated and made 
publicly available [7], [8], and are clearly in scope of mobile 
phone industries [12]. In contrast to TPM, the MTM is not 
explicitly meant as a separate chip specification, rather than 
it  leaves room for different implementations, also as firm-
ware or even as protected SW. The MTM concept can be 
built on a subset of TPM functionality, but comes with own 
mechanisms for trustworthy boot. 

An interesting aspect in this paper is to examine how and 
what MTM ideas could be transferred to network elements 
and  how  these  could  be  extended.  Advantageously,  the 
MTM allows remote management of authorized SW updates 
by introducing new governance schemes relying on several 
new types of certificates. As a newness, when compared to 
TPM principles, the certificate based control (to only execute 
mandatorily signed and verified software) enables a system 
to autonomously take decisions during the boot process. Due 
to its  supposed attractiveness  the MTM concept  if  further 
discussed in Section IV.A.

3) SW integrity protection as used for IT systems
Apart  from  the  specifications  introduced  by  the  TCG 

there are several  other  individual technologies  known,  de-
veloped and widely used by commercial SW publishers as 
well  as  by open  source  communities.  In  contrast  to  TCG 
(which  firstly  focused  on  boot-time  integrity)  earlier  ap-
proaches mainly concentrated on SW integrity for SW distri-
bution and installation processes. Regarding the applied se-
curity management we roughly we can distinguish three dif-
ferent types of approaches: Those relying on cryptographic 
'check-sums' (pure hash values as e.g., applied by some open 

source communities, such as OpenOffice [16]), those using 
code  signatures  based  on  Web-Of-Trust  principles  (e.g., 
PGP/GPG based code signing as used with RPM [17]), and 
those integrating with PKI principles (e.g., as established for 
JAVA [18] or Symbian Signed [19]). 

Concepts based on pure 'check-sums' suffer from the dif-
ficulty to obtain valid reference values from trusted sources 
(no inherent proof of origin) and to reliably store these over a 
potentially long time – thus, these reference data are always 
susceptible to man-in-the-middle (MITM) attacks. Moreover, 
extended security control (e.g., regarding expiry, revocation, 
self-validation) is rather limited or simply not possible. Note 
again, that also the TPM paradigm does not natively solve 
these issues! 

Considering  mechanisms  relying  on  Web-Of-Trust 
(WoT) principles, one may complain that WoT based meth-
ods do not match very well with demands for vendor driven 
governance and security control over network elements. As a 
matter of fact also WoT inherently does not reliably exclude 
MITM attacks. Everybody could create self-signed signing 
certificates and keys,  as there is no mandatory registration 
authority established. So, trust always lies in the eyes  of a 
believer. Apart from this deficiency a WoT usually is neither 
based  on  enforceable  hierarchies  nor  on  expressive  and 
standardized certificates. Moreover, WoT principles do not 
support effective and reliable revocation schemes as usually 
there  are  many  trust  relations  and  unclear  governance 
schemes involved (no public policies, no CRLs) and no 'offi-
cial' mechanisms or entities for enforcement are available. 

Of course, for user centric scenarios, individual products, 
or platforms (e.g., Open Source Linux distributions, based on 
RPM or similar package management systems) such mech-
anisms are beneficial. But as we are looking for generic tem-
plates for remotely manageable SWIP mechanisms for mo-
bile network equipment, we do not deeply analyze these ap-
proaches in this paper. This does not mean that we generally 
dislike or ignore such concepts, but we have to apply them in 
the right context and scenarios.

From a vendor's perspective - who should be able to fully 
control the security capabilities and integrity of its products - 
potential difficulties may arise from inadequate fundamental 
security building blocks and in particular from unsuited key 
and trust management strategies and weak control mechan-
isms. This clearly argues in favor of PKI based approaches, 
which are compliant to accepted standards and security best 
practices  and provide well  proven governance  and control 
principles (e.g.,  as defined in X.500 [27] and in particular 
with X.509 [15]). 

While many of the PKI-based known signing concepts 
(JAVA, Microsoft's  Authenticode,  Symbian  Signed,  IBM's 
Lotus Notes, etc.) apply efficient and partially even compar-
able  mechanisms,  they  are  not  directly  applicable  to  the 
needs of manageable  SWIP for mobile network equipment 
(which  usually  consists  of  a  number  of  very  different 
products  and  technologies).  On  the  one  hand  such  ap-
proaches usually are specific  for one particular  product or 
technology (e.g., operating system, programming language, 
controlling sand-box, run-time environment, web- or IT-ap-
plications,  vendor specific UE-equipment,  etc.) and on the 
other hand they are mostly targeted to support security re-
quirements of distributed developer communities. 

In most cases they rely on outsourced PKI entities (certi-
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ficate and registration authorities) and on verification com-
ponents, which often allow importing of arbitrary SW pub-
lisher certificates and accept umpteen root certification au-
thorities (CA). If a user or administrator decides that these 
are trustworthy he can change the trust management settings 
by local administration. Vice versa, preconfigured trust-an-
chors  and  credentials  could be  removed on user  decision. 
Consequently,  in  addition  to  local  control,  such  systems 
chiefly target to enable tracking and juridical inquiry of mali-
cious attackers, which by hostile intent previously have ap-
plied for SW publisher keys and certificates.

Some approaches combine code signing with explicit au-
thorization concepts at application level. For instance, this is 
realized by different types of certificates (e.g., using 'capabil-
ities' as introduced with Symbian Signed), which are associ-
ated with classes of  API calls with appropriate  scope and 
privileges.  Adherence to such assignments can be checked 
by signing entities (before issuing a valid signature for an ob-
ject under test), as well as by the devices themselves during 
verification or execution. To give more examples, mechan-
isms used by JAVA or IBM's Lotus Notes [20] control ap-
plication privileges via sand-boxing approaches, but use loc-
al administration to set policies and rules for execution.

C. Run-time Aspects
When looking beyond the scope of boot-time or installa-

tion-time  integrity  checking  additional  security  improve-
ments are needed to provide attack resilience during long-
term operation. These have to be faced as many network ele-
ments  (in  particular  threatened  eNBs,  HeNBs)  may  be 
booted or updated only rarely. Then they have to be active 
for weeks or months, whilst the trust in boot-time checks is 
the more diminished the longer a system is running. Poten-
tially this is  caused by attacks occurring during operation, 
applying both for local, manual manipulations as well as for 
remote SW attacks, which cannot be prevented by boot pro-
tection alone.  Consequently,  there  is  urgency for  methods 
and mechanisms assuring SW integrity at run-time at least 
for critical security operations. Such critical operations (e.g., 
as needed for key and credential management, for authentic-
ation,  or  for  verification  processes)  require  trusted  code, 
which can only run if before execution it is proven to be in-
teger and to stem from an authoritative source.

