
171

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Networking and Security Issues for Remote Gaming: The Approach of G@L

Christos Bouras, Vassilis Poulopoulos and Vassilis Tsogkas
Research Academic Computer Technology Institute,

N. Kazantzaki, Panepistimioupoli Patras, Greece
bouras@cti.gr, poulop@cti.gr, tsogkas@cti.gr

tel. +302610996951
fax. +302610996358

Abstract

As the evolution of computer technology introduces
new advances in networks among others, online
gaming becomes a new trend. Following the trends of
our era, The Games At Large IST Project introduces
an innovative platform for running interactive, rich
content multimedia applications over a Wireless Local
Area Network. The Games at Large project’s vision is
to provide a new system architecture for Interactive
Multimedia that will enhance existing CE devices such
as, Set Top Boxes (STB), Small Screen and other
devices, which are lacking both the CPU power and
the graphical performance to provide a rich user
experience. In this study we present the controllers’
sub-system of the innovative mechanism that is
implemented within the context of the Games at Large
project. We furthermore provide information on the
encryption and security of the aforementioned
communication channel.

Index Terms — remote control channel, online
gaming, remote command execution, input device
capturing, asymmetric encryption, reverse channel

1. Introduction

The future home is an always-on connected digital
home. By the year 2010, there will be more than 420
million broadband households worldwide [8][16]. With
the standard set for super-high speed, always-on
connection, the way people view entertainment has
fundamentally changed and new standards for
consumption were created. Consumers no longer
expect their Internet access to be only from a desktop
PC - now they want it through the TV in their living
room or in the palm of their hand, inside the house and
on the go. The presented scenario [5] bundles video
gaming capabilities into consumer electronics devices,

such as Set-Top Boxes (STBs), Digital Video
Recorders (DVRs), home entertainment systems, TVs,
handhelds and other devices that are not considered,
today, as real gaming devices since they lack the
necessary CPU and GPU power. In this study we
present a new system for pervasive gaming and
multimedia, which is being developed under the EU
FP6 project, Games At Large (G@L). This study is
dedicated to the design testing concept elaboration, in
order to base the approach for the development of
evaluation and testing methodologies. The testing and
verification process is part of the iterative, spiral-life
workflow model (user-centered design and incremental
improvement based on feedback from user and expert
evaluation of prototypes).

The main idea of the project is that one or more
powerful servers will actually execute the game on
behalf of the client, which will be presented only with
the screenshots of the game and not the game loader or
the execution of complex graphics. On the other hand,
the basic aspect of a game is the interaction with the
end user (gamer). This means that apart from only
presenting the game frames to the user (through a client
– server architecture) the system must be able to
capture any input from the input devices of the end user
and transfer them to the server in order to emulate the
interaction that is done on a physical level when
playing a game. An important aspect of the
aforementioned procedure is security when transferring
the input commands from the client to the server. In
particular, keyboard input, which in most cases depicts
user sensitive data such as passwords or credit card
numbers, must be foolproof.

In this study we present a mechanism for
transferring input commands from any device, acting as
the client, to execution commands at the corresponding
program - game of the server. The purpose of this
mechanism is to be able to control a program that runs
on the centralized server from a remote operating



172

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

system. This mechanism is created within the scope of
the Games at Large project. Meeting the demand of
highly interactive multimedia systems with low cost
end devices (CE), requires a radical change in the
system’s architecture. The Games At Large project
intends to design a platform for running interactive rich
content multimedia applications. Games At Large
vision is to provide a novel system architecture for
Interactive Multimedia which will enhance existing CE
devices such as, Set Top Boxes (STB) and other
devices which are lacking both the CPU power and the
graphical performance, to provide a rich user gaming
experience. We thus present the general architecture of
the sub-system that controls the input of the client
devices and their server side execution. More
specifically, we examine how, input is able to be
captured by any input device on the different end
devices and on different operating systems, how
commands are sent over the network and finally, how
commands are executed at the target software of the
server. Moreover, we present the general architecture
of the encryption subsystem which ensures that the
input from any keyboard devices connected to the
client side is encrypted before being transmitted to the
server side for execution. The purpose of this
mechanism is to expand the capabilities of the
command transferring channel. More specifically, we
examine how capturing from any input device on
different end devices and on different operating
systems is done, how public key encryption is applied
and how commands are decrypted and executed at the
target software of the server. In our work, we are
considering only the confidentiality issues of the
cryptographic module assuming that authenticity
should be provided by the general architecture of the
system or by a different module.

