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Abstract—The vicious cycle of malware attacks on
infrastructures and systems has continued to escalate
despite organizations’ tremendous efforts and resources in
preventing and detecting known threats. One reason is that
standard reactionary practices such as defense-in-depth
are not as adaptive as malware development. By utilizing
zero-day system vulnerabilities, malware can successfully
subvert preventive measures, infect its targets, establish
a persistence strategy, and continue to propagate, thus
rendering defensive mechanisms ineffective. In this paper,
we propose sterilized persistence vectors (SPVs) - a proac-
tive Defense by Deception strategy for mitigating malware
infections that leverages a benign rootkit to detect changes
in persistence areas. Our approach generates SPVs from
infection-stripped malware code and utilizes them as
persistent channel blockers for new malware infections.
We performed an in-depth evaluation of our approach on
Windows systems, versions 7 and 10, and Ubuntu Linux,
Desktop, Server, and Core 22.0.04, by infecting them with
2000 different malware samples, 1000 per OS typing, after
training the system with 2000 additional samples to fine-
tune the hashing. Based on the memory analysis of pre-and
post-SPV infections, our results indicate that the proposed
approach can successfully defend systems against new
infections by rendering the malicious code ineffective and
inactive without persistence.

Keywords— Malware; Rootkit; Reverse Engineering; Per-
sistence; Defence by Deception.

I. INTRODUCTION

Malware is a continued threat against cyber systems. Char-
acterized by stealthiness, persistence, and mutation, new-
generation malware often utilizes various system vulnerabil-
ities for infection and then leverages standard system func-
tionality to maintain persistence. With a suitable persistence
strategy, malware can remain active and prolong its existence
on a host system. One of the strengths of modern malware
development is its adaptability: methodologies mutate rapidly,
targeting areas where security measures are weaker or nonex-
istent. This is true across all systems, but specifically against
Windows and Linux platforms. Windows continues to hold
the majority of new and unique malware samples due to

its position as the most distributed OS in the marketplace,
while Linux has been seeing exponential growth, growing
646 percent in samples from 2021 to 2022 [6], as shown in
Figure 1. In both related literature and practice, many malware
defensive techniques have been proposed - (1) antiviruses and
host-based intrusion detection [33], [82], (2) integrity checking
[49], [51], (2) integrity checking [31], [42], detection [10],
[28], [40], [41], [49], [51], and (3) after-effect or post-mortem
analysis [12], [14], [34], [44], [45], [80] of modern malware.
However, as evidenced by the continued rise in stealthier attack
scenarios, new samples, and variant development [19], these
defensive approaches fall short of addressing a growing threat.

The common theme of these techniques is identifying
the problem either before infection through signature or
anomaly detection or after infection through system scans.
Neither provides a general means to stop malware due to
its adaptability. These ideas of a responsive or reactionary
approach to detecting and preventing malware infections, in
many respects, play to malware’s strengths. Because of the
above mentioned limitations, we propose SPVs - a Defense
by Deception approach. Our methodology aims to drastically
reduce malware infections by reducing the available areas of
persistence for a malicious actor’s exploits, including zero-
day attacks. Our approach employs malware code segments to
defend a target system against future infection, thus serving as
a defensive mechanism. This novel technique is a drastic shift
from the conventional utilization of malware code for signature
detection and fingerprinting. In our proposed approach, we
place blockers called SPVs in critical areas of persistence on
target systems. These SPVs are persistence and deployment
elements stripped from the various malware samples analyzed.
Essentially, SPVs prevent a new malware infection by blocking
it from writing its own vector or overwriting the persistence
vector associated with already established malware. With this
approach, malware loses its ability to persist and is prevented
from executing its payloads and consequently propagating
further. Thus, in this extended version of our prior conference
paper [1], we implemented the prototype of our SPV by
manually building a library of 200 payload-stripped SPVs into
the Defense by Deception code base, which is then compiled
into a target system and deploying at system startup. The
Defense by Deception code called the SPVExec on Windows
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Fig. 1. Malware Growth By Year [6]

and SPVLUEXEC on Linux, then administered as a malware
defensive apparatus on a need basis automatically at system
runtime without user intervention. The empirical results of the
evaluation on Windows 7 and 10, as well as Ubuntu Desktop,
Server, and Core 22.0.04, for pre- and post-SPV deployment
infected with 2000 malware samples, showed that the use of
SPVs is a very effective strategy for malware defense. For 99%
of the samples in the data set, the SPV Defense by Deception
process rendered them inert - the malware sets could not
execute their payloads, persist, or propagate. These blocked
malware executables are also saved in a “quarantine” zone,
allowing for collection and utilization in additional security
tool development.