Run-time  integrity  issues  are  partly  covered  by  TPM 
based  improvements.  For  instance,  with DRTM (Dynamic 
Root of Trust for Measurement) mechanisms are known to 
allow lately measuring and launching SW in a TPM compli-
ant execution environment [4], [5]. The DRTM mechanisms 
assure that code, which is to be started, is measured properly 
(e.g., Intel is using authenticated code modules for this pur-
pose  [13])  and  then  executed,  but  does  not  prevent  from 
loading untrusted code. Such approach requires TPM based 
attestation (with all the hurdles mentioned above) in combin-
ation with dedicated CPUs, which have to support specific 
instructions and bus cycles. While an external challenger is 
enabled to prove what has been executed (during run-time) 
on a DRTM equipped system, the DRTM operation itself is 
not able to verify any manufacturer code prior to execution. 
Again we miss an autonomous mechanism enabling a local 
machine to enforce rejection of manipulated code, prevent-
ing  execution  of  any  hostile  operations  at  any  time. 
Moreover, the selection of DRTM enabled CPUs may be in 

conflict with other CPU selection criteria to best match the 
needs of the specialized embedded architectures of a mobile 
network element.

The  IMA  approach  [6]  is  an  interesting  extension  of 
TPM concepts, introducing TPM protected load time integ-
rity  measurements  of  file-based  executables,  libraries  and 
data, which are aggregated into a series of TPM signed lists. 
As with the native TPM principles, IMA relies on attestation 
paradigms,  requiring external  entities  for  validation.  Apart 
from lack of autonomy the major problem of such approach 
again seems to be the need to maintain a TPM specific infra-
structure as well as the efforts to interpret and validate a po-
tentially huge amount of attestation data, which is reported 
on request. Such data has to be 'known (i.e., must be securely 
provisioned)' externally or must be re-calculated (where re-
ferring to any sequence of loading is not required in the IMA 
case).

There are other approaches such as Tripwire or Samhain 
[23] following alternative principles based on file-level in-
tegrity checks, which do not rely on a TPM infrastructure. 
They come with own associated, administrated client/server 
architectures and self-created, protected databases with 'trus-
ted'  hash  values  for  validation.  The  run-time  checks  are 
triggered  periodically  or  based  on  events,  while  checking 
modules are protected at kernel level, which may be suffi-
cient for some attacks scenarios. A particular risk may be the 
fact that trusted reference values may not (or not only)  be 
created inside a secure developer environment at manufac-
turer side, but in the operational domain itself, which is not 
only an organizational, but also a liability issue.

It is worth to mention the DigSig proposal [24] represent-
ing a load-time integrity checking solution, which relies on 
PGP signed ELF binaries (as provided via the Debian BSign 
utility), but is applicable to Linux systems only (due to de-
pendency on Linux kernel integration and on ELF files and 
tools). The charm of such approach is the fact that signatures 
are embedded into ELF binaries, thus no separate data base 
is required. Moreover, signatures can be created externally, 
therefore  local  creation  of  trustworthy  reference  values  is 
avoided and the system is enabled to take advantage of the 
benefits  coming along with a code signing approach (e.g., 
proof of origin, and signature revocation, which is also sup-
ported), even though restricted by the WoT paradigm. Such 
solution  is  related  to  previous  work  [25],  also  based  on 
signed  ELF binaries,  relying  on comparable  principles  for 
run-time integrity protection.

Sand-boxing  solutions  such  as  introduced  with  JAVA 
cover PKI based SW integrity protection during installation 
and download scenarios and realize mitigation concepts dur-
ing run-time, but may be restricted due to an individual pro-
gramming language environment and due to individual sand-
box constraints. Sand-boxing is not only related to integrity 
checking,  but also may constrain program capabilities and 
performance during execution.  This may or may not be a 
problem, depending on the application, but is limiting gener-
al applicability.

For reasons of completeness it should be mentioned that 
there  are  also  run-time  protection  methods  known,  which 
make use of specific CPU level concepts, such as Intel's Sys-
tem Management Mode (SMM) (e.g., compare [26]). We do 
not further discuss these in this paper,  as they are too de-
pendent from processor capabilities (like the DRTM mech-
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anisms, mentioned above) and thus are not ideal for generic 
templates for SW integrity protection, we are aiming at. Of 
course, it is well understood that mechanisms making use of 
low level  HW properties  can  achieve  a  higher  protection 
level - but usually at cost of flexibility and portability.

D. Autonomy and Remediation Aspects
Autonomous SW integrity protection and trust manage-

ment mechanisms are highly desirable, enabling a system to 
take own, reliable decisions e.g., to deny sensitive services, 
to boot to fail-safe-mode if a new SW release is defective or 
to generate and transmit (or to store) signed incidence mes-
sages in case integrity violations are detected during run-time 
checks.  Autonomy  decreases  efforts  in  network  and  in-
creases security as a system knows about its own trust state, 
before it connects to a network. Of course, this may be lim-
ited to attempted attacks, which can be detected before they 
are  effective  and  to  non-persistent  attacks,  which  can  be 
cleaned,  e.g.,  by re-booting  or  re-installing,  or  to  attacks, 
which do not successfully affront and neutralize the integrity 
protection mechanisms themselves.

Critical are situations where a large number of systems 
are actually compromised by sudden attacks. For such cases 
robust  remediation  mechanisms  might  be  implemented, 
which are resistant against certain classes of attack, so that 
they cannot be smarted out in some way - or at least not too 
easily.  Such remediation mechanisms may require reliable, 
autonomous  local  mechanisms  and  even  interaction  with 
supporting network entities,  assuring that  affected systems 
could be repaired securely from remote. The reasoning be-
hind is that in mobile networks, and in particular with the flat 
architecture introduced in EPS there are a huge number of 
systems  in  field,  widely  distributed  and  very  often  in  se-
cluded areas. Any personnel to be sent out for emergency or 
management services needs time and raises cost and efforts. 
In some cases, e.g., for HeNBs, it might also be acceptable to 
involve the hosting party (i.e., the user) into remediation ac-
tions, but this depends on the underlying trust model.