The rest of the manuscript is structured as follows:
the next section provides information about related
work. Section 3 describes the vision and goal of the
Games at Large project. Section 4 describes the general
architecture of the system and the architecture on each
device (the end device and the server). Section 5
describes the encrypted command channel
infrastructure, while section 6 presents the encryption
subsystem. In section 7 we present the general client-
server infrastructure. The paper concludes with general
remarks and future work that will be done within the
scope of the project.

2. Related Work

Computer games constitute nowadays one of the
most dynamic and fastest changing technological area,
both in terms of market evolution and technology
development. In this area, as the computer games are
evolving and online activities and gaming become parts
of our lives, the need for interaction within a client –
server architecture becomes very intense. The
successful paradigms of online gaming such as WoW
[15], Half Life [7] and Second Life [11] are only just
the beginning of a new era for the online games. The
idea that lies behind online gaming is that a game that
can be played by multiple users should not have only a
local context. The basic game software is installed on
the client machine, while multiple servers are assigned
with the task of interconnecting all the possible users to
what is called the “world” or the scenario of the game.
The Games at Large project, as described in the official
website, goes one step further than the classical
procedure of online gaming and the main intention is to
enhance the idea of application on demand [6], in order
not only to support games on demand, but also to
enable devices that lack the physical power to load a
game, to run games Error! Reference source not
found.[1][4][13].

The proposed architecture resembles that of thin-
client computing [17], consisting of a server and a
client that communicate over a network using a remote
display protocol. Graphical displays are virtualized and
served across a network to a client device by the
protocol, while application logic is executed on the
server. By using a remote display protocol, the client
transmits user input to the server, and the server returns
screen up dates of the user interface of the applications
from the server to the client.

Some previous works on computing platforms
include STARS [9], a unified platform that focuses on
tabletop gaming, and [3], where the authors explore
how computer games can be designed to regain some
of the social aspects of traditional gameplay.

Many of these remote display protocols can
effectively be web-enable applications without
application modification. Some examples of thin-client
platforms include Citrix MetaFrame [18], AT&T
Virtual Network Computing (VNC) [19] and Tarantella
[20]. The remote server typically runs a standard server
operating system and is used for executing all
application logic. Because all application processing is
done on the server, the client only needs to be able to
display and manipulate the user interface. The client
can either be a specialized hardware device or simply



173

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

an application that runs on a low-end personal
computer.

The objective of secure communications has been to
provide privacy or secrecy, i.e., to hide the contents of
a publicly exposed message from unauthorized
recipients. The asymmetric encryption / decryption
channel solves the major confidentiality issue of secure
communications. Cryptosystems, as explained by the
classic work of Simmons [12], are symmetric if either
the same piece of information (key) is held in secret by
both communicants, or else that each communicant
holds one from a pair of related keys where either key
is easily derivable from the other. These secret keys are
used in the encryption process to introduce uncertainty
(to the unauthorized receiver), which can be removed
in the process of decryption by an authorized receiver
using his copy of the key or the "inverse key." This
means, of course, that if a key is compromised, further
secure communications are impossible with that key.
On the other hand, in asymmetric cryptographic
schemes the transmitter and receiver hold different
keys at least one of which it is computationally
infeasible to derive from the other.

The work on public key cryptographic systems has
been rather intense over the last 20 years. The main
difficulty in developing secure systems based on public
key cryptography is not the problem of choosing
appropriately secure algorithms or implementing those
algorithms [10]. Rather, it is the deployment and
management of infrastructures to support the
authenticity of cryptographic keys: there is a need to
provide an assurance to the user about the relationship
between a public key and the identity (or authority) of
the holder of the corresponding private key. In a
traditional Public Key Infrastructure (PKI), this
assurance is delivered in the form of certificate,
essentially a signature by a Certification Authority
(CA) on a public key [2].

