
A Distributed Reputation System for Super-Peer

Desktop Grids

Peter Merz, Florian Kolter, Matthias Priebe

Distributed Algorithms Group

Department of Computer Science

University of Kaiserslautern

D-67663 Kaiserslautern, Germany

Email: {pmerz,f_kolter,priebe}@informatik.uni-kl.de

Abstract—Desktop Grids leverage otherwise unused resources
of idle desktop computers, providing vast amounts of cumulative
computational power. However, resource sharing in Peer-to-Peer
environments with selfish participants suffers from the free-
riding phenomenon unless the environment provides appropriate
countermeasures. In Peer-to-Peer-based Desktop Grids, coop-
erative participants require protection against free-riding job
distributors. In this article, we present a decentralized shared-
history reputation mechanism designed for use with Desktop
Grids built on dynamic super-peer structures. Embedded in a
distributed Desktop Grid workflow model, our concept promotes
reciprocity and discourages free-riding. In simulations based
on real-world network delay and workload information, we
show that our concept offers a considerable speedup over non-
distributed computation while effectively thwarting free-riding
and maintaining the system’s commitment to robustness and
scalability.

Keywords—Peer-to-Peer; Distributed Computing; Desktop
Grids; Free-Riding; Reputation Systems

I. INTRODUCTION

For decades, supercomputers have been the method of

choice in cases where the solution to a problem depended on

the availability of massive computational power. They provide

computational resources to an extent that exceeds that of

ordinary desktop computers by orders of magnitude. However,

supercomputers are costly to build and operate, and there may

be considerable lead time until one becomes available.

On the other hand, desktop PCs are occasionally idle, spend-

ing unused processor cycles for no return. This is especially

true for multi-core CPUs in which one or more cores may

find themselves underloaded for considerable periods of time.

Harvesting these idle cycles to form a virtual supercomputer

that offers its cumulative computation power to the gen-

eral public represents a promising alternative to conventional

supercomputing. Inside this virtual computation engine, a

self-organizing system would interconnect the participating

machines, splitting large jobs into small tasks, distributing

the tasks among the desktop machines, and reassembling the

individual results into a single one as it would have been

computed had the job been processed by a supercomputer

in the traditional way. As in Grid computing, resources are

connected via wide-area networks, in particular the Internet.

A major difference lies in the way resources are deployed and

administrated. In Grid Computing, resources are supervised

by trustworthy administrators and have been acquired with

the intention of being remotely accessed to handle distributed

work. They are commonly available for long periods of time.

On the contrary, desktop PCs operated by scientific institu-

tions, companies, public authorities, and private households are

purchased for the purpose of performing work locally. A desk-

top computer is usually less powerful than a computational

Grid resource, and the quality of its Internet connection may

vary considerably [2]. The remote utilization of idle cycles

from these devices has begun as volunteer computing. In

volunteer computing, computer owners are asked to voluntarily

donate idle CPU time. In this model, a user would run

problem-specific software that receives a job of a well-known

kind from a pre-defined server, computes it in its idle periods,

and returns the results to the server. A prominent example of

this approach is SETI@home [3] which analyzes radio signals

from outer space for hints of extraterrestrial life.

For a number of applications, Peer-to-Peer (P2P) networks

have emerged as a viable alternative to client/server schemes

such as SETI@home. In their fully distributed form, P2P

networks contain no single point of failure, scale to millions of

participants – called peers due to the absence of a hierarchy –,

and include properties of self-organization that improve their

robustness. Distributed computing in a P2P setting enables

every participant to initiate the computation of a job by asking

its fellow peers to join the computing effort. Because of

its focus on desktop resources, a system that taps the idle

computation resources provided by desktop units, is based

on a P2P network and enables everyone to submit arbitrary

jobs for distributed computation is referred to as a Desktop

Grid [4], [5], [6], [7], [8]. The cumulative potential leveraged

by a Desktop Grid grows with the number of resources

connected to it. Hence, a Desktop Grid benefits from the

capability to integrate a heterogeneous range of computers in a

dynamic, volatile, decentralized environment. The requirement

to support a substantial number of participants emphasizes the

importance of scalability in this context. The construction of

Desktop Grid structures on P2P overlays improves scalability

in large-scale settings [5], [9]. It is further improved by the

concept of super-peers which combines advantageous proper-

30

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

ties of client/server systems and unstructured P2P topologies

[10]. Unlike ordinary Grids, peers participating in Desktop

Grids bring all the resources including the infrastructure.

Since overlay dynamics are explicitly accounted for, joining a

Desktop Grid does not require significant administrative efforts

besides running the software which is required for access.

While a Desktop Grid offers attractive features, the peers

are operated by humans whose goals may be selfish rather

than altruistic. In the purely selfish case, a peer may join the

Desktop Grid, submit its job, wait for its completion, and once

finished, leave the system. In this case, that particular peer

does not contribute any resources to the system but exploits it

for its own good: it is a free-rider. While a certain amount of

free-riders might be tolerated, the system would break down

when there are too many because the demand for resources

exceeds the supply. Hence, a Desktop Grid needs to deploy

effective measures to thwart free-riding.

In this article, we propose a reputation system tailored

for distributed Desktop Grids that are built on super-peer

structures. This reputation system mitigates the adverse effects

of selfish, uncooperative peer behavior while maintaining the

commitment to meet scalability and robustness requirements.

It permits cooperative peers to detect and eventually avoid

free-riding job distributors. It is accompanied by a workflow

model which adapts the common distributed computing work-

flow to a super-peer setting. By means of experiments, we

demonstrate the gains over configurations with no protection

for cooperative peers. This article is an extended version of

[1], adding an investigation of the collusion phenomenon and

a series of experiments that quantify the overhead incurred

by the proposed reputation system, the numbers of accepted

and declined task requests, and the effects of varying free-

rider fractions. Moreover, it contains enhanced coverage of

reputation-related issues in P2P networks and a summary of

aspects relevant to the construction of super-peer topologies.

The remainder of this article is organized as follows. Section

II sketches the architecture of super-peer overlay topologies

along with a distributed algorithm that creates and maintains

a topology of this type. Section III outlines issues caused

by rational-selfish peer behavior. Section IV presents the

proposed Desktop Grid model which consists of workflow,

reputation, and incentive components. Section V describes the

scenario, setup and outcome of simulation experiments with

the proposed model. Section VI discusses related efforts. The

article concludes with directions for future research in Section

VII.

II. OVERLAY

Super-peers are peers that act as relays for a number of

attached common peers called edge peers, while at the same

time, they form a network of equals among themselves. That

way, the entire P2P network may remain connected over a

substantially smaller number of links than before [10], [11].

Besides enhancing scalability, super-peers may route commu-

nication between edge peers that cannot directly communicate

with each other due to the presence of firewalls. An example

c1

c2

c3c4

c5

p1

p2 p3

p4

p5
p6

p7

p8

p9

p10

p11
p12p13p14

p15

p16

p17

p18

p19

p20

Fig. 1. Example of a P2P network with selected super-peers

for this feature is depicted in Figure 1 where edge peer p1

wishes to communicate with edge peer p14. For the first hop,

p1 sends the message to its super-peer, c1, which forwards it to

the destination’s super-peer, c4. Finally, c4 passes the message

on to the destination peer, p14. In a fully meshed super-peer

overlay as shown in Figure 1, the network diameter is only 3

hops.