Contributions - Our proposed novel SPV strategy provides
the following salient features:

• Defense Against Malware: Developing a practical ap-
proach to preventing new malware infections by simu-
lating and inventing the perception that the system is
already infected.

• Fully Automated Deployment Process: The deployment
and rendering of the SPVs at runtime are done without
human intervention.

• Efficiency: The SPV code incurs very minimal overhead
on runtime system resources.

• Usability: The generated SPVs are reliable and seldom
flagged as malware by system defense and antiviral tools.
Furthermore, the proposed system allows legitimate pro-
grams to be installed without hindrance based on internal

whitelisting.
• Aided Defense Development: Identified samples are

saved and can be further analyzed for other security tool
deployments.

The rest of the paper is organized as follows: Section 2
reviews the related literature; Section 3 presents the problem
statement and an overview of rootkit infection; Sections 4
and 5 present the implementation of the SPV process and
evaluation of our research, respectively; Section 6 details the
future work; and Section 7 concludes the paper.

II. RELATED WORK

With the rising threat of malware, the current field of work
is constantly evolving, attempting to stem the problem and
offer an effective form of Analysis and Defense against it.
However, means of malware detection and analysis have grown
more stagnant in the last ten years. Literature and current
works can be divided into two main categories: Analysis and
Detection/Defensive Measures.

A. Malware Analysis
Means of malware analysis have grown more stagnant in

the last ten years. Windows malware analysis, in particular,
has followed the main analysis structure since the early 2000s.
As shown in Tahir, Alsmadi, and El Merabet [46], [47], [48],
most of the improvements have been focused on implementing
machine learning. This implementation is worked by classify-
ing individual features within malware samples and rejecting
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non-specific elements found within a large number of malware
samples. While this is an improvement upon the standard
malware detection means, there is the limitation that they are
process intensive, both in the means of learning algorithms for
detection and in scanning the multitude of files presented to
the system. The remainder of the analysis techniques has dealt
more with means of automation of the malware analysis. These
are divided into two distinct areas of study, either generation
of automated scripting to automate the analysis and the second
is through continued utilization of machine learning to detect
similar features within the malware samples.

Current literature in the analysis of malware adheres to
a standard approach of malware analysis of a two-phased
static and dynamic analysis approach [3]. However, others,
such as Lee et al. [56], Dietz et al. [55], and Hwang et
al. [57], have developed modifications to this by creating
unique and independent analytical platforms. Mehdi et al.
proposed Imad, an in-execution analysis platform for malware
analysis. Another imported related technique proposed for
malware detection is code or system-level instrumentation
[4], [5]. Similar to the instrumentation is the development of
Sandboxing environment. Mohino et al., in their work pro-
posed MMALE - a Sandbox-like environment for automated
execution and analysis of malware. Sandbox environments are
also the focal point of Monnappa for attempts to automate
malware analysis [49], [58], [59]. As with other Sandbox-
based analysis techniques, there is the potential that malware
authors can add code elements to detect these environments
and not execute their code base. Additionally, malware authors
have segmented their code bases and only contained some
malicious elements in one download, as found in the research
study across multiple malware samples presented in Kiachidis
and Baltatzis [53]. This can cause the files in automated
environments to flag them as non-malicious, even though they
are the start of a malicious campaign.

In the area of machine-learning-based malware detection,
the work of Jeon et al. and further developed by Kim et
al., proposed deep learning for identifying similar elements
of malware structure, such as similar function calls, domain
addresses, string structures, etc., to try to determine the pos-
sibility of a newer sample being malicious [60], [54]. This
is a tremendous step forward and can potentially speed up
automated analysis. However, there is a shortcoming. These
algorithms take time and a large sample base to learn the
patterns in the malicious code. By the time they can identify
the current trend of malicious code, malware authors can find
new means to bypass these defensive measures, as shown in
the evolution study presented by Cozzi et al. [61].

The SPV code does not have several limitations in the
current analysis research elements. Instead of parsing through
many code elements to determine maliciousness, the SPVs can
target the smaller area of the malware persistence. This reduces
thousands, if not millions, of code lines to a few major persis-
tence areas. Additionally, as the SPV code is not attempting
to stop the execution of the code through the current means,

such as through the Sandbox analysis or process identification,
several malware defensive measures are not utilized. The SPVs
only need to worry about the raw malware code, not the
identification of packers or encryption; it does not need to
worry about antiVM and anti-RE capabilities. This leads to
an extensive reduction in time and resources, which would
be wasted in the analysis process. This paper presents a new
SPV Defense by Deception strategy that leverages sterilized
persistence vectors extracted from a real malware corpus to
block potential malware infections. Our system utilizes code
from malware samples, not as signatures but as defensive
strategies that stop new infections from attempting to write
into persistence regions. Compared to existing COTs and
techniques described in the literature for malware detection
and prevention, our approach is designed to be more robust
and versatile, with the ability to block malware both on bare
hardware and in virtualized environments. Additionally, our
methodology does not require a signature or agnostic of the
target malware behavior. Through an in-depth evaluation of
2000 malware samples with pre- and post-SPV infection, we
demonstrate that our proposed SPV Defense by Deception
mechanism can effectively defend systems against malware
infections with 1-3 percent CPU and memory overhead while
not limiting the ability to install legitimate programs properly.