3. The Games at Large Project

Games at Large (Games@Large) being an Integrated
Project (IP) intends to research, develop and implement
a new architecture to provide users with a richer variety
of entertainment experience in their entire houses, hotel
rooms, cruise ships and Internet Cafés, incorporating
unprecedented ubiquitous game-play. The project
evolved from the home environment to other local
Focus Areas (FA) regarding the benefits such FA may
gain based on the unique technology approach of
Games at Large. The Integrated Project includes
activities of TV Multimedia and Gaming using
Enhanced Media Extender, Local Processing and
Storage Server(s), Handheld Devices and Local

Wireless Network. Games at Large intends to enhance
the existing Digital Living Network Alliance (DLNA)
and the UPnP Forum standards by introducing the
unique set of features required for running games over
a local network, like all other media and content types
(video, audio).

Market interest is now revolving around capitalizing
on the rapid increase of always-on broadband
connectivity. Broadband connection drives to a new,
digital, “Future Home” as part of a communications
revolution, which will affect every aspect of
consumers’ lives, not the least of which is the change it
brings in terms of options for enjoying entertainment.
Taking into account that Movies and Music provided
by outside sources were at home long before the
Internet and Broadband, the challenge is to invent new
content consumption patterns and new types of content
and services.

Games offer a leisure time activity for every member
of the household – from avid gamers to kids, as well as
allowing whole families to play together. Games offer
also leisure time activity for guests in hotels and
visitors in Internet Cafes. Games at Large offers
ubiquitous accessibility for all members of the
household on all desired entertainment devices. The
project focuses on new innovative ideas such as
multiple-game execution on the Games Gateway and
delivery of graphics-rendering meta-data over the home
network via low latency, low bandwidth Pre-Rendering
Protocol to achieve low-cost implementation of
ubiquitous game play throughout the house, while
taking advantage of existing hardware, and providing
multiple members of the family with the ability to play
simultaneously.

Games at Large intends to enable the Games to
diversify from dedicated appliances and a single corner
of the house, to any place at home such as, the TV in
the living room, the handheld device or any other
device with the relevant screen, controls and
connectivity. The project will also provide the required
infrastructure for running games on the hotel guest
room TV or on small screens for people sitting in
Internet Cafés, cruise ships, trains or airplanes.

The technological challenges of the the Games at
Large project are:

 Distributed computing and storage
 Video/Image/Graphics delivery with very low

latency through a wired/wireless home
network

 Adaptation of PC screen-images to TV screen
and handheld devices

 Integration of wireless users’ game control
devices



174

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

 Translation of user ergonomics to different
devices and form factors

 Research of new class of Media Extenders for
games

 Enhancement of STBs to support video games
 Development of new methods for QoS linking

Consumer prospective with system
measurements

 Enhancement of relevant industry standards
for time critical multimedia content while
maximizing Users Experience

 Security aspects for the system’s architecture
as a whole and for each subsystem
independently

The Games at Large project’s mission is to develop a
new method for ubiquitous video games through
unique technology to transfer graphical data while
reducing latency and ensuring QoS in a cost-effective
manner. Main focus will be given on studying and
supporting the use of video games within four different
focus areas: User’s home, Hotels, Internet Café, and
Elderly Houses. A multi-layer approach will cut
horizontally across the Games at Large focus areas,
aiming to assess the conditions under which a Games at
Large platform may frame within and improve the state
of the art of each business domain, through performing
the following, logically consecutive activities:
collecting user requirements, researching and
developing common Technologies, implementing and
integrating those technologies within the required
Servers and prototype CE Devices, running technology
verification and Training and evaluating all results.