In  particular,  those attacks  seem to be very precarious 
that emerge from remote SW injection attacks occurring dur-
ing run-time. This is because they could be launched against 
a  large  number of  systems simultaneously,  causing partial 
outage of large network segments or even complete network 
breakdown.

Clearly, autonomy and remediation mechanisms require 
robust implementation, which might by quite expensive and 
thus,  efforts always have to be balanced by cost-efficiency 
considerations.

E. Generalization
The above considerations may be very specific to ‘stand-

ardized’ requirements for integrity and trustworthiness of ex-
posed network elements such as eNBs and HeNBs.  How-
ever, the mechanism applied should also be beneficial to de-
fend against attacks that may target or affect elements loc-
ated in a (more) secure domain. Particularly, this applies if 
we want to exclude attacks that could be injected via the SW 
delivery and installation chain. Therefore, for such broader 
scope an important strategic goal is to re-use SWIP concepts 
as well as the involved components and infrastructure at the 
greatest possible extent, while efforts and changes in operat-
or  networks  should  be  minimized.  Understandably,  it  is 

hardly acceptable to apply (too many) different concepts for 
different products, if this requires operator invests, be it for 
organizational or operational measures or be it for technical 
equipment.  The ideal  case  would  be  that  mechanisms for 
managed SW integrity protection can smoothly be integrated 
into existing nodes, protocols and do not require unnecessary 
changes in standardization.

Consequently we aim at generalized and harmonized ap-
proaches for managed SW integrity protection. Such solu-
tions shall provide adequate security and shall be suited to 
protect many other SW products in a mobile network (also 
outside the scope of EPS), widely independent from architec-
tural aspects and from complex implementation details.

When thinking  of  SWIP for  products  in  core  network 
(i.e., those residing in the security domain of a mobile oper-
ator) essentially we can concentrate on intended SW update 
and SW delivery interfaces and processes, as mainly these 
may offer chances for malicious intervention. On the other 
hand, physical  protection and tricky implementation issues 
against local attacks may be of less importance there.

Complementing the above analysis, particularly the fol-
lowing requirements are relevant for generalization:

● Ensure  that  SW  (that  may  be  composed  of  different 
components and data) has not been altered after creation 
process. This includes accidentally infected SW as well 
as any intentionally modified code, inserted into the SW 
update, maintenance or delivery path.

● Identify that SW (and associated data) is coming from a 
specific, authorized source (Proof of Origin).

● Verify that code is trustworthy and authorized for a spe-
cific purpose or target  system. This may be expressed 
implicitly (by SW package) or by explicit verification of 
meta-data or attributes.

● Allow associating SW with unmodifiable directives and 
privileges for code, memory and data usage, according 
to the claims of an authoritative source.

● Support  'static'  (before  run-time) as well  as  'dynamic’ 
(during  run-time)  protection,  preferably  based  on  the 
same (cryptographic) measures and mechanisms.

F. Holistic View and Intended Use Cases for SWIP 
Extending the conception of  generalization a visionary 

idea of SW integrity protection is shown in the Figure 2 be-
low. This holistic view reflects how SW may be used in dif-
ferent  execution environments  and in  different  operational 
stages, starting with SW creation and delivery processes and 

Figure 2. Holistic view on SWIP: SW in different operational stages
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then  passing  through  the  possible  usage  modes  and  life-
cycles.

The major use cases for SWIP include SW verification

● after delivery (at point and time of acceptance); this 
use case is relevant for scenarios where chiefly SW 
delivery processes need to be protected from attacks 
against SW, while it is shipped from the manufac-
turer to customers or to service personnel. In some 
cases  one-time  verification  may  be  sufficient  and 
after acceptance further protection is not needed.

● during  installation;  this  use  case  requires  SWIP 
(verification) integration into a SW installation pro-
cess, which can performed locally (self-installation) 
or by a remote installation server. Protecting down-
loaded SW (which is installed at run-time) or native 
SW for virtual environments might also be included 
here. In dependence of requirements for the installed 
system it may be beneficial to combine SWIP with 
directives for the installation process,  e.g.,  on ver-
sioning or patching, on revocation or on invalidation 
of previously installed SW.

● during the boot process; this use case (which typic-
ally requires active integration into a system's boot 
architecture)  corresponds to mechanisms addressed 
earlier, when discussing approaches as introduced by 
TCG standardization bodies. Essential characteristics 
comprise the sequential dependency of several  SW 
modules  being  loaded  and  the  local  control  taken 
over the boot process.

● while it  is stored in a file system, data base or in 
flash memory; this use case actually corresponds to a 
run-time  verification  scenario  on  storage  level, 
where SW may be continuously verified, be it peri-
odically or be it triggered by events created through 
actions, which may affect the stored data. Typically, 
such scenario may be effective if the status of an in-
stalled system must be checked over a long time, and 
may be seen as a completion to the SW installation 
use case. Note that the SW verified in the file system 
may either be in use currently or not, or it may even 
be stored in a repository.

● while it is executed in cache or CPU memory; this 
use case again is a run-time scenario. In contrast to 
the preceding use case,  only active SW (i.e.,  such 
SW which has been loaded into memory) is under 
examination. In  practice,  this use case is  the most 
challenging one and many efforts must be spent for 
efficient implementation. 

In all cases, SWIP aims at checking whether SW (i.e., in-
variant parts of it, such as executable code or initial data) in 
each operational stage has been modified, when compared to 
the originally created reference SW. Depending on expecta-
tions on attack resilience, efforts and methodological  com-
plexity may be very different. 

While  partially  well  known or  even  standardized  indi-
vidual methods for different  aspects of integrity protection 
are available, in some areas this is still requiring fundamental 
research.  Particularly,  SWIP  is  the  more  challenging  the 
more we aim to inspect  a  system during (long)  execution 
time and the deeper we look into a system's CPU memory 

space. However, at the same time the achievable security and 
trust-level  will  remarkably  increase  when  moving  from  a 
static view on system integrity towards a dynamic one (i.e., 
SW module loading and execution). In the context of mobile 
networks the latter may become of significant  importance, 
regarding indispensable long-lasting trustworthy operation of 
systems in field (e.g., operating several months per boot).

As conditions of target  systems and SW environments 
are varying, actually a huge number of product specific solu-
tions is required, in particular when confronted with the HW 
and SW particularities of our systems (e.g., SW installation 
and update processes, run-time environments and operating 
systems) where the SW is verified and used. 