B. Malware Detection

Malware detection methodologies can be broken down into
Host-based, Hypervisor-based, and Post-mortem analysis.

1) Host-based Detection: The more traditional tech-
nique for rootkit detection is a host-based intrusion detection
system that checks for anomalies or footprints of known
malware. For example, the System Virginity Verifier verifies
the validity of in-memory code for critical system DLLs and
kernel modules; [39] checks the legitimacy of every kernel
driver before it is loaded into the operating system; Panorama
[40] is designed to perform behavioral runtime tracking, and
SBCFI [26] detects threats by examining the control flow
integrity of the kernel code. A smaller subset of methods, such
as Autovac, utilizes forensics snapshot comparison engines to
detect the execution of malware on the system to prevent
it [38]. Other host-based rootkit detection systems include
HookFinder [40] and HookMap [36]. These techniques use
systematic approaches to detect and remove malware hooks
in target operating systems. One offshoot of the pre-infection
defensive measures proposed by Das et al. and further de-
veloped by Kedrowitsch et al. is the deployment of Docker
containers as Honeypots and analyzing the behavior of the
attacks to fine-tune defensive measures. By presenting these
areas as more appealing targets for network attacks, security
professionals can fine-tune the defensive measures on their
main network components to avoid compromise [73], [75].
Shahzad et al. presented a means of detecting running malware
on a Linux system by comparing the task structure of the Linux
processes. By loading the kernel structures of a process, they
have identified whether it is malicious or not with a minimal
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impact on the system’s overhead [64]. The shortcoming of
this research is that once the specific modules have been
removed, as shown in their evaluation, the accuracy begins to
fail. Malware code has proven as it evolves to have the ability
to start targeting elements that are preventing its infection,
such as those proven in the study by Ngo et al. [81].

One major drawback of traditional host-based detection
methodologies is the ability of the malicious entity to evade
detection since it is running with the same level of privilege
as the detection systems. Given that most of these tools are
designed to probe for the rootkit signature and/or behavior,
malware can easily subvert this effort as it evolves to have
the ability to start targeting elements that are preventing its
infection, such as those proven in the study by Ngo et al. [81].
The SPV code does not scan for malware footprint or traits;
instead, it takes the more aggressive approach of hijacking the
persistence area of a potential rootkit, leaving the malware
with no place to hide. Furthermore, the SPV code is built so
the malware cannot eject or terminate its process.

2) Hypervisor-based Detection: Integrity checking is a
technique that requires continuous monitoring of the kernel
code for changes to signatures, control flow, and kernel
data structures. For kernel-level rootkits, the most practical
approach for maintaining kernel integrity is hypervisor-based
systems that leverage virtual machine introspection (VMI) [2],
[17], [18], [28], [30], [31], [42], [43]. VMI systems and tools
are built to introspect the virtual environment through the hy-
pervisor. Since the hypervisor runs at a much lower level than
the virtual OS, these mechanisms are often seen as effective
for detecting rootkits and monitoring their behavior. However,
their major limitation is that they target only virtualized
environments and cloud infrastructures and cannot be applied
to introspect real hardware-based systems. Moreover, most
kernel integrity-check-based systems are susceptible to return-
oriented rootkit attacks [17]. Asmitha and Vinod presented a
means of malware classification based on eXtended-symmetric
uncertainty. The work of [68] utilize entropy to rank features
of different classes of malware and compare them against
known features for malware identification. While promising
research with the ability to detect nearly all cases with 99%
accuracy, however, this work is limited to leveraging only the
entropy. As shown in the cases of higher-level rootkits, such
as those as part of the research in Raju et al. and Wang, newer
malware samples can corrupt these algorithms that depend
on static features [70]. Xu et al. proposed MIDAS, a real-
time behavior auditing to detect malware across IoT devices.
In their research, they developed a framework that analyzes
the individual elements of executables as they are on the
system. Once compared to the baseline, those that match the
malware are flagged as malicious [71]. This research is vital
because it checks for malicious elements as the sample run.
However, this brings about its shortcoming: against elements
of malicious code that do not match the pattern and benign
software that does match the auditing requirements. Gomez
et al., in their forensic analysis of IoT malware, found that