4. System Architecture

Figure 1 depicts the general system architecture. As
it is obvious, the system consists of two different
“levels”. The first level includes all the possible servers
that will be used for the system, while the second level
includes the connection of the different end devices of
the system. The server side constitutes of multiple
different servers that are assigned with the task of
serving the games and require a very quick and stable
communication between them, which is guaranteed
using a wired LAN network. The second level of the
depicted architecture is the interconnection of any
possible end device with the server in order to
communicate and interact so as to load and play a
game. Connected clients can utilize a variety of end
devices, such as set top boxes, laptops, PDA’s or
IPTVs.

Figure. 1 General System Architecture

While on the architecture that is described all the
servers can communicate to one another, the end
devices can “see” only one server which is the main
serving and processing server for the games. The server
side of the system is assigned with various tasks, the
most important of which is that of executing the game
and sending the corresponding game screen to the
connected clients. The Local Processing Server (LPS)
coordinates the server infrastructure, and is responsible
for the execution of the game graphics and the delivery
of data between the clients and the server.

The clients are constantly sending feedback to the
server which describes the input commands that are to
be executed to the game instance. Thus, the server
should be able to have at least two communication
channels with each client: one for sending the game
frames or 3D commands (direct channel), and one for
receiving the input from the clients of the game
(reverse channel). An important aspect to notice is that
the channel which, if hijacked, could jeopardize the
system’s security, is the return channel since it contains
not only the input commands that are for execution to
the game instance, but also any other input from user.
For instance, given the fact that the platform is targeted
for commercial use, it is possible that the users will be
required at some point to insert personal information,
passwords, or even a credit card numbers. Hence, the
encryption of the command communication channel
and more specifically, the encryption of keyboard input
commands is of major interest.



175

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

5. Command Channel Infrastructure

The idea that lies beneath the communication
command channel architecture is depicted in the flow
diagram of Figure 2. Each end device consists of many

possible input devices that enable the user to interact
with the device and thus enable the user to interact with
the game that is played on the end device.

Register Device

Establish Connection with LPS

Capture Input Format Input Send Data

Establish Connection with End Device

Persistent Connection

Analyze Data
Mapping to

Keyboard or Mouse

Format Data
Properly for
Application

Send Data to
Application

Figure. 2: Communication Channel Architecture.

When the client program starts, it initiates the
device discovery procedure, which may be offered
either by a separate architectural module, e.g. the
device discovery module which uses UPnP, or by a
system call causing the discovery for input devices
attached to the system. It is essential afterwards, that
the results of the device discovery are registered in our
program so that we are aware of the existing input
devices marking out several other non-existing.

The next step of the procedure is to capture the
input coming from the input controllers. This is
achieved by recording the key codes coming from the
input devices. Input devices such as mice or keyboards
are interrupt-driven while with joysticks or joy pads the
polling method is used for reading. The previous means
that whenever an input event is caused by a keyboard
or a mouse, an interrupt message is sent to the message
queue of our program; then it is translated and finally
recorded. However, the polling case of joysticks or joy-
pads means that these devices have to be polled by a
program's thread in order to sense motion or button
presses. The polling period has to be small enough to
capture any input, but not too small to monopolize the

system's CPU. A period of 10ms seems to be in our
occasion a wise trade off.

After an input key code has been captured, the
transmission of it takes place. This is achieved using an
already open socket connection with the server side.
Data is transmitted through the socket in the form of a
string with a certain communication protocol. The
socket connection can either be of TCP or UDP
protocol. Since UDP emphasizes on real time, low
latency transmission, it is preferable for this type of
communication. Even if some key codes are lost in the
process of transmitting them over the network, there is
no real loss since there is a flow of key codes that can
overcome this possible threat. Even though, in real life,
error prune networks, such as WiFi's, the TCP protocol
is selected avoiding the possible game experience fall
caused by lost controller's packets transmission, for
wired networks UDP is preferred.

Since the key codes have arrived at the server side,
they are executed at the running game instance. At this
point, there needs to be a distinction between the
different types of transmitted key codes. There are
basically four types of possible input device’s data



176

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

transmission. Commands may be coming from: (a)
keyboard, (b) mouse, (c) joystick / joy-pad device or
(d) any other HID input device.