Consequently,  it  is  not  surprising that  currently a  har-
monized, integrative approach is missing, which could cover 
all the use cases above with a unified or adaptive method. 
Nevertheless, this would be very beneficial and from the be-
ginning  we  should  aim  at  unification  and  adaptability  of 
methods  as  far  as  possible  and  this  particularly  requires 
identifying those aspects which are widely independent from 
platform or implementation specific solutions. 

The guiding principle of our approach is the cognition 
that by applying certificate based SW signing schemes (the 
manufacturer's)  infrastructure efforts  could be harmonized, 
while we still have to accept remarkable differences for sys-
tem specific  implementation  and secure anchoring of trust 
and  verification  mechanisms.  Such infrastructure  involves, 
e.g., managing certificates, PKI extensions, signing mechan-
isms and entities, certificate policy guidelines and rules, key 
management principles, approval work-flows, secure SW de-
velopment processes,  data structures,  conceptual templates, 
common verification and measurement tools, and so on. 

As this all could be provided by the manufacturer and to 
a large extent could be driven by the products themselves or 
by (product specific) network management components, im-
pacts on an operator's infrastructure could be kept minimal, 
e.g., limited to manageable changes in existing mobile net-
work equipment.

III. SWIP PROCESSES AND TARGET SYSTEMS

In the following, we will propose and discuss strategies 
and concepts to match the requirements and visions as intro-
duced above. Firstly, we consider processes as relevant for 
SWIP and secondly, on a conceptual level (i.e., without ref-
erence to concrete network elements) we examine influences 
of SWIP on target systems in the network environment.

A. SWIP Processes
For SW integrity the following four processes are essen-

tial and have to be realized for all the use cases mentioned:

(i) The  protection process where the SW becomes ‘integ-
rity protected’, e.g., by applying cryptographic methods; 

(ii) the  verification process  where  it  is  checked (verified) 
whether the protection has been broken or not;

(iii) the  enforcement process  where  the  SW  is  securely 
stored, distributed, installed, or executed, following in-
structions that may be part of the protection paradigms; 

(iv) infrastructure processes,  which are required  to enable 
and support the others listed above. 
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Ideally, protection (i) is applied as early as possible (i.e., 
directly after SW is created, tested, and released, e.g., in the 
build  environment).  Verification  (ii)  and  enforcement  (iii) 
are done as late as possible (i.e., just before the SW is used 
or executed) and even better continuously as long as the SW 
is installed (or is running). It is evident that these processes 
are closely related to each other and must follow common 
mechanisms and paradigms that may require information ex-
change among each other (e.g., keys for encryption or sign-
ing mechanism or trusted reference parameters for hash val-
ues). Preferably (for a manufacturer dominated approach) the 
process (i) is executed in a secured domain at vendor side, 
while the processes (ii) and (iii) are executed in the operator 
network, but based on manufacturer-provided SW, key ma-
terial, credentials, and mechanisms implemented within net-
work elements. There may also be other constellations (e.g., 
where a system itself is responsible to run local protecting 
processes (i)), but these are not discussed in this paper.

In addition to the above processes, preparatory and oper-
ative infrastructure support and management processes (iv) 
are required, in particular to establish PKI and signing com-
ponents and to control key material and credentials (in case 
SWIP is based on certificates) or to provide reliable refer-
ence values and trusted sources and secure management and 
validation capabilities for these (if SWIP is based on pure 
hash values or attestation principles). 

Regarding harmonization certainly the focus lies on in-
frastructure impacts, but also the above processes (i, ii, iii) 
would profit from a common methodological framework, as 
involved tools and data structures to a large extent could be 
made similar and adaptive.

B. Target Systems
We define a target system (TS) as the ‘consuming end-

point’ (the platform for which the SW is designed and which 
hosts the execution environment where the SW is running).

Figure 3 shows a SWIP system where (ii), (iii), and  par-
tially (iv) are shared between the TS and an extra, external 
node,  e.g.,  a  verification  server  residing  in  the  network 
(NW). Into this category fall systems that

● implement trusted boot, following attestation principles 
and  TPM  technology  (both  based  on  CRTM  or  on 
DRTM);

● realize Integrity Measurement Architecture (IMA) [6], a 
load-time extension using TPM attestation principles;

● act  as  monitoring  systems  interacting  with  network, 
such as Tripwire, Afick, Samhain or also IMA;

● follow principles as applied with TCG’s trusted network 
connect (TNC) [9].

As explained such use cases (when based on external val-
idation) may impose remarkable difficulties – regarding ap-
plied security paradigms and trust managements –, which are 
costly to manage in a mobile network environment. Even if 

these are not seen as our preferred solutions, some principles 
could be used, if appropriate.

In Figure 4 the ideal case is shown, where (ii) and (iii) to 
the  greatest  possible  extent  are  assigned  to  the  TS.  This 
would be the best solution regarding effort minimization for 
the network (also regarding (iv) for setup and provisioning). 
This category includes the following use cases for self-sub-
sistent SWIP-aware TSs, which are enabled to autonomously

● implement  secure boot, doing verification and enforce-
ment during the start-up process, e.g., as introduced by 
the Mobile Trusted Module (MTM) specification, issued 
by TCG [7], [8], see Section IV;

● verify  and  enforce  SW  integrity  at  installation-time, 
every time before a SW component is installed or stored 
into a local SW base. Typically, this can be integrated in 
installation systems, such as packet managers;

● verify and enforce SW integrity, each time a SW com-
ponent is loaded into system memory and then executed;

● self-monitor and verify SW while a system is running, 
triggered periodically or by system events (e.g., file ac-
cess, socket activity, system call). Both, memory-images 
or files could be checked by such monitoring process;

● … and only occasionally need additional support from 
SW-repository (or an OAM server) for individual cases, 
e.g.,  for  autonomous  SWIP  related  SW  update  pro-
cesses, for remediation or security management (e.g., re-
mote  exchange  of  secrets,  credentials,  or  of  trust  an-
chors).

Considering generalization also SWIP-unaware TS (see 
Figure 5) are of interest, i.e., those where processes (ii), (iii), 
and (iv) are completely treated outside a TS. SWIP then is 
concentrated in network entities (such as operator side repos-
itories  o-repos, e.g.,  an OAM or SW management system) 
and the TS systems security architecture remains unaffected. 
It is essential that there must be a strict trust relation between 
the o-repos and the TS, which simply plays a passive role for 
SWIP.