several samples have become adapted to masquerading as
benign programs, allowing the bypass of defensive measures
[80]. The other central research element for pre-infection is the
measurement of secure system installations. Sun et al. propose
monitoring and protection elements during the installation
phase of software deployment to minimize infection during
the software deployments [76]. While this is an excellent idea,
it comes to some of the same problems as other installation
protection items, such as Antiviruses. Malware can compro-
mise these checks and gain the access needed to complete
their installation. Even some more robust defensive engines
meant to stop improper software loading, such as SecureBoot,
have been compromised, as proven in Alrawi et al. [85].
Methods used to detect the integrity of a system have been
proven to be limited based on the existence of UEFI bootkits.
These malicious code elements work by making the operating
system accept that malicious code pieces are a legitimate
portion of the system’s code [11], [16], [27], [71]. With our
proposed SPV Defense by Deception process, the system is
designed to execute on both hardware and virtual systems, thus
circumventing this limitation.

3) Post-mortem Analysis: The last category of rootkit
detection methods is post-mortem analysis systems, designed
to analyze the after-effects of rootkit execution. These forms
of analysis are often passive and involve examining kernel
memory snapshots looking for evidence of rootkit infection,
persistence, and stealth. Disk forensics tools, such as [12],
[14], [34], [44] are used for general system incident response.
These tools can examine a target system for file modifications,
running processes, network activities, and more. In much the
same way as integrity checkers, disk forensics tools are limited
by their coverage. If malicious code hides its elements in spe-
cific system files or structures, these will generally be missed
by the post-mortem analysis [9]. With memory forensics,
post-mortem analysis is carried out on a snapshot of volatile
memory. The most widely used memory analysis framework is
the volatility framework [45]. This methodology is restricted
to current events and processes. Terminated malware behaviors
cannot be retrieved. Furthermore, modern rootkits can evade
detection from memory forensics tools by performing direct
kernel object manipulations that hide their presence from reg-
istering in major kernel structures or by altering the memory
collection or imaging process as a whole [21]. The SPV code
does not scan for malware footprint or traits; instead, it takes
the more aggressive approach of hijacking the persistence area
of a potential rootkit, leaving the malware with no place to
hide. Furthermore, the SPV code is built so the malware cannot
eject or terminate its process. Compared to a more passive
malware detection approach, our SPV process is an offensive
approach that prevents malware infections in real-time. The
SPVs are designed to block malware from executing, thus
forcing the malware to terminate its process.

III. PROBLEM STATEMENT

Malware has always had the strength of its adaptability,
which enables it to use multiple mechanisms to infect and
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evade detection or bypass many of the elements of system
defense [15]. Either using out-of-date signatures, exploiting
unknown vulnerabilities, or targeting the weakest link - the
human - malware will cause the defense to fail, even if only
one falls short. Current detection and prevention tools are
significantly disadvantaged because malware evolves faster
than defense tools. Stealthy zero-day attacks are becoming
increasingly common, and it takes only a single unknown
offense or human error to bring down the whole gauntlet of
defenses [20].

Thus, we present the SPV Defense by Deception process -
a novel technique that attempts to hijack the areas in which
malware, in general, and rootkits, in particular, can land their
persistence vectors. Rootkit persistence vectors are specifically
selected in this research because they are the most common
persistence mechanism used by malware of all families [15].

The motivation to use persistence vectors stems from the
fact that, in practice, infection vectors are unpredictable,
meaning that exploits, especially zero-day exploits used to
launch malware attacks, evolve with newly found vulner-
abilities. However, the persistence vectors with which the
malware maintains a presence on a victim’s machine are
often deterministic. As such, the most effective way to curtail
rootkit infections and ultimately render them ineffective is
to place blockers in the potentially persistent channels in
the system. Long-term malware campaigns, specifically those
utilized by Advanced Persistent Threats (APTs), do not wish
to bring a targeted system down immediately. Instead, they
want to complete target profiling against the network, exfil-
trate sensitive data, and work further into the system. It can
sometimes be months before the threat actors launch their
final attack target. For this, they require a means to remain
in the system. They require persistence. One of the longest
of these types of campaigns was the Harkonnen Operation.
Malicious actors could utilize their malware persistence and
operate on a network for twelve years before they were finally
detected. During this time, the malware implanted could assist
with further target development, stealing essential data, such
as corporate financial documentation, and pilfering money for
the attackers [23]. Our approach injects the SPV code into the
system startup process and can be rendered on bare hardware
and virtualized environments. The SPV process blocks all
malware by first detecting in real-time when the malware
deploys its persistence vector. It then hijacks the malware area
of persistence by automatically selecting and overwriting the
malware code with certain SPVs. This process consistently
blocks target malware from maintaining a presence on a
defended system. Although our approach is currently limited
to the categories of malware containing persistence vectors,
“fileless” malware has only existed substantially since 2002.
It is still not utilized as substantially as persistent malware
[87], thus making this limitation minimal.