This section briefly describes the Super-Peer Selection Al-

gorithm (SPSA) [12], [13], a distributed algorithm that creates

and maintains a delay-optimized, self-organizing, fully meshed

super-peer overlay. SPSA has been conceived to establish a

P2P overlay on top of which a Desktop Grid can be built. The

algorithm runs continuously on every peer in the overlay. It

promotes suitable peers to super-peer level and makes nearby

edge peers connect to them. No central instance is required for

SPSA to perform. The first peer to join the overlay instantly

becomes a super-peer, while all peers joining subsequently

receive edge peer status at join time.

SPSA strives to minimize the number of connections a

super-peer needs to keep up. In a fully meshed overlay, a

super-peer maintains one connection to each of its edge peers

and one to every other super-peer, respectively. Let C be the

set of super-peers. With n peers in the system, the number of

connections per super-peer is minimized for |C| =
√

n [13].

Every super-peer can estimate the current number of peers

in the overlay by counting the number of connections held to

other super-peers; let this number be h. Also, every super-peer

knows the number of edge peers attached to it; let this number

be z. Now, a super-peer changes its role and downgrades to

edge peer level if z < 0.5 ·h. Conversely, if a super-peer finds

itself overloaded by determining that z > 2 · h holds, it picks

one of its edge peers and promotes it to super-peer level so

that some of the remaining edge peers switch to the new

31

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

super-peer. To minimize the end-to-end message delay, edge

peers always connect to the closest super-peer, overloaded

super-peers always pick the edge peer for promotion that

minimizes the sum of delays regarding its connections, and

all super-peers regularly check if one of their edge peers can

perform their duty at lower cost in terms of network delay.

This approach scales well when delays are estimated using

network coordinates [14], [15].

III. PEER BEHAVIOR

A free-rider is an individual who does not provide any

resources to a system but exploits it selfishly [16], [17],

[18], [19], [20], [21]. While an altruistic setting may support

a certain extent of free-riding, it is expected to collapse if

exceedingly many peers choose to act as free-riders. Therefore,

Desktop Grids benefit from mechanisms which curb free-

riding. One important aspect in this context is reputation.

Reputation conveys information about a peer’s past conduct

to influence expectations of its future behavior [22]. It quan-

tifies the risk in trusting others. By disseminating aggregated

information on peer behavior, a reputation scheme encourages

selfish peers to act in a fair manner [17]. That way, peers may

avoid cooperation with other peers that exhibit poor reputation,

providing an incentive to peers to accumulate positive feed-

back by acting accordingly. Generally, reputation aggregates

feedback information. Without a reputation mechanism, a

peer’s abusive behavior toward a certain peer will not harm

the misbehaving peer when interacting with other peers.

It is assumed that every peer has a private type which

determines its strategy. The model distinguishes between three

types of peers [16], [23], [24], [25], [26]:

• Altruists serve to the best of their capabilities every

request issued by other peers without asking for reci-

procity. Hence, exhibiting the opposite behavior to com-

plete selfishness, altruists always obey and cooperate with

other peers regardless of external rewards. Thus, altruists

require no protection against free-riders.

• Selfish participants expect to receive a benefit from the

Desktop Grid:

– Collaborators are generally willing to cooperate if

they can expect their counterpart to eventually re-

ciprocate. In particular, they are ready to reserve

resources for use by others provided that these re-

sources are not occupied by free-riding users.

– Free-riders are selfish participants that do not wish

to contribute resources to the Desktop Grid; rather,

they strive to exploit the computational resources of

unsuspecting or unprotected peers.

Collaborators not protected by a reputation system cannot

tell about the past behavior of peers they are about to interact

with. Hence, their resources are easily occupied by free-riders

that exploit this lack of protection. Technically, while both

accept any job, altruists and unprotected collaborators differ

in that altruists do not mind being exploited because they gain

utility from the mere act of unconditionally donating their

resources to others [25]. On the contrary, collaborators seek

reciprocity and shun exploitation. A reputation system enables

collaborators to assess the risk in dealing with other peers,

creating the opportunity to choose whether to engage in or

to abstain from an interaction with a given remote peer, and

generating incentives for peers to adopt reciprocity in their

own behavior.

The interaction between two peers is commonly modelled

as an instance of the Iterated Prisoner’s Dilemma where

both players can pick one of the strategies cooperate or

defect (i.e. attempt to exploit the other player) independently

from each other [23], [26], [27]. The situation depicts a

conflict between group rationality and individual rationality:

two rational players will make the game result in the game’s

only Nash equilibrium (defect, defect) which is individually

rational but not Pareto efficient since both would enjoy more

benefit if they had played (cooperate, cooperate). Regarding

the modelled types, altruists will always choose to cooperate

and free-riders will always choose to defect. Hence, two

altruists will cooperate, two free-riders will not cooperate,

and a free-rider will exploit the resources of an altruist but

neither will mind. On the contrary, collaborators seek other

collaborators (or alternatively, altruists): they are willing to

cooperate if the other player cooperates, too. In the original

Prisoner’s Dilemma or when the number of dilemma iterations

is known beforehand, defection is the rational strategy to

play. However, if the number of played rounds is unknown,

cooperation becomes the rational strategy. If rational players

cannot estimate the negative consequences of defection, they

are better off by choosing cooperation [27].

In P2P networks, peers may obtain non-persistent identities

at virtually no cost, leading to the whitewashing phenomenon

in which a selfish peer is tempted to leave and immediately

rejoin the network with a new identity after having performed

actions that are detrimental to its reputation in the first place

[19], [20]. With no persistent identities, there is no definitive

means to distinguish a true newcomer from a whitewasher.

Placing general mistrust in newcomers is one way to discour-

age whitewashing [5], [22]. The cost of this approach has been

assessed in [22]. An alternative to general mistrust has been

suggested in [19]. It consists of an adaptive stranger policy that

judges new peers on the basis of new peers’ behavior in the

past by maintaining a stranger account that accumulates recent

experience with new nodes. Plenty of free-riders joining the

Desktop Grid will tend to decrease a stranger account’s value,

while a majority of collaborators will increase it. Hence, a

stranger account may serve as a predictor for an unknown

peer’s reliability.

In this article, we propose to combine the adaptive stranger

policy with a super-peer-based approach. Super-peer overlays

consist of a comparatively small number of super-peers and

a large number of edge peers. At join time, a peer has a

neutral reputation with all other peers, influenced only through

the stranger account. When super-peers regularly charge their

edge peers reputation for the super-peer service and spread this

reputation information to other peers, an edge peer’s reputation

32

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

declines unless the edge peer performs work for other peers or

becomes a super-peer itself. However, to become a super-peer,

the SPSA protocol requires an edge peer to be appointed by

another super-peer. This way, a super-peer is free to choose a

trustworthy edge peer for promotion. We expect that with this

scheme, a reputation system will effectively repulse free-riders

in the long term.

IV. CONCEPT

The absence of a central authority leads to the issue of

effective resource discovery. Nodes will need to communicate

with their fellow peers to keep track of available resources,

handle job submissions and care for their completion. This

joint effort may be directed by a Desktop Grid middleware.

When run on every participating machine, it enables peers to

coordinate their actions, providing a platform for applications

to have arbitrary jobs processed by the Desktop Grid. In the

concept presented in this article, every peer can submit a

job which will be split into a number of tasks that may be

processed by other peers. A peer that processes a task will be

referred to as worker, whereas a peer that submits a job will

be referred to as initiator of that job. Every peer is supposed to

first compute a local power index based on a dummy job which

may be distributed along with a Desktop Grid middleware. The

computation of that job yields a benchmark number that eases

the comparison of the peers’ capabilities, similar to the Horse

Power Factor in [28].