Such unaware TSs cannot protect themselves and must 
fully rely on secure domains and on the network entities they 

Figure 5.  SWIP-unaware target system, supported by network

Figure 3. SWIP-aware target system, verified by network

Figure 4.  SWIP-aware autonomous target system
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are connected to. It is obvious that such solutions cannot be 
applied  in  insecure  domains,  unless  some  basic  security, 
such  as  for  secure  communication  of  raw  data  or  SW is 
provided (here the major use case is to protect the regular 
SW delivery and update processes, managed by NW entities, 
like o-repos).

It is evident that for the latter case, some of the targeted 
use cases cannot be applied, but this might be acceptable in 
accordance with the risk assessment and cost considerations 
of involved network elements.

IV. CERTIFICATE BASED APPROACHES

As already implied earlier we are convinced that a frame-
work based on certificates and PKI entities would be most 
suited to fulfill the requirements of managed SWIP for mo-
bile network equipment. In addition to autonomy aspects (as 
explained in Sections II.D and III.B), we expect positive ef-
fects for generalization and harmonization (see Sections II.G 
and II.F) as well as for vendor dominated governance prin-
ciples and the expectations we may have on security, regard-
ing  the  use  cases  and  product-life  cycle  aspects  as  intro-
duced.

As an example in the following we discuss an existing 
approach and make proposals for further improvements, be it 
from methodological point of view, be it for implementation.

A. The MTM approach
As already mentioned in Section II.B an inspiring idea 

has been proposed by TCG to assure trustworthiness for mo-
bile phones. Aligned with (basic) TPM paradigms the MTM 
specification defines certificate based mechanisms for veri-
fying and running trusted software on mobile phones. The 
new idea behind the MTM specification is to support secure 
boot, allowing local  verification  (ii)  and  enforcement  (iii) 
during the boot process,  which again may involve several 
mutually dependent modules (i.e., to be loaded sequentially). 
MTM introduces so-called RIM (Reference Integrity Metric) 
certificates containing integrity measures and references to 
public keys (assigned to so-called RIM_Auths), to verify a 
complex certificate chain against a (e.g., built-in) root veri-
fication key. According to this, the MTM specification en-
ables a system to act autonomously, particularly to identify 
and to verify downloaded SW, to perform proof of origin and 
to take decisions in case of detected integrity violations.

As implied, MTMs can be built upon the TPM architec-
ture,  but only need a subset  of the TPM functionality.  As 
RIM certificates integrate measurement values (as specified 
with TPM) - in addition to secure boot mechanisms - attesta-
tion protocols still can be applied, involving external entities 
if needed.

Regarding SWIP there are many correlations between the 
requirements for a mobile phone and managed SW integrity 
protection for NEs within a network infrastructure as deman-
ded  above.  The certificate  based  integrity  protection  prin-
ciples of the MTM specification can be exploited and benefi-
cially be applied in the context of SWIP strategies and re-
lated  trust  concepts  in  a  mobile  network.  Such ideas  per-
fectly harmonize with the autonomous and generalized use 
cases as depicted in Figure 4 and Figure 5, while manage-
ment support in network infrastructure can be kept at a min-
imal  level  (certificates  are  self-describing  and  attestation 
might not stringently be required).

As further explained SWIP based on adapted MTM con-
cepts might very well support both, EPS security needs (as 
specified with eNB or HeNB), as well as generalization as-
pects, as explained in Sections II.E-G. In Section IV.B we 
propose required extensions or adaptations, taking the MTM 
approach as an exemplary framework. Alternatively, we also 
could found our concepts on another PKI / certificate based 
method, but the MTM seems to be a suited start point and 
might be 'easier' to extend, due to existing ideas on imple-
mentation  in  embedded  systems  (including  TPM mechan-
isms  underneath),  to  (multi-)  vendor  centric  governance 
schemes and to solutions for the 'secure boot' use case.

Note that additional local security requirements beyond 
the scope of SWIP, e.g., related to uniqueness and ‘secure or 
trusted environment’ (such as secure key management, stor-
age,  and  usage,  and  device  authentication  to  prevent  HW 
cloning etc.) must also be fulfilled, but are not described in 
all details by the solutions below. However, we give some 
hints on the relevant implementation aspects.

B. Adaptations of the MTM idea
We consider useful adaptations of the initial MTM idea 

to extend and improve SWIP methods for mobile network 
elements:

1) Focusing on secure boot
When applying  secure boot, the additional value of at-

testation may be rather limited as compared to the organiza-
tional efforts and equipment to be invested in network infra-
structure. Based on self-validation it must be assured that a 
system connects to a network only if the boot-time verifica-
tion was successful. Otherwise, the system shall deny any in-
teraction with the network, except, e.g., for OAM purposes. 
As a  precondition a highly secure  root  of  trust  (e.g.,  non 
over-writable  verification  key)  must  exist.  Further  secure 
key-storage (e.g.,  read and write protection for private au-
thentication keys) and secure usage for such keys in a secure 
(execution)  environment  must  be  guaranteed.  The  secure 
boot process is part of the establishment of such a secure en-
vironment. 

The value of an additional attestation is questionable (if 
done to reveal a system's trust state during long-time opera-
tion), but it has some relevance if we just want to know if a 
new SW version successfully has been installed. See Section 
V for alternative approaches, which avoid involving a com-
plete and difficult to manage TPM infrastructure and deploy-
ment.

2) Implementation aspects
Just as with TPM any security heavily depends on a se-

cure implementation of a CRTM, in a similar way this ap-
plies to the MTM. The initial ‘immutable’ code in the MTM 
case is called ‘Root of Trust for Verification / Enforcement’ 
(RTV / RTE). Based on a risk assessment it has to be de-
cided in each case separately which foundation for the secur-
ity of RTV / RTE and the root verification keys has to be se-
lected. In many cases (e.g., regarding remote SW attacks) it 
might be sufficient if these data are not over-writable or are 
only mutable via strong authorization mechanisms that can-
not be surmounted via instructions executed by a CPU.

While the specification allows integration of TPM hard-
ware underneath, the MTM concept is also intended for sep-
arate firmware or SW implementation. For reasons explained 
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above, this is of particular interest for systems that cannot 
simply make use of commercial TPM hardware solutions.