IV. THE SPV - DEFENSE BY DECEPTION PROCESS

The SPV process is a code implementation of “sterilized”
malware or malware with malicious content removed and

injected via a common infection mechanism. It is a technique
designed to prevent malware persistence on a system. SPV
process involves injecting a malware persistence vector into
a clean system to block potential malware from maintaining
access. This process combines standing entries consisting
of stripped malware persistence vectors and infection code
fragments with filler code. With SPVs, the malicious payload
code fragments are entirely stripped off while retaining the
core elements of malware, such as API hooking, process
manipulation, and service control in the SPV. Our proposed
approach’s workflow comprises the SPV development phase
and SPVExec code deployment and integration.

A. Development Phase

This phase begins with identifying and extracting malware
persistence vectors and then reprogramming the extracted
persistence code fragments into one executable module.

1) Persistence Extraction: The mechanism in this stage
requires manual extraction through detailed reverse engineer-
ing. We completed our reverse engineering via both static
and dynamic malware analysis techniques. Malicious samples
were collected from virus repositories: VirusShare [1] and
Malshare [25]. One thousand samples per main OS platform
were run through the two phases of reverse engineering. This
was completed in a series of virtualized Windows and Linux
environments. Two copies each were utilized, one for dynamic
analysis and one for static analysis. These systems were
identified as Testbed-1 for dynamic analysis and Testbed-2 for
static analysis. Each machine had two 2.4 GHz cores and 4
GB RAM. For each target malware, we ran the sample against
an unpacker for each target malware to remove any possible
common packers and cryptors, leaving behind the bare-bones
malware code that the analysis tools would evaluate. In this
initial phase, the stripped malware code was executed in
a custom-built dynamic analysis sandbox running ProcMon,
CaptureBat, CFF Explorer, API Monitor, and RegShot for the
Windows-based samples. The Linux samples were analyzed
with X tools.

This static analysis identifies a specific part of the ex-
ecutable targeted during the dynamic analysis phase. Such
code constructs include specific API invocation, non-normal
network traffic, registry modification, and file creation. We
executed the samples through a debugger and disassembler for
the dynamic analysis, specifically IDAPro and OllyDbg (GDB
for the Linux-based samples), targeting the identified elements
in static analysis. Then, utilizing the HexRay program within
IDAPro, the code section was removed and converted to a C
program snippet.

2) SPV Generation: With the elements of persistence and
infection identified and removed from the base malware code,
we developed the SPVs. Since the identified persistence code
was disassembled, we began this stage by converting the as-
sembly code into C programming language. Upon extraction,
PVs reflect specifically that individual sample of the malware,
but additionally can be utilized against the majority of the
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Fig. 2. Windows Extracted PV

samples of that specific malware family of that generation.
For example, an extracted persistence vector from Zeus Botnet
would identify that specific file and the different samples
in that same generation of Zeus. Specific PVs could also
be utilized against other families, dependent upon source
code sampling used by the author upon its creation. Prior
or future versions would require additional PV extractions
depending on the evolution of the malware sample. Figure
2 show the PV extracted from Necurs Rootkit. The Necurs
sample persists using multiple techniques, notably boot and
registry modification implementation. These specific PVs were
identified through our two-phased reverse engineering and
exported for inclusion in the SPV library.

These 800 individual SPV extracted from the 1000 malware
samples are loaded into the SPV Defense, including the de-
ployment code elements. These were selected as they covered
the range of persistence vectors and allowed for the broad
defense of the SPVs when deployed on the system.

To build a more robust SPV defensive process, we devel-
oped an SPV library consisting of multiple SPVs.

B. SPVExec Implementation
The proposed SPV mechanism uses the extracted PVs

to form a benign rootkit called SPVLUEXEC. Additional
persistence scanning mechanisms were added to the code to
overwrite non-whitelisted persistence modifications. Another
functionality was implemented to deploy a FAT32 file system
within the bootstrap code section of the system. This area was

used for the SPV library, whitelisting, and the SPV Defense
base code. The data remained encrypted, utilizing a 256-bit
key to protect against registering on scans.

The SPVEXEC and SPVLUEXEC were implemented as
single Windows EXE and Linux ELF executable programs
loaded alongside the essential boot files at system startup.
Each prototype is approximately 1800 lines of code in the
C programming language. It is structured as follows:

• SPV Database - SPVs randomized for deployment
across the system.