In the first case, the server has to recognize the
virtual key code, or the “pressed” / “released” event of
a keyboard button, then do a possible mapping to some
other key code, based on the game and user profile, and
finally deliver it to the active application window for
execution.

In the case of mouse input, the server has to
recognize the virtual key code or the “pressed” /
“released” event of a mouse button, recognize any
mouse wheel event or any mouse movement (absolute
or relative), then do a possible mapping to some other
key code, based on the game and user profile, and
finally deliver the key code to the active application
window for execution.

In the case of joystick/joy-pad input, the server
recognizes the state of the joystick/joy-pad device,
maps the state to the appropriate keystrokes using the
xml mapping file of the particular game-joystick/joy-
pad combination. In this way, we are able to emulate
the joystick/joy-pad input using pure keystrokes–mouse
movements that represent the actual behavior of the
input device. Finally the key code is delivered to the
active application window for execution.

For any other HID input device the system treats
input similarly to the joystick/joy-pad. The only
prerequisite is the existence of a mapping file in order
to convert the commands to keyboard and mouse
instructions

6. Encryption

As already noted, the encryption procedure is only
needed for the keyboard commands that the client
transmits. We will now briefly describe the
initialization procedure for supporting RSA public key
encryption both at the client and the server of the
Games At Large environment, as well as the thereafter
communication between the LPS server and the
connected client.

6.1 Startup phase

When both the client and the server start, some local
initializations take place. Following, the client launches
a connection request to the server which is advertised
to the network neighborhood through the UPnP
module. The server accepts the new client generating a
unique RSA public-private key combination. Initially,
through the persistent connection, the server transmits
the modulus size in bits, the public exponent size in
bits and the key pair size in bytes of the encrypted
fields that follow.

The public key is described by an RSA structure and
its fields are transmitted sequentially to the client
though the possibly unsafe channel. The client then
accepts the structure’s fields and re-generates the
server’s public key. From this point on, any keyboard
commands are encrypted by the client using the
server’s public key and decrypted by the server
providing thus the necessary security guarantee for the
user-sensitive data. The aforementioned procedures are
depicted in Figure 3.



177

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Figure 3 Initialization of the encryption module

6.2 Transfer of encrypted keyboard input

The idea that lies beneath the communication
command channel architecture is depicted in Figure 4.
Each end device consists of many possible input
devices for interacting with the server. When the client
program starts, it initiates the device discovery
procedure, which may be offered either by a separate
architectural module, e.g. the device discovery module
which uses UPnP, or by a system call causing the
discovery for input devices attached to the system. It is
essential afterwards, that the results of the device
discovery are registered in our program so that we are

aware of the existing input devices marking out several
other non-existing.

The next step of the procedure is to capture the
input coming from the controllers. This is achieved by
recording the key codes coming from the input devices.
As already mentioned, input devices such as mice or
keyboards are interrupt-driven while with joysticks or
joy pads the polling method is used for reading. If the
command that is to be transferred is originating from a
keyboard device, the client uses the server’s public key
to encrypt the data after it has been suitably formatted
adhering to a certain communication protocol. The
encrypted message is transmitted to the server using an
already open socket connection.



178

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

Figure 4 Encrypted Command Channel.

Once the encrypted message has arrived at the
server side, the server decrypts it obtaining the initial
keyboard commands that the client captured. If the
received massage is not a keyboard one, the server

bypasses the decryption stage, delivering the
commands at the running game instance. The algorithm
procedure of this step is presented in Algorithm 1.