However, in all cases 'sufficient protection' has to be pro-
vided for using and managing local secrets and credentials, 
as well as for sensitive processes (e.g., for local measuring 
and reporting). Apart from TPM or comparable crypto-HW, 
simpler  ASICs  or  CPU-level  integration  are  effective  to 
achieve  higher  security levels  against  pertinacious attacks. 
See related proposals in Section V. 

Evidently, for some scenarios (e.g., where we do not ex-
pect  highly  motivated  and  perfectly  skilled  attackers)  it 
might be sufficient to make use of efficient SW integration 
techniques like kernel-space protection, system level attack 
mitigation or virtualization for implementation. In practice, 
accurate shaping of these mechanisms must be based on an 
individual threat and risk analysis 

However, due to the focus of this paper (which concen-
trates on the conceptual approach) we do not step into details 
hereto.

3) Extending certificate concepts and use cases
When thinking of generalization for SWIP, the following 

modification of the MTM principles is gaining importance: 
While RIM certificates  are perfectly tailored to implement 
secure boot, they are not designed to support the needs of 
other SWIP use cases (e.g., SW installation, run-time aspects 
or SW delivery, as well as bundling with extended authoriza-
tion concepts).  A more flexible and adaptive structure  in-
stead of RIM certificates (which actually is not a certificate 
in PKI sense,  but  'standardized'  signed  data for  a  specific 
context) is required, which is adaptive to the needs of a spe-
cific SWIP use case or to the particularities of a SW product.

In Figure 6 we introduce a generic Signed Object (SO) to 
substitute RIM certificates.  SO preferably might be imple-
mented as XML signed objects to gain profit of the power 
and  flexibility  of  XML  and  the  associated  XML signing 
framework  [10],  but  alternatively,  CMS [21]  implementa-
tions could be taken as well.

 Apart  from verification information (e.g.,  intermediate 
certificates  of  signing  entities)  or  other  public  data,  a  SO 
consists of one or more signed Measurement Objects (MO), 
which  essentially  contain  information,  which  is  measured 
and gathered by the SW protection process (i). Such inform-
ation may also contain meta-data (descriptors, circumstanti-
ating the MO) and measured objects, which are representat-
ives of referenced objects (e.g., hash values of one or more 
SW modules). As shown in Figure 7, such MO meta-data 
may include

● Object descriptors, specifying the measured objects to-
gether with references to associated policies.

● Measurement  descriptors,  specifying  the  format  and 
syntax of the MO and of MO elements.

● The  Measured  Objects  (MdO)  themselves;  either  this 
can  be  hash values  of  referenced  objects  (e.g.,  a  SW 
module or archive) or even embedded data, such as a 
small  script  or  configuration  information.  Also,  other 
existing external MdO or MO information might be ref-
erenced,  supporting  a  hierarchical  approach  (e.g.,  an 
archive together with individually protected files stored 
in this archive).

● Entity  descriptors,  specifying  the  responsible  entities 
(e.g.,  company),  together with legal  implications (e.g., 
disclaimers or warranty clauses).

● Crypto descriptors, specifying the applied cryptography, 
e.g., hashing and signing algorithms.

● Policies, which express directives according to claims of 
the authoritative (signing) source. Policies may include 
explicit rules for verification and enforcement processes 
or they may describe general dependencies between SW 
modules  (including  compatibility  information  or  rules 
for ‘sequential loading’ as used with RIM certificates). 
Another scope of policies could be expiry or revocation 
of individual SW packages (which need not necessarily 
imply revocation  of  a  signing key and the  associated 
certificate). Polices can be static ('do not load module x 
together with y')  or conditional ('if  the target  platform 
CPU is ABC, do not load driver Z'), i.e., may depend on 
information, time, or the state of the system to which 
they are applied.

● As such  SOs are  much  more  flexible  and  expressive 
than RIM certificates, they perfectly match with the re-
quirements and visions as stated in Section II. Depend-
ing on the meaning of the descriptors and in particular 
of the associated, static or conditional policies, very dif-
ferent rules can be stated to influence and to control the 
processes in the SWIP endpoint (e.g., an OAM server) 
or within a trusted (i.e., verifying and enforcing) TS it-
self. 

In addition to directives  and conditions for  SW usage, 
policies may express directives for the usage of MOs them-
selves, e.g., by specifying governance rules that have to be 

Figure 7.  Measurement Objects (MO), specifying measured data

Figure 6. Generic Signed Objects (SO), describing the protection context

62

International Journal on Advances in Security, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/security/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



applied for a specific object (such as invalidation, deletion, 
upgrade, required patches, etc.). 

The syntax and semantic of such SO may be associated 
with a company or with a specific use case or product being 
managed by an individual responsible party. It should be em-
phasized again that SOs may cover the full meaning of RIM 
certificates as a specific sub-case.

4) Governance principles
While the native MTM specification is not mandatorily 

aligned with X.509 and general PKI principles, we recom-
mend to adapt the MTM governance principles to a (poten-
tially vendor controlled) X.509 compliant PKI infrastructure. 
This only applies to the so-called RIM_Auths and the upper 
hierarchy up to the root CA. It should be noted that this part 
of  the  MTM specification  could  be  easily  integrated  into 
X.509 elements and could be adapted to be governed via spe-
cific PKI policies, according to the needs of an individual 
manufacturer. The MTM specifications mention this, but do 
not specify any details.

V. HW LEVEL TRUST IMPROVEMENTS

In the following Sections, we discuss HW level improve-
ments increasing security and flexibility of trusted systems 
like the ones alluded above.

A. Authorized SW Update
The first method locally enables authorized updating to 

new versions of protected SW and data that only after suc-
cessful  verification will  be written to non-volatile  storage, 
e.g., Flash EEPROM or hard disk.

In  real  systems run-time attacks enabled by vulnerable 
SW (e.g., exploits) are likely to happen. However, solutions 
for boot time protection cannot not directly provide preven-
tion  against  (later)  run-time attacks,  which  intend  to  take 
control over a system and to run with malicious functional-
ity.  Certain exploits could even try to prevent reliable and 
verifiable SW updates of the system, which for the future 
could leave the system with an old, flawed SW version. This 
would hold the device in a vulnerable state where the old, 
vulnerable  SW  version  is  still  booted  during  next  secure 
boot, and still accepted as a valid version, even if the new 
SW version should already be installed. Therefore an unac-
ceptable security leak may arise.