• Defensive Measures - Defensive elements to protect
SPV code base from scans and identification of malicious
code and legitimate defensive measures.

• Dynamic White- and Blacklisting - Included a listing
of approved and disallowed changes that can be imple-
mented on the system.

• Analysis Mechanism - Hash comparison against the
deployed SPVs and values found in their areas.

• SPV Launcher - Mechanism that handles the deploy-
ment of the SPVs into their specific areas of persistence.

• Quarantine Zone - Area for tagged code samples for
tool development.

After successfully loading the SPVExec, the persistence
vectors employ two scanning techniques to validate and en-
sure that an intruder has not altered the injected SPVs at
runtime. The first check utilizes time-based scans, similar to
those employed by current protective tools. In the current
implementation, this check runs a scan every second. Our
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secondary scanning technique leverages API hooking to check
for malware intrusion. The SPV instances are injected into
kernel-level processes. Any attempts to access the protected
area of persistence are redirected to one of the SPV Defended
DLLs. Both scanning techniques utilize hash lookups. During
SPV code deployment, a hashmap of the injected SPVs and
the region of persistence are stored. The rewriters dynamically
replace code elements within the SPVExec codebase and are
designed to look up any changes to the injected SPVs. The
dynamically computed hashes of the injected vectors are then
compared against the SPVs expected to be in those regions.
If no match is returned, the code rewrites those SPVs as
expected.

V. EVALUATION OF THE SPV DEFENSE BY

DECEPTION PROCESS

We evaluate the effectiveness of our proposed SPV defense
mechanism by performing four major experiments that an-
swered the following questions:

• Persistence of the SPV Defense process - Can the SPV
Defense survive and persist through system restarts and
power removal?

• Defense against malware - Can the SPVs be used as an
effective strategy to block potential malware from writing
to protected areas of persistence?

• Defense Through Deception - Does the SPV Defense
identify as malware to other malware and legitimate to
legitimate programs?

• System Performance - Can the SPV Defense process be
used as an efficient apparatus for system defense without
depleting system resources?

• Whitlisting Capability - Does the SPV Defense allow
legitimate programs to install without being replaced
with SPV code?

• Defense Development - Does the SPV Defense aid with
other defensive tool development?

A. Test Environment
To test SPVs across operating systems, we generated

Testbed-3 and Testbed-4, utilizing Windows testbeds using
the same baseline operating systems as in the persistence
extraction phase, i.e., Windows for Windows and Ubuntu for
Linux. They both contain sets of virtual machines and bare
metal with two 2.4 GHz cores and 4 GB RAM. Testbed-
1 remained at the same level of security as that of the
persistence extraction environment; this removes the chance
of malware failing to infect because of patching or security
tools. Unlike in persistence extraction, however, this testbed
has most of its nonsecurity functionality restored. This allows
the system to act similarly to a standard user system that
would be part of a normal network. Testbed-2, Testbed-3, and
Testbed-4 are equipped with system security monitoring tools,
such as operating system inbuilt Defense, i.e., Host-based
Security System, and other commercial off-the-shelf antivirus
products appropriate to the respective OS. For all the testbeds,

user programs were installed to simulate a working system
on a network, and typical applications were often targeted
for compromise. To provide better containment during our
analysis and testing, we implemented FakeDNS to resolve any
network traffic.

B. Post-Mortem Analysis Environment
We leverage an in-depth analysis of the target systems’

extracted memory snapshots to evaluate the overall SPV
Defense process’s accuracy, resilience, and performance. To
perform forensic examinations of the memory dumps, we
created a separate system equipped with FTK (Linux Memory
Extractor (LIME) for Linux) and Volatility. The collection
tools were also loaded on a USB to protect the data from
being compromised after a malware infection. This allowed
the acquisition to have a limited impact on the system while
keeping the tools from being impacted by any potential built-in
anti-analysis approach.

C. Experiments
1) Experiment I: Persistence: Vital to the functionality

of the SPVExec benign rootkit is its ability to maintain persis-
tence. We took the Testbed-2 system post-SPV deployment to
test this functionality and saved it as “X-Security-TestingPost.”
We then performed a power cycle. A start-up alert was entered
into the code to present a popup if the SPV remained intact.
This alert displays the first SPV value and a “Hello World”
message. Upon powering the system, a memory collection was
completed utilizing FTK Imager. Volatility Memory Frame-
work processed the memory image with the following plugins:
psxview, malfind, ldrmodules, apihooks, dlldump, procdump,
and threads. Processes and Dynamic Link Libraries (DLLs) of
the SPVExec proved that it could maintain its persistence, and
a popup was displayed.