Given a super-peer network in which every edge peer is

attached to exactly one super-peer each, our approach operates

in a distributed way and completely bypasses the need for a

virtual currency by relying on a reputation-based mechanism.

There is no single point of failure and no requirement for pre-

trusted nodes. Design goals have also included scalability and

churn resistance to enable the concept to prevail in a dynamic

environment. We ignore irrational malicious peers (i. e., those

who cause harm to the system without benefitting from such

action). To ensure fairness, cooperative peers grant reputation

to other peers for successfully completing a task and for acting

as a super-peer. The remainder of this section introduces all

components of our concept including the workflow model,

the proposed reputation system and incentives for peers to

collaborate.

A. Workflow

The workflow model assumes that initiators want to lease

computation time on idle workers. An initiator generally

wishes to minimize its job’s total time to completion (referred

to as makespan [7]). Following this approach, the time the

slowest worker takes will determine the makespan.

Two kinds of jobs are considered. The first kind is

independent-task applications (ITA), also known as bag-of-

tasks [5], where the workers process their tasks independently

and isolated from each other. Prominent examples for ITA

jobs include parameter-sweep applications [7]. Moreover, there

are connected problems (CP) [28] which benefit from the

interaction of workers, requiring the participating workers to

perform their computation efforts concurrently. For example,

connected problems include evolutionary algorithms that ad-

dress combinatorial optimization problems. There, workers

communicate with others to indicate that they have found a

new best known solution. That way, the best known solution

is replicated among the workers, removing the strict need to

replace a failing worker. Since the global optimum is unknown,

a criterion to terminate the computation is required, e. g.,

a deadline. In the ITA case, however, a job is split into a

number of tasks that are distributed among the workers. It

is unknown how long a task will take to be completed by a

worker, and a worker’s failure implies that its assigned task

must be computed again by another worker.

A potential initiator first determines its job requirements

which encompass the minimum and maximum numbers of

desired worker peers, a worker’s minimum acceptable local

power index, the job type (CP or ITA) and a deadline until

which all workers must have finished their computations. If the

initiator is an edge peer, it passes these requirements on to its

super-peer. The super-peer broadcasts a message containing a

request for worker participation and the job requirements to all

other super-peers, which, in turn, forward it to their attached

edge peers. Conversely, the super-peers collect approvals from

their edge peers and forward them to the initiator along with

details on their respective power index and availability. This

multiplexing reduces network load by preventing peers from

individually replying to the initiator. Now, the initiator holds

a list of worker candidates which it sorts according to power

index, reputation and availability, and picks a sufficient number

of workers which shall perform the distributed computation.

The workers start computing upon reception of code and data

transmitted to them by the initiator.

It is assumed that tasks running on worker peers can

contact the initiator anytime. That way, a task may return

its result after completion to the initiator, and may even

submit intermediate results as proof-of-work to confirm that

the worker has indeed provided the task with computational

resources. The results are returned directly by the task running

on the worker machine. A dishonest worker needs to know the

result message’s format to fake its contents, requiring it either

to tap the line and intercept the message sent by the running

task or to retrieve the message format from reengineering the

task’s code. Both ways entail efforts that exceed the effort of

computing the actual task. Hence, a rational peer will choose

to honestly compute the task. The workflow ends with the

initiator validating the partial results and merging them into

the complete outcome that would have resulted had the job

been computed on a single machine in a non-distributed way.

B. Reputation system

A reputation system collects information on the past behav-

ior of other peers [29], [30]. It enables cooperative peers to

identify other cooperative peers, and it creates incentives for

peers to act cooperatively by providing rewards for cooperative

behavior [29], [31]. It enables casting the “shadow of the

future” [27] which ensures that peers need to consider the

33

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

consequences of defection. Cooperative peers learn about the

true willingness of others to reciprocate only when requesting

remote resources on their own, but they can reduce the risk

of erroneously donating resources to uncooperative peers by

relying on a reputation system.

The model presented in this article has been built on the

notion that the contribution of computational resources for use

by others deserves rewards. These rewards are implemented

by positive feedback. In a Desktop Grid setting, peers prefer

to cooperate with other peers that have high reputation, and

they wish to establish and maintain the potential to become

successful initiators. This requires the ability to attract a

sufficient number of workers to have the job computed in

a reasonable period of time. Since the level of attraction is

directly linked to their individual reputation, peers benefit from

behaving in a way that earns them positive reputation. The aim

of the proposed reputation system is to enable cooperative

peers to detect free-riding initiators, shielding the detecting

peer from being exploited. The system is fully distributed:

every collaborating peer runs an instance of it. The proposed

model assumes that free-riders will not compute any tasks

for others; when collaborators refuse to compute tasks for

free-riders, free-riders are left with the choice to switch to

cooperative behavior or to leave the Desktop Grid.

Reputation systems differ in the way reputation is recorded.

If a peer records reputation information only on those peers

with which it has directly interacted in the past, the recorded

information is unforgeable, but in large dynamic systems with

considerable turnover, peers rarely encounter the same peer

again for interaction. In contrast, shared-history reputation

systems additionally incorporate experiences made by other

peers [19].

Reputation may also serve as a currency replacement.

Workers charge initiators a payment for the work they have

performed on behalf of the respective initiator; the payment

depends on the work’s volume and is deducted from the

initiator’s local reputation account held by the worker. This

way, reputation may be built by serving others and spent by

straining others.

In the context of Desktop Grids, spoof feedback, the trans-

mission of faulty or purposefully forged opinions on other

peers, is the most prominent kind of attack on shared-history

reputation systems [32]. In particular, a shared-history reputa-

tion system may face collusion, the phenomenon of interacting

selfish peers (colluders) that mutually forge reputation ratings

to benefit fellow peers in the colluder group and harm those

outside it. In the context of this article, a colluder always

attempts to free-ride.

Due to its purposeful, organized and durable nature, collu-

sion is a severe form of spoof feedback. If peers act selfishly

but autonomously, there is no incentive to spread counterfeit

reputation information on other peers. However, if a group of

colluding peers agrees to spread only positive information on

the group’s members to other peers, ordinary peers need to

remain vigilant when receiving shared-history feedback from

a remote peer. Systems in which all peers agree on a common

(objective) reputation for every peer are especially affected by

collusion [19].

In a super-peer scenario, colluders may become super-peers.

In this state, they may exert malevolent influence on their

edge peers. For instance, a super-peer which participates in a

collusion could decide to forward only messages from fellow

colluders and drop all others, or exchange forged reputation

with its edge peers. To assess threats of this kind, one may

consider the worst case that all free-riders know each other and

form a single collusion group. Let n be the number of peers

in the overlay out of which
√

n are super-peers as selected

by SPSA. Moreover, let p be the probability that an arbitrary

peer is a colluding free-rider. The number of super-peers which

belong to the colluder group follows the binomial distribution

with parameters
√

n and p. Let X be a random variable with

this distribution. Its distribution function is [33]

Pr(X ≤ x) = F(x) =
x

∑
i=0

(⌈√n⌉
i

)

· pi · (1− p)⌈
√

n⌉−i (1)

Hence, the probability that at least one of the super-peers is a

colluding free-rider amounts to

Pr(X ≥ 1) = 1−Pr(X ≤ 0) = 1− (1− p)⌈
√

n⌉ (2)

For a network of n = 100 peers and p = 0.1, this probability

equals 65.13%; at p = 0.2, it reaches 89.26% and at p = 0.3,

97.18%. To attain a probability of 50% that a colluder is

among the super-peers, the fraction of free-riders in a 100-

peer system need only be p = 0.067, i. e., 7 colluding peers

are already sufficient. In a 10000-peer system, it is p = 0.007,

requiring 70 colluders to achieve the same effect. These results

show that it is feasible for a comparatively small number of

colluding peers to get hold of a part of a super-peer overlay’s

infrastructure.