Moreover, it must be prevented that a more sophisticated 
SW or even local attack could change the content of any per-
sistent trusted (i.e., already verified) code.

For external entities (i.e., regarding secure connection to 
a  network)  it  is  essential  that  either  reliable  attestation or 

one-time proof of a successful secure SW update process can 
be established.

In the following, we describe a solution that can be estab-
lished without the need to build up and to maintain an attest-
ation infrastructure and to deal with TPM integration. In ad-
dition to authorization and autonomous integrity protection 
the proposed solution provides a mechanism against specific, 
persistently implanted or repeated run-time attacks (against 
required SW updates).

The solution uses Flash EEPROMs protected by an Au-
thorized Flash Update Process (AFUP) depicted in Figure 8, 
communicating via the system CPU. The control part of this 
process (the AFUP controller) can be implemented via dedi-
cated hardware (e.g., an ASIC), which by design is the only 
unit  that  controls  flash  programming  (at  least  for  critical 
parts  of  the  flash memory),  and  could not  be affected  by 
defined classes of attacks (e.g., CPU driven SW exploits or 
even certain physical attacks). For verification it can rely on 
‘roots of trust’ residing in the flash memory. 

In its fundamental operation, AFUP uses pre-configured 
secrets and credentials for a protected communication with 
an external requester, which initiates the communication by 
sending an update request (1). The delivered SW (that may 
also be the CRTM or RTV/RTE SW) is integrity protected 
(i.e., accompanied by signed objects SO) and is only updated 
(written into flash memory) upon a successful verification by 
the AFUP controller  (2).  On success  the AFUP controller 
sends a confirmation (3) to the external requester which now 
can be sure that after a next boot the system is updated to an 
‘invulnerable’ SW version and can be trusted again.

In Figure 9, an implementation example is shown detail-
ing the AFUP communication relying on a certificate based 
security protocol. According to this the AFUP controller is 
personalized with a (well protected) private key and a built-
in, write protected certificate list (this list could be stored, 
e.g., in the protected memory), which initially have to be im-
planted  by  a  secured  process,  e.g.,  during  manufacturing. 
The certificate list might contain the manufacturer's root CA 
(Certificate Authority) certificate under which certificates for 
a SW provider are issued, denoted here as SW CertSWP. 

In  accordance with the scheme shown in Figure 8, the 
communication is started by a SW update request (1), sent by 
an OAM server,  which typically is located in the operator 

Figure 8.  Authorized Flash Update Process (AFUP)

Figure 9.  Example for AFUP communication protocol
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network. This request may contain the new SW itself or may 
also provide a link to a location where it can be fetched from. 
The SW itself is protected by a signature, issued by the SW 
provider SWP and the associated certificate, which -in this 
example- is part of the update message . 

To prevent from replay attacks and to assure a trusted 
source the OAM server adds a nonce and signs the message, 
which can be verified by a root certificate, which is stored in 
the AFUP's certificate list depending on the key material the 
OAM server is provisioned with. In  the simplest case this 
could be the manufacturer's root CA certificate, too. But also 
an operator root CA certificate is imaginable.

Depending on the result  of the verification and update 
process (2) enforced by the AFUP an update response mes-
sage (3) is signed by the AFUP using its built-in private key 
PrKAFUP.  This also includes the nonce and additional  para-
meters to assure freshness and to support this process by oth-
er,  optional means (e.g.,  logging and confirming exact ac-
tions that have been taken by the AFUP, reporting of failure 
events,  or  even  inserting  time  stamps  if  these  can  be 
provided). 

Thus,  the  OAM  server  knows  the  exact  state  of  the 
AFUP as well of the SW version stored in the network ele-
ment and can continue with further service actions (which 
may or may not be transmitted over protected protocols, de-
pending on the security  relevance  of  such action),  for  in-
stance by initiating a reboot process, as indicated by (4).

Note that such mechanism may involve (and support) ad-
ditional security and key management processes, which im-
ply, e.g., a secure time base (or at least monotone time coun-
ters) for expiry control or for revocation or secure processes 
to exchange the root CA certificates or private keys, in case 
this is needed.  Also encryption of the SW transfer  can be 
used if confidentiality of the SW is required. Realization and 
implementation of such issues is a matter of a refined secur-
ity security specification, which is not further discussed here. 

If  not done during the reliable boot phase,  initiation of  
the AFUP  depends on the HW-SW function split  and the 
CPU involvement for message transport, which at run-time 
may be influenced by SW attacks (potentially causing denial 
of service). 

To prevent such influence the security design might rely 
on a more sophisticated realization of the AFUP process, in 
combination with autonomous basic communication capabil-
ities. This would enable reliable enforcement of SW updates 
at any time, even in case the network element is comprom-
ised by dangerous attacks (e.g., remote SW attacks that how-
ever,  cannot  be  directed  against  the  AFUP mechanism if 
isolated  by  well  designed  logic).  Accordingly,  the  AFUP 
supports remote remediation measures, which cannot be cir-
cumvented by such attacks. 

B. Protected CPU / Flash-Memory integration
The solution presented above needs separate logic for the 

AFUP  mechanism  and  in  its  simpler  shape  (without 
autonomous communication) it is mainly targeted to assure 
SW integrity through a (re-)boot process. As an alternative, 
we can also think of a more flexible realization, where the 
AFUP is realized by protected firmware being processed by 
the system CPU. 

In the following, we present initial ideas for realization: 
For security reasons a suited CPU or CPU core is integrated 

together with an isolated Flash EEPROM, e.g., using Mul-
ti-chip modules or dedicated ASICs, as shown in Figure 10. 
The flash memory might only be accessible in a privileged 
CPU mode P1 (e.g., controlled by an MMU or by some lo-
gic).

Trusted functions can only be invoked via a  protected 
API (e.g., by SW-interrupt), assuring that the CPU runs in P1 
mode with specific security settings (e.g., indivisible opera-
tions, cleared CPU registers etc.). In P1 mode the CPU ex-
ecutes  the AFUP process  in  accordance  with the methods 
and protocols introduced in Figures 8 and 9. Neither extern-
al, nor remotely injected SW, nor a local attacker could read 
or modify any content of the protected flash memory, unless 
the  integrated CPU-Memory device is physically analyzed, 
requiring extremely high efforts.