//-- Client Encrypts and Send Keyboard Data
int encrypt(string message) {
//pk_size is the public key size
server.send_data(keyboard_type);
//notify the server for
//keyboard command that follows
unsigned char *encrypted;
int enc_size =
RSA_public_encrypt(strlen(message)+1,
(unsigned char *)message,
encrypted, PUBLIC_KEY, PADDING);
if (enc_size != pk_size)
{
Error("Ciphertext should match length of key");
return(-1);
}
//-- send encrypted data
return server.send_data((char
*)encrypted,enc_size);

}

//-- Server Receives and Dencrypts Keyboard
Data
int dencrypt(string encrypted) {
unsigned char *decrypted ;
char temp [MSG_SIZE];
//-- receive encrypted data
client.receive_data(temp,kp_size);
memcpy((char *)encrypted,
temp,kp_size*sizeof(char));
int decr_length = RSA_private_decrypt(kp_size,
encrypted, decrypted, PRIVATE_KEY,PADDING);
if(!decrypted){
Error("Encryption failed");
return -1;
}
Retrieve_vkey(decrypted);
}

Algorithm 1 Encryption and Decryption of keyboard messages



179

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

7. Server / Client Infrastructure

In this section, we describe the infrastructure that
was implemented within the scope of the Games At
Large project both at the server and the client side.

7.1 Server Side Infrastructure

As long as we are creating an environment with one
server and multiple clients, it is essential to analyze
how each end device will be able to capture all the
commands from the input devices. This is because the
unique server of the system should receive data that are
sent over the network and execute the commands on
the specific procedure that runs each game.

The “gateway” of the servers is the LPS (Local
Processing Server). The main goal of Local Processing
Server is to run multiple games simultaneously on the
server, whereas each game runs in its own game
environment and is streamed to an end-device. The
game environment is an isolated and encapsulated
“sandbox,” providing the environment for game
execution. The procedure, that makes the simultaneous
running of multiple games possible, decouples the
game execution from the game output, directed to
display card/PC monitor, and all user-facing I/O,
directed to the keyboard/mouse/HID. The LPS server
also implements the encryption policy of the system by
generating random RSA public/private key pairs for
any newly connected clients and by decrypting the
keyboard commands that come from the clients.

The “sandbox” environment for the server is created
dynamically according to: a) the current occupancy of
the resources and the hardware requirements that the
game sets on the server, b) the software requirements
on the client side and c) the current network condition.
In order to be able to run a game on the server, the
system monitors in a periodical manner the hardware
resources of the server and the network conditions
(jitter, latency and bandwidth). Additionally, according
to the end device specifications (hardware and
software), the server decides on the manner that the
game will be executed on the client side.

7.2 Client Side Infrastructure

The possible different clients of the Games At Large
environment are: (a) a Laptop with Windows XP /

Vista environment, (b) a Set-Top Box with either Linux
or Windows CE and (c) an enhanced handheld device
with either Windows CE or a Linux version for small
screen devices.

Each client implementation should consist of the
following components: (a) a device discovery module,
(b) the game browser and game launcher modules, (c)
authentication modules, (d) input capturing and
command transferring modules and finally, (e)
decoders in order to run the streamed game that is sent
from the server.

The device discovery module is used to seek for an
appropriate LPS to connect to and introduce itself to
the LPS with the End Device capabilities. The Games
At Large Game Browser, which queries the Games
Service on the LPS for listing the available games to
the user, enables the user to browse the list of available
games and select one to launch. Personalization of the
UI should be available to the user/provider for enabling
different views for users (i.e. Browser skins). When the
user selects a game and requests to launch it, the
Games At Large Game Browser issues a Start Game
request to the Games At Large Client Game Launcher.
The Game Browser will show to the user only the list
of games that can run on the End Device by filtering
the list according to the capabilities of the End Device
compared with each game requirement.

Authentication communicates with the Games At
Large Game Browser to authenticate the user against
the LPS authentication module that authenticates the
user against the Management Server. The Client Game
Launcher controls all modules on the client side. The
Game Launcher communicates with the LPS
discovered by the device discovery module. The
capture controller captures the Human Input Device
(HID) controls and transfers them to the Controller
Emulator on the LPS via the network layer, using the
Controller protocol.

Each client should also implement the necessary
RSA functions for the encryption module. For this
cause, we are utilizing the OpenSSL RSA library which
is available for the aforementioned platforms [14].