The impact of collusive behavior on P2P overlays becomes

still more severe with the Sybil attack which constitutes a

particularly intense special case of collusion [34]. It may occur

in systems where identities cannot be verified due to the lack

of a trustworthy authority. In the Sybil scenario, a group of

colluding peers may be controlled by the same entity. Hence,

the assumption of administrative autonomy and independence

of peers does not hold for the Sybil attack. There is no general

solution to this attack in fully distributed systems that satisfies

the requirements of efficiency and scalability, but a number

of approaches exist to limit the attack’s effects in various

application domains [35]. In Desktop Grids, besides weighting

remote feedback with the submitting peer’s credibility [19], a

similarity measure can alleviate the effects of spoof feedback

[31], [36]. Using a similarity measure, peers pay more atten-

tion to peers reporting similar opinions as one’s own.

Peers spread feedback on the behavior of other peers they

have interacted with. In particular, this concerns the initiator-

worker relationship. For this purpose, every peer maintains

a list of recent contacts, i. e., peers with which successful

interaction has taken place in the past. Additionally, peers

maintain reputation records on arbitrary other peers by keeping

34

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

a list of weighted positive (a) and weighted negative (b) ex-

periences per remote peer. From these parameters, a peer may

set up a β -distributed random variable B(a,b) for every remote

peer and use its mean to reflect the respective remote peer’s

trustworthiness. While raw feedback is binary (0 equals poor,

1 equals good performance), reputation may assume any value

v ∈ [0,1] due to feedback weighting and aggregation. Both a

and b will be initialized with 1 such that the distribution mean
a

a+b
equals the neutral reputation value, 0.5, in the beginning

[37]. This may be overridden by the stranger account.

To keep the reputation list size manageable, there shall be a

time window that will remove outdated peers (i. e., those with

no recent sign of activity). The list is split in two: one direct

interaction history and one holding shared-history information

received from other peers. Reputation is periodically spread to

the last batch of peers with which a peer has interacted in the

past (for every edge peer this includes its respective super-

peer). Stored reputation is subject to a periodically applied

exponential decay using a weighting factor z ∈ (0,1) to focus

on the rated peer’s recent behavior, effectively leading to a

short-term history [19], [37]. Essentially, for every remote peer

on which reputation information is available, the decay process

performs the following update:

a := 1 +(a−1) · z (3)

b := 1 +(b−1) · z (4)

That way, past reputation will fade out over time, taking the

distribution’s parameters gradually back to the initial setting

unless new reputation information arrives.

When a request for participation as a worker from an

initiator i with reputation r ji arrives at a peer j, j will check

with its reputation list if i is acceptable. Peer j instantly agrees

to become a worker for i if j’s directly observed reputation

about i exceeds 0.5, or j’s combined weighted local and

remote observations about i reach or exceed the neutral value

of 0.5. The neutral value’s inclusion at this point supports

bootstrapping the system in the beginning when no worker-

initiator interaction has taken place yet.

If i is rejected according to the aforementioned rule, j

switches to random-acceptance mode: i’s reputation with j is

compared to the moving average m of the last f seen initiators

incorporating a tolerance factor β ∈ [0,1]. If r ji > (1+β) ·m,

i is accepted, while i is rejected if r ji ≤ (1− β) · m. If

(1−β) · m ≤ r ji < (1 + β) ·m, j makes its decision on a

randomized basis by drawing a random number d ∈ [0,1] from

a uniform distribution. If d < r ji, i is accepted, otherwise it

is rejected. The random-acceptance mode supports the emer-

gence of cooperation in environments with many free-riders.

With a modest probability, it permits unknown collaborating

peers to be accepted as initiators. However, the higher the

tolerance level, the more free-riders are likely to pass through.

It is for this reason that β needs to be chosen carefully to avoid

an adverse impact on the reputation system’s effectiveness. In

all cases where no reputation information is available on an

initiator, the worker resorts to the stranger account.

Every peer i maintains an interval ti which defines the

frequency of its reputation exchange. This interval need not

equal the reputation decay interval. After a period of length

ti has elapsed, i transmits its stored reputation information

(the weighted average of the distribution means for both the

local and the remote observations) to the q members of its

recent contacts list. Since reputation information basically only

consists of one peer ID and one floating point number per

rated peer, the reputation-related message volume remains

reasonable. Peer i expects its contacted peers to reciprocate

by replying with their respective reputation information. If a

contacted remote peer fails to fulfill this expectation multiple

times in a row, i removes it from its contact list. That way,

the reputation exchange cycle encourages mutual updates.

When j receives a reputation list from i, j first checks

i’s credibility. Peer i’s information will be incorporated into

j’s remote reputation list if i’s reputation with j, r ji, or

the personalized similarity measure [36] between i and j,

quantified as s ji, exceeds the neutral value of 0.5. If i passes

this test, j proceeds with normalizing the received reputation

items (votes) to avoid subjective exaggerations, otherwise i’s

information is discarded. In the positive case, let vik be the

vote cast by i about peer k. For every vote vik submitted by i,

j now computes

v∗ik =
vik −0.5

∑l |vil −0.5| (5)

to normalize i’s information, yielding v∗ik ∈ [−1,1]. Let

r∗ji = α + max
{

0, 2 · (1−α) · (r ji−0.5)
}

(6)

with α ∈ [0,1] being the minimum weight that j applies to

remote opinions. r∗ji ∈ [α,1] expresses the particular weight

which j associates with i’s opinion. Let g ji be that weight

weighted with the similarity between i and j, i. e., g ji := s ji ·
r∗ji, to yield the final weight j applies to each of i’s votes.

Ultimately, for every v∗ik, j updates its remote observation list:

if v∗ik > 0, i’s opinion on k is positive, hence j sets a jk :=
a jk +g ji ·v∗ik. If v∗ik < 0, i’s opinion on k is negative, so j sets

b jk := b jk + g ji · v∗ik.

Local reputation is modified as the outcome of a worker-

initiator relationship. Workers receive rewards from initiators

for completed tasks only. Hence, workers will want to finish

an ongoing computation. An initiator i determines a worker’s

reputation gain primarily by the computation time the worker

has expended. Concisely, let w be the worker in question, t

the number of i’s reputation periods – including fractions – of

length ti the task has occupied computational resources on w,

and powerx the local power index of peer x. Now, i quantifies

w’s work effort hiw as

hiw =
powerw

poweri

· t (7)

Peer i recomputes the β -distribution parameters it keeps for w,

aiw and biw. If w has completed its task, i sets aiw := aiw +hiw,

otherwise biw := biw + 2 · hiw, as a direct observation. The

factor of 2 serves as a penalty for the failed completion of

a task. Note that neither i’s choice of its reputation update

35

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

interval length ti nor the worker-initiator power ratio biases the

reputation propagation as reputation information transmitted to

other peers is processed in an aggregated form only (by means

of the distribution mean), independent of both the interval

length and the power ratio.