For the Linux-based systems, a start-up alert was entered
into the code to present a terminal displaying the first
SPV value and a “Hello World” message if the SPV
remained intact. Upon powering the system on, a memory
collection was completed utilizing LIME. Volatility Memory
Framework processed the memory image with the following
plugins: Linux psaux, Linux malfind, Linux pstree,
Linux kernel opened files, Linux hidden modules,
Linux procdump, and Linux bash. Processes and shared
objects of the SPVLUExec were found that proved that it
could maintain its persistence and a terminal with the defined
items was displayed.

Presented below in Figures 3 and 4 are the outputs from the
Malfind upon the memory collection of the respective system,
showing the SPV code still operating.

2) Experiment II-A: Defense Against Malware: The
primary functionality of the SPVExec is its ability to stop
malware attacks against the system. To provide a sufficient test
of the defensive capabilities of our approach, we conducted
this experiment with 1000 malware samples with diverse
infection and persistence vectors and varying degrees of
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Fig. 3. Volatility Output Windows: Malfind

Fig. 4. Volatility Output Linux: Malfind
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TABLE I: Regular Testing: Windows
Defense TP TN FP FN Accuracy
Symantec 987 0 1 12 98.7%
Kaspersky 986 0 0 14 98.6%
Avast 984 0 1 15 98.4%
McAfee 987 0 0 13 98.7%
ESET 985 0 1 14 98.5%
SPV 999 0 0 1 99.9%

TABLE II: Regular Testing: Linux
Defense TP TN FP FN Accuracy
Kaspersky 987 0 1 12 98.7%
BitDefender 986 0 0 14 98.6%
Avast 984 0 1 15 98.4%
McAfee 987 0 0 13 98.7%
ESET 985 0 1 14 98.5%
SPV 999 0 0 1 99.9%

stealthiness. We utilized Testbed-2, Testbed-3, and Testbed-
4 and executed the SPVExec; the image was saved as “X-
Post-SPV,” with X representing the OS. Each malware sample
was executed, and a snapshot and memory collection were
taken. The system was then reset with the “Post-SPV” images
and infected with the next malware sample. As each memory
dump was analyzed with Volatility with the plugins mentioned
above, the persistence elements of the SPV were found without
the markers of the malware surviving. This proves that the
SPV Defense prevented the malware from taking effect and
rendered it inert, on the same level as other security tools.
Comparisons of our process to standard antivirus software
indicated that our proposed approach achieves the same level
of accuracy as other COTs antiviruses as shown in Tables I
and II.

D. Experiment II-B: Reversion Testing
An additional image of Testbed-2, Testbed-3, and

Testbed-4 were generated for this experiment, titled “X-
SecurityReversion-TestingPost.” The commercial antivirus
software signature libraries were downgraded by three versions
lower, allowing newer malware to be tested as though it were
a zero-day exploit. The sample repository listed above was
run on both virtual machines. Compared to standard antivirus
detection rates, SPV Defense was able to maintain consistent
rates. However, during the zero-day detection experiment, it
doubled the detection rates of standard antivirus software, as
shown in Tables III and IV. This further proves that SPV
Defense can perform far better than commercial malware
detection tools against unknown threats because it only targets
the persistence vectors.

1) Experiment III: Deceptive Capability: For this ex-
periment, the SPVExec was run against two unique phases.
One phase determined if malware identified SPVs as similar
malware, avoiding infections. The second is if legitimate pro-

TABLE III: Regression Testing: Windows
Defense TP TN FP FN Accuracy
Symatec 500 0 25 475 50.0%
Kaspersky 475 0 90 435 47.5%
Avast 485 0 75 440 48.5%
McAfee 495 0 105 400 49.5%
ESET 480 0 120 400 48.0%
SPV 999 0 0 1 99.9%

TABLE IV: Regression Testing: Linux
Defense TP TN FP FN Accuracy
Kaspersky 500 0 25 475 50.0%
BitDefender 475 0 90 435 47.5%
Avast 485 0 75 440 48.5%
McAfee 495 0 105 400 49.5%
ESET 480 0 120 400 48.0%
SPV 999 0 0 1 99.9%

grams like Antivirus saw the SPVs as a benign code structure.
The system was reverted to a save of the SPV-defended state
presented in Testbed-1 for defense through deception testing.
The Necurs malware sample was run against the Windows
system, and The SpeakUp [84] malware sample was executed
on this Linux OS. These particular samples were chosen
because of a built-in function searching for already modified
keys signaling an infected system. A total of ten instances of
the malware were executed in attempts to infect the system;
each time, memory collections were completed. Upon analysis
of the memory samples via the Volatility analysis, no signs
of the Necurs malware were present. Benign testing was
conducted using a pool of fifteen antiviruses against the SPV
code base. All tests returned negative, indicating that none of
the antiviruses flagged the SPVs as malicious.