In  addition  to  supporting  secure  boot  and  the  AFUP 
mechanism this approach could also be used to allow secure 
run-time integrity protection. To that  purpose, trusted API 
functions could be designed to run checks over parts of the 
memory content (declared to be invariant), during system op-
eration. Moreover, 'executable' parts of the memory content 
could be checked and reloaded - periodically or based on 
events -, in order to wipe out potential hostile modifications 
that could have been injected during long time operation. 

By expanding the above idea on the AFUP functionality 
for  boot-time  and  run-time  checking  (of  loaded  SW)  the 
functionality could also be extended to securely launch any 
security code (such as a crypto-algorithms) - or even small 
parts of sensitive general  purpose code - at run-time, after 
successful  validation  of  integrity  and  authorization.  This 
would be an improvement over the DRTM idea, only allow-
ing for  trusted measurements  on launched code. Such 'au-
thorized SW' could (at run-time) be installed into the trusted 
memory and externally made available via an extended or 
updated API. 

In addition, such SW could be associated with policies 
for usage and memory control (e.g., implemented as signed 
MMU instructions, which could not be changed by 'normal' 
user-land SW). This would enable a SW security designer to 
instantiate individual shielded areas of memory, for instance 
to read- or write protect memory areas being private to a cer-

Figure 10.  Flexible, protected CPU/Flash memory integration
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tain  SW module  (e.g.,  to  contain derived  session keys  or 
even secrets, which could be imported in encrypted form).

VI. PKI AND INFRASTRUCTURE ASPECTS

The presented SWIP concept essentially can be built on 
(proprietary)  Signed Objects SO and on X.509 certificates 
assigned to signing entities.  A X.509 compliant  PKI hier-
archy might be established, beneficially in manufacturer en-
vironment, together  with manufacturer  specific governance 
schemes for SWIP. The following observations may substan-
tiate such reasoning:

PKI  governance  is  executed  essentially  by  applying 
policies associated with the PKI infrastructure, with regard to 
key and credential management, as well as by organizational 
control  over  the involved  entities.  In  accordance  with the 
principles mentioned in Section II.B and E, the conditions 
for SW signing necessarily must be aligned with the needs 
for products in mobile network, where each manufacturer in-
dividually is responsible for. One impact is the long-term us-
age (which may be 20 years and more), requiring, e.g., root 
CA certificates with long expiry periods and related security 
parameters  and capabilities of involved keys.  Despite long 
validity periods there must be an overlapping scheme of val-
id root CA certificates, which also implies secure exchange 
of these for products in field for a very long time. Typically 
this requires issuing of cross certificates as a base for (auto-
mated) secure exchange processes, be it via CMP [22] or be 
it by local means, and sufficient attack protection of the veri-
fying endpoint storing the trust anchor. 

Control over the root CA certificates in verifier compon-
ents is a closely related issue. It must be assured that exclus-
ively such root CA certificates (as well as all intermediate 
certificates) are accepted, which are compliant with the man-
ufacturer's  certificate policies.  Such requirements are diffi-
cult to fulfill with 'public CAs' (but not impossible, depend-
ing on contractual conditions), which typically are designed 
to meet the requirement of distributed developer scenarios 
for products with shorter life cycles than those in network 
environment. Moreover,  each product individually may set 
different conditions for validity (of the SO), for revocation 
and invalidation, and for SW management and versioning, as 
well as for the exact mechanisms and rules for verification 
and enforcement. 

In addition to requirements for daily use, it also has to be 
assured that for exceptional cases (such as 'loss of key mater-
ial' due to defects or in case of security incidents) disaster 
and recovery plans are in place and in emergency situations 
these can be realized very quickly.  Even if such incidents 
(hopefully) are very unlikely to happen, customers may re-
quire related features.

Within  the  manufacturer's  development  infrastructure 
protected  signing  entities  have  to  be  established  assuring 
proper usage of associated private keys to sign the SOs for 
the different products, in accordance with a secure approval 
work-flow.  Such  approval  work-flow is  required  to  avoid 
misuse of signing processes for other purposes than those in-
tended by the manufacturer for an individual product. This 
not only involves personal responsibilities, but also security 
control such as by appropriate authentication and authoriza-
tion principles.

Altogether,  and in particular with regard to harmoniza-
tion  and  generalization  (i.e.,  the  different  use  cases  that 

should be covered) it seems to be the only economic (and 
perhaps technical) way that manufacturers themselves fully 
control  the  environmental  conditions  and  policies  for  the 
SWIP infrastructure.

Following such principles the entire SWIP approach is 
self-contained and may be remotely managed without requir-
ing  new specific  network  infrastructure  nodes,  neither  for 
modified MTM concepts for secure boot, nor for generalized 
use cases, such as SW installation or secure SW delivery.

Instead, processes running in TS, OAM or SW manage-
ment  systems  might  be  adapted  appropriately.  We expect 
that  this  could  be  done  in  a  manufacturer  specific  way, 
without the need to standardize commonly agreed solutions.

Note that with the presented approach also protection for 
SW coming from third parties could be integrated, applying 
suited extensions for protection, verification, enforcement or  
infrastructure processes, e.g., by a OEM sided sub-CA, by a 
manufacturer signed policy that allows a second root , by re-
signing SW, or by cross signing of root CAs.

VII. CONCLUSION AND FUTURE WORK

The authors feel that above concepts open a promising 
way to cover many use cases for SWIP with a harmonized, 
certificate based approach. It is suited both to cover require-
ments coming from 3GPP standardization, as well as those 
that in general increase SW security and reliability for SW 
products in mobile networks. 

One essential benefit is that the same PKI and signing in-
frastructure  could be re-used for  many different  use cases 
(e.g., secure boot, SW installation, or integrity monitoring), 
mainly determined by shaping content, syntax and semantic 
of SOs and by secure anchoring of adapted verification and 
enforcement components.

While key points are identified and promising ideas on 
HW level improvements are tangible (beyond the scope of 
the  native  AFUP  functionality,  as  introduced  in  Section 
V.B), further research is required, in particular, to solve se-
curity  issues  emerging  from cost  effective  implementation 
and from long-term operation of network elements. 

In  practice,  trade-offs  have  to  be  balanced  between 
achievable security level  and efforts  for additional  HW or 
CPU modifications, which should be portable among differ-
ent platforms and CPU types. In our future research work in 
ASMONIA  these  issues  will  be  examined,  also  including 
virtualization principles. This will go in line with further de-
tailing methods and mechanisms for smooth integration of 
SWIP management concepts into mobile network elements 
and security infrastructure.
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