Workers charge initiators reputation as the price of compu-

tation by adding negative feedback to the respective initiator’s

local reputation account. Since free-riders do not accrue posi-

tive reputation on their own, subsequent requests for workers

by free-riders will be declined.

C. Incentives

We wish to obtain a self-sustaining system with a mutual

reputation exchange. To this end, we propose a reputation-

based incentive scheme that operates without the need to

exchange virtual money. Rather, it fosters reciprocity in a

dynamic environment. This scheme is built on the notion of

positive reputation that may be obtained by adequate behavior.

Positive reputation can only be earned by accomplishing work,

boosting the willingness of peers to become workers. The

following actions supplement the model’s incentive scheme:

• Workers and initiators have established a trustful re-

lationship after having successfully cooperated. After-

wards, they begin to exchange reputation information

periodically. In our model, successfully completing a

worker-initiator cycle or becoming part of a super-peer-

edge-peer relationship are the only ways to exchange

reputation information with another peer. If either peer

cheats, the other peer will consider the relationship not

to be a success. However, both peers are interested in

reputation information about other peers, and successfully

interacting over a longer period of time builds mutual

trust. This hampers collusion as any peer wanting to

spread false feedback will first need to complete a worker-

initiator cycle or become a super-peer. Moreover, peers

will stop transmitting reputation information to other

peers if these remote peers do not provide reputation

information themselves. This is similar to the Tit-for-Tat

reputation exchange strategy used in [32]. We suggest the

reputation exchange between two peers to be alternately

initiated. This prevents peers from cheating by replying

with the same reputation values it has just received; it

also prevents the similarity measure from being tricked,

because with equal reputation ratings, the similarity is

maximum (1).

• Super-peer activity is considered a computation job with

unknown duration. All edge peers are considered initia-

tors and their respective super-peer is the single worker

of their job. Consequently, super-peers charge their edge

peers reputation while edge peers grant their super-peers

reputation. Peers can receive an additional incentive to

become super-peers by granting a super-peer the right

to require its attached edge peers to compute a task

for it. Every edge peer takes its turn in a round-robin

or randomized fashion, and the turn length equals the

length of the super-peer’s reputation exchange interval.

That way, every edge peer expends some computation

power to the super-peer once in a while. If a super-peer

attempts to cheat by requiring one edge peer too often to

compute a task, that edge peer may disconnect at any time

and seek another super-peer. Conversely, if an edge peer

refuses to compute, the super-peer itself disconnects the

link. The job may concern the computation of an arbitrary

problem, or in the default case, be a dummy job which

returns proof-of-work messages to the super-peer.

With these incentives, it becomes attractive for peers to

become super-peers and to exchange reputation information

with others.

V. EXPERIMENTS

A reputation system faces the challenge of distinguishing

cooperative from free-riding peers. In the beginning, all peers

consider all other peers equal due to lack of experience. With

time passing, collaborators interact with other collaborators.

Hence, the proposed reputation system is expected to adapt to

its environment over the course of time, accepting a limited

number of free-riders in the beginning but repelling them

after having swung in. To assess the performance of our

approach, a number of experiments have been conducted in

a custom discrete-event simulation environment using Java

[12]. We were particularly interested in the speedup attained

by our Desktop Grid concept compared to single-machine

computation and in its resistance to free-riders. We also wanted

to determine the impact of free-riding behavior on unprepared,

unprotected Desktop Grids. We have expected the average

makespan of jobs to increase with the number of free-riders.

In our experiments, the makespan computation has exclusively

concerned jobs initiated by cooperative peers. The makespan

experienced by free-riders has not been taken into account as

the utility of free-riders is considered irrelevant in this context.

A. Setup

Initiators are anticipated to submit computationally intensive

jobs only since small jobs may be computed locally without

needing to deal with the additional complexity of a Desktop

Grid [18]. Hence, a Desktop Grid is likely to be exposed to

jobs that would otherwise be processed by supercomputer-

class systems. To model the volume of such jobs, we have

resorted to real-world workload traces1 of jobs processed by

a Linux cluster at the Ohio Supercomputing Center. After

data sanitization, the data of 30414 jobs were available. In

a simulation experiment, jobs were either all CP or all ITA; in

the ITA case, the initiator did not know about the length of the

job, so every ITA job was actually distributed. Since ITA jobs

tend to exert more negative influence on the average makespan

than CP jobs due to the unknown runtime, ITA jobs have been

chosen unless noted otherwise. Cooperative peers initiated jobs

independently from their current local load. The interarrival

time between two jobs submitted by the same cooperative

1from http://www.cs.huji.ac.il/labs/parallel/workload/l osc/index.html

36

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

peer was modelled as a uniformly distributed random variable

U(0;5 ·median single-machine CPU time per job).
The sample network consisted of 100 nodes with known

RTT between all nodes as measured on PlanetLab [38],

[39]. The maximum delay was estimated at 3 seconds. The

simulation environment included a SPSA super-peer overlay

optimization process running on every peer which reshaped

the overlay for low end-to-end communication delay.

The reputation spreading scheme pushed reputation infor-

mation to the elements of its recent contacts list (workers,

initiators, and, in case of an edge peer, its super-peer) every

45 seconds of simulated time. The reputation aggregation

mechanism placed a weight of 0.75 on local and a weight

of 0.25 on remote observations. The history decay factor z

was set to z = 0.999 to enable a graceful decay and long

keeping of positive reputation accrued through previous work

for other peers. To limit the load, the recent contacts list has

been restricted to q = 10 elements and the unique initiator

reputation history also to f = 10 elements. The minimum

granted reputation weight α was set to 0.1, the random-

acceptance tolerance level β to 0.02. After having completed

a task, worker j modified an initiator i’s local reputation by

setting a ji := a ji +
1
4
· tc and b ji := b ji +

3
4
· tc, where tc is the

number of reputation intervals – including fractions – that j

has spent computing i’s task.

Free-riding behavior has been modelled as the refusal to

accept foreign tasks for local computation, the desire to

submit a job for distributed computation upon entry, and the

departure from the system when the job has been completed.

Once a free-rider had left the system, a very brief period of

simulated time (3 seconds) elapsed until it was replaced by

another free-rider which immediately attempted to submit a

new job. This aggressive behavior partially suppressed the

establishment of reputation-backed cooperative relationships

and spread mistrust in the system due to the large amount of

jobs initiated by free-riders; it strained the reputation system,

testing a case which is substantially more severe than is likely

to be encountered in practice due to the exceedingly high

volume of jobs submitted by free-riders. Free-riders attempted

10 times to distribute their job before giving up on that job.

Additionally, in some experiments, free-riders could collude.

Collusion has been modelled on the basis of the wish to

spread reputation information which maximally benefits all

members of the colluding peer group while at the same time,

maximally debases all other peers to reduce their capability

to initiate a job of their own. Hence, a colluder’s feedback

on fellow colluders was quantified as 1, while feedback on

other peers was quantified as 0. We have followed a worst-

case evaluation approach, assuming that all free-riders in the

system are colluders, and there is only one colluder group

in the system, i. e., every colluder knows all other colluders.

In our system, the only way to transmit forged reputation

information to a collaborating peer is through the super-

peer-edge-peer relationship. Since super-peers and edge peers

consider themselves workers and initiators, respectively, they

exchange reputation information until the colluding peer has

completed its job and leaves the overlay.