2) Experiment IV: System Performance: In this experi-
ment, we evaluate the effectiveness of our approach on system
resources, particularly the impact of the SPV Defense process
on memory and CPU utilization.

(i) CPU Utilization: Utilization was recorded in two sep-
arate instances to obtain a baseline for the pre- and post-
deployment system. Baseline scores for each of these system
performances were recorded. Next, multiple applications were
opened to simulate a typical user’s desktop, including two Mi-
crosoft Word documents (LibreOffice Word documents on the
Linux platforms), a single instance of Google Chrome, and one
instance of the Windows or Linux file structure, depending on
the system. The system was then left under these conditions for
10 minutes. In the same way, as most effective rootkits perform
malicious activities without overloading the system, SPVs run
in the background without exhausting CPU resources. The
CPU usage overhead is on par with that of average antivirus
software, or an IDS/IPS, which is approximately 2 percent on
average [33].

(ii) Memory Utilization The amount of memory the SPVs
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Fig. 5. Windows CPU and Memory System Comparison

Fig. 6. Linux CPU and Memory System Comparison
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utilize, specifically as they spawn processes, is also crucial.
Too much memory utilization can cause an internal denial
of service, making the method unusable. The baselines were
again compared using the same parameters as in the CPU over-
head test with the same software instances for the 10-minute
implementation. This result also showed minimal impact on
the system resources.

Figures 5 and 6 show a complete breakdown of these
individual CPU and Memory utilization tests.

3) Experiment V: Whitelisting Capability: All the ex-
periments conducted above proved the proposed method’s
ability to block future malware infections. However, this would
be moot if regular benign programs could not make low-level
system modifications and maintain their persistence. For this
experiment, we attempted to install 10 “legitimate” programs
on an SPV Defended system and determined that all were
still installed after the system restart. These programs were
PyCharm, Visual Studio, BitRise, Atom, BlueFish, CodePen,
Crimson Editor, Eclipse, Komodo Edit, and NetBeans. The
same methodology was leveraged to examine these software
programs as malware to determine the system changes made
to ensure their persistence. Individual snapshots from the
“X-Post-SPV” series had one of the above ten programs
installed. Memory collection was completed, and a snapshot
was taken, titled “XPost-SPVTool,” with X being the software
installed. Upon powering on, a second memory collection was
completed. Finally, the application was tested for functionality
by launching the program. In all instances, both the SPV
Defense and the program were operational and maintained
persistence.

4) Experiment VI: Forensic Analysis of SPV Quar-
antine: Per the SPV code base, blocked malware becomes
flagged and added to the equivalent of an antivirus “quaran-
tine” zone. SPVs can collect attacks and convert information
from these executables into regular defensive measures. To
test this functionality, we attempted the infection with ten
malware not utilized in creating the SPVs. Individually, each
sample was executed against the SPV-loaded image. After each
malware was launched, we took a forensics image of the test
machine utilizing FTK Imager loaded on a separate drive. This
process was repeated for each of the malware samples. Upon
loading the evidence files into FTK Forensic Suite, all ten files
were found inside the created quarantine zone.

VI. LIMITATIONS AND FUTURE WORKS

Our proposed SPV provides a more robust defense against
malware than the existing research. However, the current im-
plementation is limited to only core Linux and Windows OS.
Additional work can be conducted into the persistence vectors
that are different and unique to other OSes, which could
prove beneficial. Other major operating systems, specifically
Mobile OSs such as MacOS and Android, can benefit from
the defense-by-deception strategy of SPVs. Thus, as part of
future work, we plan to extend the current SPV to these
platforms, along with improvements to the automation of

the SPV generation. Additionally, research can be conducted
into merging the SPVs into a universal executable, which is
platform agnostic, and deploys SPVs based on an OS scan
upon execution.

VII. CONCLUSION

This paper presents a new SPV Defense by Deception
strategy that leverages sterilized persistence vectors extracted
from a real malware corpus to block potential malware in-
fections. Our system utilizes code from malware samples,
not as signatures but as defensive strategies that stop new
infections from attempting to write into persistence regions.
Compared to existing COTs and techniques described in the
literature for malware detection and prevention, our approach
is designed to be more robust and versatile, with the ability to
block malware both on bare hardware and in virtualized en-
vironments. Additionally, our methodology does not require a
signature or agnostic of the target malware behavior. Through
an in-depth evaluation of 2000 malware samples with pre-
and post-SPV infection, we demonstrate that our proposed
SPV Defense by Deception mechanism can effectively defend
systems against malware infections with 1-3 percent CPU
and memory overhead while not limiting the ability to install
legitimate programs properly.
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