7.2.1 Capturing commands in Windows OS

As already mentioned, the end devices of the system
can be multiple and thus they may use various
operating systems, whereas the server is based on
Windows operating system. When the client utilizes
Windows operating system, the implementation of the



180

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

modules, and more specifically, the command
capturing module, is implemented as a generic driver.
This driver is able to recognize any input device and
transform the command from them to keyboard and
mouse commands, according to mapping files that are
utilized for this scope. The aforementioned is a
windows application, included in the game launcher of
the client, which is called reverse channel module. The
main assignments of the reverse channel module is a)
to ensure that the connection to the server is established
successfully, b) to capture commands from any input
device, and c) to send the commands over the channel
that is present between the client and the server.

7.2.2 Capturing commands in Linux OS

When the end device utilizes Linux operating
system, there is no need for a low level driver (as in the
Windows case) to be implemented as a client-side
program in order to capture the input devices’ input.
On the contrary, the command capturing is feasible
through the evdev Xorg input driver and the evbug
capturing implementation, both of which are available
to any modern Linux kernel. Finally, the keycodes from
any input device are translated to keyboard and mouse
commands and are then transmitted to the server for
execution in the game instance.

8. System Evaluation

Extensive testing that is done by teams of the project
on the issue of delay over the network has proved that
in order to support games that require instant action
(like racers or shooters) it is essential to have at most
50ms latency.
In order to be able to have latency of less than 50ms
and as long as a large amount of them must be used for
the transfer of the game graphics from the server to the
client it is important that the return channel has as
lowest latency as possible. The evaluation proves that
an encrypted channel with dynamic encryption on each
command sent from the client to the server requires 10
to 20ms regardless the game that is played. What we
need to do is to lessen this latency in order to have the
minimum overhead from the return channel.
To achieve lower latency we apply a different type of
encryption on the channel. At the initialization phase
we apply all the encryption as it is described in section
6 but not in order to send commands but in order to
create a secure channel. As long as the secure channel
is initiated we are assured that each byte on the channel
is encrypted by the channel itself. This means that we

are transferring the encryption of the data to a lower
level of the ISO/OSI network layering system. From
the application level of encryption we are moving to a
network level by creating a single secure channel.
This approach has led to less latency on the return
channel which is almost as fast as a pinging command
from the client to the server. Nevertheless, we already
know that we are sending a very small amount of data
per second which is usually hundreds of bytes and in
average even less. The latest testing that was done on
the return channel (specific results cannot be presented
due to the confidence terms of the project) prove that
the latency of the return channel is at most 5ms.
Considering the scaling of the system, although it is out
of the scope of this specific document we can present
some preliminary results. By using a server which was
in the state of the art during the year 2007 (intel core2
duo 2GHz, 2GB RAM), we have managed to play
simultaneously more than 15 casual games from
different clients. When talking about demanding games
the testing that was done proved that we can run 4
demanding at the same time.
As the project is currently under its third year of
running we are not able currently to present extensive
results on the evaluation of the system.

9. Conclusions

In this study we have described the command
execution channel as well as the encryption module of
the Games at Large project, an IP project with the
vision to research, develop and implement a new
architecture to provide users with a richer variety of
entertainment experience in their entire houses, hotel
rooms, cruise ships and Internet Cafés, incorporating
unprecedented ubiquitous game-play. We are
researching and utilizing new technological techniques
to transfer graphical data while reducing latency and
ensuring QoS in a cost-effective manner. Main focus is
given on studying and supporting the use of video
games within four different focus areas: User’s home,
Hotels, Internet Café, and Elderly Houses. A multi-
layer approach cuts horizontally across the Games at
Large focus areas, aiming to assess the conditions
under which a Games at Large platform may frame
within and improve the state of the art of each business
domain, through performing the following, logically
consecutive activities: collecting user requirements,
researching and developing common Technologies,
implementing and integrating those technologies within
the required Servers and prototype CE Devices,



181

International Journal on Advances in Security, vol 2 no 2&3, year 2009, http://www.iariajournals.org/security/

running technology verification and Training and
evaluating all results.