While our model supports heterogeneous worker capabil-

ities, we have assumed identical peer equipment in these

experiments to facilitate comparisons. The willingness of peers

to process tasks has been limited to a maximum of 24 hours of

computation time per task. The simulation lasted for 7 days of

simulated time. The admission of jobs has been narrowed to

include only those of 10 days or less of total computation time

on a single CPU. Moreover, jobs with very short CPU time

requirements (less than 5 minutes) have been removed because

such jobs are unlikely to be distributed on a Desktop Grid. In

total, 18156 jobs have met the admission requirements and as

such, have been made available to the simulation environment.

The longest admitted job required 8 days and 5 hours on a

single CPU, the shortest one 5 minutes. Median job CPU

time consumption equalled 5 hours, 48 minutes. For every

experimental scenario, 30 runs have been performed.

B. Results

We have first examined the impact of free-riding behavior

on a Desktop Grid with cooperative workers not protected

by a reputation scheme. To this end, we have exposed the

system to free-rider fractions of various sizes and measured the

average makespan experienced by cooperative peers. Figure 2

shows the outcome, confirming that the makespan grows with

the fraction of free-riders. This reflects the negative impact of

free-riders on system performance, highlighting the necessity

to introduce countermeasures that inhibit free-riding.

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

80% free-riders
50% free-riders
20% free-riders
10% free-riders

no free-riders

Fig. 2. Effects of free-riding on average makespan

In another experiment, the performance of a free-riding-

resilient Desktop Grid which uses the proposed reputation

system has been compared to an unprotected but otherwise

identical Desktop Grid. Figures 3, 4, 5 and 6 show the

outcome for free-rider levels of 10 %, 30 %, 50 % and 70 %,

respectively. The makespan is considerably lower when a

reputation scheme is available to the collaborating peers than

in the original setting where unprotected collaborating peers

cannot detect free-riders. With free-riders in the system, the

reputation system takes time in the beginning to adapt to

the environment but then swings into stabilizing the average

37

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

without reputation system
with reputation system and collusion

with reputation system

Fig. 3. Average makespan for jobs with 10 % free-riders in the Desktop Grid

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

without reputation system
with reputation system and collusion

with reputation system

Fig. 4. Average makespan for jobs with 30 % free-riders in the Desktop Grid

makespan at a low level in the long term. This fact implies

that our concept does actually exhibit the desired resilience

towards free-riders.

From the figures, it can be seen that the reputation system

resists a collusion but fares worse than with independent free-

riders. Colluders, like regular free-riders, whitewash and return

with a new identity 3 seconds after having left the Desktop

Grid. If colluders take more time to return, the situation

improves. Figure 7 depicts the average makespan for a free-

rider fraction of 50% when colluding peers take time to

return to the overlay with a whitewashed identity after having

left with their job completed. Their respective return time is

randomly drawn from a uniformly distributed random variable

bounded by the time limits given in the figure. While collusion

still retains an impact on the average makespan, it is far less

severe than in the aggressive case represented by a constant

3-second delay.

The handling of requests for participation in a scenario

with 10% free-riders is illustrated by Figure 8. It shows

the cumulative numbers of tasks accepted and declined by

worker peers, differentiated between free-riders and collab-

orators, the latter being either unprotected or protected by

the proposed reputation system. The figure proves that in

the unprotected case, collaborators’ resources are quickly

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

without reputation system
with reputation system and collusion

with reputation system

Fig. 5. Average makespan for jobs with 50 % free-riders in the Desktop Grid

 0

 50

 100

 150

 200

 250

 300

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

without reputation system
with reputation system and collusion

with reputation system

Fig. 6. Average makespan for jobs with 70 % free-riders in the Desktop Grid

exhausted by the requests of free-riders, hence few resources

remain for computing tasks initiated by other collaborators.

In contrast, collaborators protected by the reputation system

decline the vast majority of free-riders’ requests. As desired,

this behavior enables them to dedicate their resources to other

collaborators.

The speedup of jobs has been depicted in Figure 9, with

speedup defined as the ratio of the single-machine makespan

to the makespan attained in the distributed computation case.

This experiment has been conducted to quantify the general

benefit of Desktop Grids which is to accelerate the compu-

tation of arbitrary jobs using otherwise idle resources. As

also seen in Figure 3, the speedup of jobs drops to a low

level already with as little as 10% of free-riding peers if

protection against free-riders is unavailable. The experimental

results confirm that in the optimal case with all peers being

altruists and zero overhead from a reputation system, a 100-

peer Desktop Grid can generate a peak average speedup of

approximately 60. The overhead generated by the reputation

system exerts only a small influence on the speedup. This

can also be seen in Figure 10 which relates to the average

makespan: ensuring scalability, the proposed reputation sys-

tem adds little overhead to the Desktop Grid’s operations.

Figure 10 depicts a comparison between two Desktop Grids

38

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

 0

 50

 100

 150

 200

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

3 seconds
3 seconds/no collusion

within 30 minutes
within 1 hour

within 3 hours
within 6 hours

Fig. 7. Average makespan under collusion when colluders take time to return

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 1 2 3 4 5 6 7

T
as

k
s

Time [day]

Unprotected peer accepts free-rider
Protected peer rejects free-rider

Protected peer accepts collaborator
Unprotected peer accepts collaborator

Protected peer accepts free-rider

Fig. 8. Cumulative numbers of accepted and declined tasks

populated with cooperative peers only: one completely un-

protected system with all peers as altruists, and one system

protected with our approach with all peers as collaborators.

Since job volumes differ considerably, large-volume jobs can

increase the makespan as seen in the figure. A volume-adjusted

assessment of the overhead impact is given in Figure 11 which

shows the average number of workers per job. Apart from the

initial phase where collaborative peers first need to gain trust

in each other under the control of the proposed reputation

system, the difference in performance remains minor.

In summary, the simulation experiments confirm the effec-

tiveness of the proposed reputation system. With only a minor

effect on efficiency caused by the administrative overhead, the

system enables cooperative peers to detect and avoid free-

riders, fostering reciprocative behavior in the Desktop Grid.

VI. RELATED WORK

The benefits of self-organizing P2P structures to Desktop

Grids have been pointed out in [6]. Decentralized control well

suits Desktop Grids which can encompass millions of desktop

computers. The approach in [6] is based on mobile agents

forming a tree-like overlay. It considers altruistic behavior

only, and its capability to deal with peer failures is limited.

A two-layered middleware for distributed computing in P2P

overlays has been introduced in [28] by the name of Vishwa.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1 2 3 4 5 6 7

S
p

ee
d

u
p

Time [day]

unprotected, no free-riders
protected, no free-riders

protected, 10% free-riders
unprotected, 10% free-riders

Fig. 9. Average speedup through distributed computation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 1 2 3 4 5 6 7

M
ak

es
p

an
 [

m
in

]

Time [day]

with reputation system
without reputation system

Fig. 10. Influence of reputation system on average makespan

Vishwa incorporates load migration, fault-tolerance, and a

notion of proximity awareness as nearby peers form clusters,

but it is still based on altruistic peer behavior and does not tap

the benefits of super-peer overlays.

The free-riding phenomenon affects distributed systems

whose benefit relies on voluntary contributions from its selfish

participants. Free-riding has been observed in P2P file-sharing

networks as a cause for performance degradation [16], [19],

[21]. Due to a different nature of resources in Desktop Grids,

solutions for free-riding prevention in file-sharing networks

need to be modified for a Desktop Grid setting. While files

may be distributed and stored, CPU cycles are volatile and

can neither be stored nor replicated.

An application-neutral reputation scheme is introduced in

[17]. It is based on solicited first-hand feedback acquired

through time-to-live-bounded random walk sampling. Its util-

ity for Desktop Grids is limited because of the expensive

polling scheme and the inability to deal with considerable

churn. As [19] confirms, a shared interaction history fits

large-scale, churn-prone settings better than a witness-only

approach.

The EigenTrust algorithm creates a global trust estimate

in a distributed way, based on the concept of transitive trust

[21], [40]. However, EigenTrust relies on a set of pre-trusted

39

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5 6 7

W
o

rk
er

s/
Jo

b

Time [day]

without reputation system
with reputation system

Fig. 11. Influence of reputation system on average number of workers per
job

peers, does not incorporate the advantages of super-peers, and

is susceptible to collusion.

OurGrid is a Desktop Grid which also incorporates a

reputation mechanism, the Network of Favors [5], [18]. Our-

Grid is not super-peer-based, and the accumulated reputation

does not decay over time. As with [17], reputation concerns

direct witnesses of interactions in OurGrid only which is

incompatible with substantial dynamics.

The framework introduced in [41] explicitly benefits from

the presence of super-peers. Resorting to threshold cryptogra-

phy, it focuses on the security aspects of feedback submission

among peers. It does not intend to specify a reputation scheme

itself, and due to its application-neutral scope, provides no

insight into Desktop Grid workflows.

The reputation scheme proposed in [42] incorporates the

notion of incentive-compatibility from the field of mechanism

design. It solves the problem of forged feedback on other

peers’ past performances by seeing to it that telling the truth is

in the best self interest of the reporting peers. The basic idea is

to spread reputation information via specialized intermediary

peers called R-agents. Instead of spreading own feedback

directly to other peers, a peer buys reputation information from

and sells its own experience with other peers to trustworthy R-

agents. While it solves the problem of truthfulness, the scheme

exhibits several drawbacks. It requires at least one R-agent

to be present in the system at all times, it depends on all

R-agents being trustworthy at all times, and it is susceptible

to collusion. Also, the scheme suffers from the disadvantage

of establishing truthfulness using payments according to the

mechanism design approach: there needs to be a virtual

currency which all peers in the system, including the R-agents,

accept.

With respect to reputation systems, [29] distinguishes sym-

metric from asymmetric approaches. In symmetric systems,

the computation of a remote peer’s reputation happens under

anonymity; peer identities can be exchanged as long as the

trust graph’s topology remains unmodified. Except for the

trivial constant variant, symmetric reputation functions are

vulnerable to collusion. In contrast, asymmetric reputation

functions apply when every peer computes remote peer repu-

tations by itself, and can be shown to withstand Sybil attacks

under certain conditions. The reputation system proposed in

this article uses an asymmetric approach.

A different form of free-riding in P2P networks concerns

message routing in the overlay. If peers are unwilling to

forward or answer queries, the overlay itself may not work as

desired. Exploiting properties of the CAN overlay topology,

[32] introduces a distributed reputation system designed to

thwart uncooperative behavior in the context of message

propagation.

In Desktop Grids, workers may cheat by choosing not to

compute their assigned task but to return arbitrary data. To

counter this, a replication approach might assign the same

task to multiple workers and pick the correct result through

majority voting. An alternative to this is Quiz [43] which

assigns a number of tasks to one worker, including a Quiz

task of which the submitting peer already knows the result.

If the Quiz task is properly processed, the worker is assumed

to have processed the other tasks properly, too. This sampling

method is found to be superior to task replication. It is used in

a Desktop Grid scheme which also includes reputation, Cluster

Computing on the Fly [43].

VII. CONCLUSION AND FUTURE WORK

Desktop Grids offer attractive opportunities for large-scale

distributed computation. However, free-riding behavior may

severely degrade a Desktop Grid’s performance. In this ar-

ticle, we have presented a distributed reputation system for

dynamic super-peer-based Desktop Grids with selfish peers.

All components of our contribution – the reputation system,

the underlying super-peer topology and the accompanying

workflow model – are designed for scalability, and there is

neither a single point of failure nor a need for pre-trusted

nodes. Moreover, our concept effectively detects free-riding

peers, encouraging cooperative peers to contribute resources.

In simulations, we have empirically verified our proposed

scheme’s effectiveness. Future work includes the integration

of a super-peer structure which interconnects the super-peers

with a Chord ring [44], [45]. Moreover, to tackle the effects of

collusion in scenarios with large fractions of colluding peers,

we consider a multi-level similarity measure that incorporates

the confidence into one’s own ratings to better deal with

collusion and less severe forms of spoof feedback. We also

plan to use network coordinates for delay-optimized worker

selection in CP scenarios where jobs benefit from inter-worker

communication. Ultimately, we intend to deploy our proposed

scheme on PlanetLab.

REFERENCES

[1] Peter Merz, Florian Kolter, and Matthias Priebe. Free-Riding Prevention
in Super-Peer Desktop Grids. In Proceedings of the 3rd International
Multi-Conference on Computing in the Global Information Technology,

ICCGI 2008, IARIA, pages 297–302, 2008.
[2] Ian T. Foster and Adriana Iamnitchi. On Death, Taxes, and the

Convergence of Peer-to-Peer and Grid Computing. In Proceedings of
the 2nd International Workshop on Peer-to-Peer Systems, pages 118–
128, 2003.

40

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

[3] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan
Werthimer. SETI@home: an experiment in public-resource computing.
Communications of the ACM, 45(11):56–61, 2002.

[4] David P. Anderson and Gilles Fedak. The Computational and Storage
Potential of Volunteer Computing. In Proceedings of the 6th IEEE

International Symposium on Cluster Computing and the Grid, pages
73–80, 2006.

[5] Nazareno Andrade, Francisco Vilar Brasileiro, Walfredo Cirne, and
Miranda Mowbray. Automatic grid assembly by promoting collaboration
in Peer-to-Peer grids. Journal of Parallel and Distributed Computing,
67(8):957–966, 2007.

[6] Arjav J. Chakravarti, Gerald Baumgartner, and Mario Lauria. The or-
ganic grid: self-organizing computation on a Peer-to-Peer network. IEEE

Transactions on Systems, Man, and Cybernetics, Part A, 35(3):373–384,
2005.

[7] Noriyuki Fujimoto and Kenichi Hagihara. A Comparison among Grid
Scheduling Algorithms for Independent Coarse-Grained Tasks. In
Proceedings of the 2004 Symposium on Applications and the Internet

Workshops, pages 674–680, 2004.

[8] Derrick Kondo, Michela Taufer, Charles L. Brooks, Henri Casanova,
and Andrew A. Chien. Characterizing and Evaluating Desktop Grids:
An Empirical Study. In Proceedings of the 18th International Parallel
and Distributed Processing Symposium, 2004.

[9] Adriana Iamnitchi and Ian T. Foster. A Peer-to-Peer Approach to Re-
source Location in Grid Environments. In Jarek Nabrzynski, Jennifer M.
Schopf, and Jan Weglarz, editors, Grid resource management: state of
the art and future trends, pages 413–429. Kluwer, 2004.

[10] Beverly Yang and Hector Garcia-Molina. Designing a Super-Peer
Network. In Proceedings of the 19th International Conference on Data
Engineering, pages 49–62, 2003.

[11] Gian Paolo Jesi, Alberto Montresor, and Özalp Babaoglu. Proximity-
Aware Superpeer Overlay Topologies. In Alexander Keller and Jean-
Philippe Martin-Flatin, editors, Proceedings of SelfMan’06, volume 3996
of Lecture Notes in Computer Science, pages 43–57. Springer, 2006.