10. Future Work

As the system is implemented, more and more
features are included on the release versions. These
include modules that utilize network specific
characteristics in order to adapt on the possible
network environment (QoS support). These
characteristics are expected to guarantee a minimum
level of quality to any connected client, either utilizing
a fast wired network or a noisy wireless one.
Additionally, efforts are made towards the direction of
creating software for every possible operating system
in order to enable more end-devices to be connected to
the Games at Large Environment. Furthermore, in our
plans is also the incorporation of a media streaming
server to the gaming infrastructure which will allow the
connected clients to enjoy their preferred music or
video clips with music/video on-demand
characteristics.

REFERENCES

[1] C. Bouras, V. Poulopoulos, I. Sengounis, V. Tsogkas.
“Networking Aspects for Gaming Systems”, In
Proceedings of the Third International Conference on
Internet and Web Applications and Services pp. 650-
655, 2008

[2] P.S.L.M. Barreto, H.Y. Kim, B. Lynn, and M. Scott.
“Efficient algorithms for pairing-based cryptosystems,”
In Advances in Cryptology – CRYPTO 2002, volume
2442 of LNCS, pages 354–368. Springer-Verlag, 2002.

[3] S. Bjork, J. Falk, R. Hansson, P Ljungstrand,
Pirates! Using the Physical World as a Game
Board, Interact 2001

[4] C. Bouras, V. Poulopoulos, I. Sengounis, V. Tsogkas
“Input here - Execute there through networks: the case
of gaming”. The 15th Workshop on Local and
Metropolitan Area Networks (LANMAN 2007),
Princeton, NJ, USA, 10 - 13 June 2007

[5] P. Casas, D. Guerra, I. Irigaray, User Perceived Quality
of Service in Multimedia Networks: a Software
Implementation, Joint Research Group of the Electrical
Engineering and Mathematics and Statistics
Departments, 2006

[6] Games at Large project’s official website,
http://www.gamesatlarge.eu

[7] Half Life official website, http://orange.half-life2.com/
[8] IPTV, By 2010, One-Third of the Predicted 422m

Broadband Households will be Able to Receive IPTV.
http://www.findarticles.com/p/articles/mi_m0EIN/is_20
06_Sept_26/ai_n16837715

[9] C Magerkurth, R. Stenzel and T. Prante, STARS - a
ubiquitous computing platform for computer augmented
tabletop games. In Extended Abstract of UbiComp '03,
Springer, 267—268 2003

[10] S. Sattam, Al-Riyami and K. G. Paterson,
“Certificateless Public Key Cryptography,” Lecture
Notes in Computer Science, pp. 452 - 473, 2003

[11] Second Life official website, http://www.secondlife.com
[12] G. J. Simmons, “Symmetric and Asymmetric

Encryption,” in ACM Computing Surveys (CSUR),
vol. 11, no. 4, ACM Press New York, NY, USA 1979,
pp. 305-330.

[13] Y. Tzruya, A. Shani, F. Bellotti, A. Jurgelionis,
Games@Large - a new platform for ubiquitous gaming,
BroadBand Europe 2006, Geneva, Switzerland,
November 2006

[14] J. Viega, M. Messier, and P. Chandra, 2002. Network
Security with OpenSSL, 1st Ed. O’Reilly, Cambridge,
MA.

[15] World of Warcraft official website,
www.worldofwarcraft.com

[16] Worldwide online access.
http://www.emarketer.com/Report.aspx?bband_world_j
un06&src=report_summary_reportsell

[17] Albert Lai , Jason Nieh, Limits of wide-area thin-client
computing, Proceedings of the 2002 ACM
SIGMETRICS international conference on
Measurement and modeling of computer systems, June
15-19, 2002, Marina Del Rey, California

[18] Citrix MetaFrame 1.8 Backgrounder. Citrix White
Paper, Citrix Systems, June 1998.

[19] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A.
Hopper. Virtual Network Computing. IEEE Internet
Computing, 2(1), Jan./Feb. 1998.

[20] A. Shaw, K. R. Burgess, J. M. Pullan, and P. C.
Cartwright. Method of Displaying an Application on a
Variety of Client Devices in a Client/Server Network.
US Patent US6104392, Aug. 2000.