[12] Peter Merz, Matthias Priebe, and Steffen Wolf. A Simulation Framework
for Distributed Super-Peer Topology Construction Using Network Coor-
dinates. In Proceedings of the 16th Euromicro Conference on Parallel,

Distributed and Network-based Processing, pages 491–498, 2008.

[13] Peter Merz, Matthias Priebe, and Steffen Wolf. Super-Peer Selection in
Peer-to-Peer Networks using Network Coordinates. In Proceedings of
the 3rd International Conference on Internet and Web Applications and

Services, pages 385–390, 2008.

[14] Russ Cox, Frank Dabek, M. Frans Kaashoek, Jinyang Li, and Robert
Morris. Practical, distributed network coordinates. Computer Commu-

nication Review, 34(1):113–118, 2004.

[15] Eugene Ng and Hui Zhang. Predicting Internet Network Distance with
Coordinates-Based Approaches. In Proceedings of IEEE INFOCOM,
2002.

[16] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella. First

Monday, 5(10), 2000.

[17] Emmanuelle Anceaume and Aina Ravoaja. Incentive-Based Robust
Reputation Mechanism for P2P Services. In Proceedings of the 10th

International Conference on Principles of Distributed Systems, pages
305–319, 2006.

[18] Nazareno Andrade, Francisco Vilar Brasileiro, Walfredo Cirne, and
Miranda Mowbray. Discouraging Free Riding in a Peer-to-Peer CPU-
Sharing Grid. In Proceedings of the 13th International Symposium on
High-Performance Distributed Computing, pages 129–137, 2004.

[19] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust
incentive techniques for Peer-to-Peer networks. In Proceedings of the

5th ACM Conference on Electronic Commerce, pages 102–111, 2004.

[20] Michal Feldman, Christos H. Papadimitriou, John Chuang, and Ion
Stoica. Free-riding and whitewashing in Peer-to-Peer systems. IEEE

Journal on Selected Areas in Communications, 24(5):1010–1019, 2006.

[21] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
Incentives for Combatting Freeriding on P2P Networks. In Proceedings

of the 9th International Euro-Par Conference, pages 1273–1279, 2003.

[22] Eric J. Friedman and Paul Resnick. The Social Cost of Cheap
Pseudonyms. Journal of Economics & Management Strategy, 10(2):173–
199, 06 2001.

[23] John Chuang. Designing incentive mechanisms for peer-to-peer sys-
tems. In Proceedings of the 1st IEEE International Workshop on Grid

Economics and Business Models, pages 67–81, 2004.

[24] Michal Feldman and John Chuang. Overcoming free-riding behavior in
Peer-to-Peer systems. ACM SIGecom Exchanges, 5(4):41–50, 2005.

[25] Philippe Golle, Kevin Leyton-Brown, and Ilya Mironov. Incentives
for sharing in peer-to-peer networks. In Proceedings of the 3rd ACM

Conference on Electronic Commerce, pages 264–267, 2001.
[26] Seth James Nielson, Scott Crosby, and Dan S. Wallach. A Taxonomy

of Rational Attacks. In Proceedings of the 4th International Workshop

on Peer-to-Peer Systems, pages 36–46, 2005.
[27] Robert Axelrod. The evolution of cooperation. Basic Books, New York,

1984.
[28] M. Venkateswara Reddy, A. Vijay Srinivas, Tarun Gopinath, and

D. Janakiram. Vishwa: A reconfigurable P2P middleware for Grid
Computations. In Proceedings of the International Conference on

Parallel Processing, pages 381–390, 2006.
[29] Alice Cheng and Eric Friedman. Sybilproof reputation mechanisms. In

Proceedings of the 2005 ACM SIGCOMM workshop on Economics of

Peer-to-Peer systems, pages 128–132, 2005.
[30] Paul Resnick, Ko Kuwabara, Richard Zeckhauser, and Eric Friedman.

Reputation systems. Communications of the ACM, 43(12):45–48, 2000.
[31] Sebastian Kaune, Konstantin Pussep, Gareth Tyson, Andreas Mauthe,

and Ralf Steinmetz. Cooperation in P2P Systems through Sociological
Incentive Patterns. In Proceedings of the 3rd International Workshop on
Self-Organizing Systems, pages 10–22, 2008.

[32] Klemens Böhm and Erik Buchmann. Free riding-aware forwarding in
Content-Addressable Networks. The VLDB Journal, 16(4):463–482,
2007.

[33] Jerry Banks, John S. Carson, and Barry L. Nelson. Discrete-event system

simulation. Prentice Hall, Upper Saddle River, NJ, 1996.
[34] John R. Douceur. The Sybil Attack. In Proceedings of the 1st

International Workshop on Peer-to-Peer systems, pages 251–260, 2002.
[35] Brian Neil Levine, Clay Shields, and N. Boris Margolin. A Survey of

Solutions to the Sybil Attack. Technical report 2006-052, University of
Massachusetts Amherst, Amherst, MA, 2006.

[36] Mudhakar Srivatsa, Li Xiong, and Ling Liu. TrustGuard: countering
vulnerabilities in reputation management for decentralized overlay net-
works. In Proceedings of the 14th international conference on the World

Wide Web, pages 422–431, 2005.
[37] Audun Josang and Roslan Ismail. The Beta Reputation System. In

Proceedings of the 15th Bled Electronic Commerce Conference, 2002.
[38] Suman Banerjee, Timothy G. Griffin, and Marcelo Pias. The Inter-

domain Connectivity of PlanetLab Nodes. In Proceedings of the 5th

International Workshop on Passive and Active Network Measurement,
pages 73–82, 2004.

[39] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Pe-
terson, Mike Wawrzoniak, and Mic Bowman. PlanetLab: an overlay
testbed for broad-coverage services. Computer Communication Review,
33(3):3–12, 2003.

[40] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina.
The EigenTrust algorithm for reputation management in P2P networks.
In Proceedings of the 12th International World Wide Web Conference,
pages 640–651, 2003.

[41] Tassos Dimitriou, Ghassan Karame, and Ioannis T. Christou. SuperTrust
- A Secure and Efficient Framework for Handling Trust in Super Peer
Networks. In Proceedings of the 9th International Conference on
Distributed Computing and Networking, pages 350–362, 2008.

[42] Radu Jurca and Boi Faltings. An Incentive Compatible Reputation
Mechanism. In Proceedings of the IEEE Conference on E-Commerce,
pages 285–292, 2003.

[43] Shanyu Zhao, Virginia Lo, and Chris GauthierDickey. Result Verification
and Trust-Based Scheduling in Peer-to-Peer Grids. In Proceedings of the

5th IEEE International Conference on Peer-to-Peer Computing, pages
31–38, 2005.

[44] Ion Stoica, Robert Morris, David Karger, Frans M. Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for internet
applications. In Proceedings of the 2001 SIGCOMM conference on
Applications, technologies, architectures, and protocols for computer

communications, pages 149–160, 2001.
[45] Peter Merz, Steffen Wolf, Dennis Schwerdel, and Matthias Priebe. A

Self-Organizing Super-Peer Overlay with a Chord Core for Desktop
Grids. In K.A. Hummel and J.P.G. Sterbenz, editors, Proceedings of the

3rd International Workshop on Self-Organizing Systems, volume 5343
of Lecture Notes in Computer Science, pages 23–34. Springer, 2008.

41

International Journal On Advances in Security, vol 2 no 1, year 2009, http://www.iariajournals.org/security/

