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Abstract—This paper is an extension of our previous work
on privacy-protected user clusters identification in large orga-
nizations. Oversharing exposes risks, such as improved targeted
advertising and leakage of sensitive information. Requiring only
the bare minimum of data reduces these risk factors, while simul-
taneously increasing the privacy of each user. Using anonymized
data to find communities opens up new possibilities for large
organizations under strong data protection regulations. Although
related work often focuses on privacy-preserving community
detection algorithms, including differential privacy, in this paper
the focus was on the anonymized data itself. Channel membership
information was used to build a weighted social graph and
groups of interest were identified using popular community
detection algorithms. Graphs based on channel membership data
resembled interest groups within the network satisfactorily but
failed to capture the organizational structure. Furthermore, a
statistical evaluation and a user study were conducted to measure
the performance of the recommender prototype. The statistical
evaluation showed promising results, while the user study yielded
mediocre satisfaction of the participants and revealed various
potential shortcomings and limitations of the recommender
system and user dataset retrieved from the notification system.

Index Terms—Data Privacy; Open Data; Large Organizations;
Clustering

I. INTRODUCTION

This paper is an extension of our previous work on privacy-
protected identification of user clusters in large organizations,
presented in [1].

Large organizations are estimated to generate a median of
300 terabytes (TB) of data weekly [2]. Data are generated from
the use of various methods of communication (chat, email,
face-to-face, phone, short message service, social media)
between organization members, data sharing tools, internal
processes, different hardware units (mobile phones, tablets,
laptops, etc.) and more [2]. The publication of these data

to be used for analysis and research has been an excellent
source of information for researchers, promoting innovation
and advancements in various areas and facilitating cooperation
between various groups [3][4]. In this context, the term used to
describe the data available freely to anyone to use for analysis
and research is open data [5]. There have been different
initiatives for collaboration based on open data, such as the
Netflix Prize, OpenStreetMap, CERN (Conseil européen pour
la recherche nucléaire) Open Science Initiative, Open City
Initiatives, and more [3][5][6]. The purpose of these projects
has been to improve existing technologies and algorithms
and facilitate innovation and collaboration [3]. In addition to
these projects, organizations internally analyze user behavior
and user data and create new or improve existing services,
generally relying on continuous user surveys and behavior
tracking while invading their privacy [7].

The sharing of personal data that contain identifiers, quasi-
identifiers, and sensitive attributes has been identified as a
common issue with similar projects [3]. Sensitive and per-
sonal data should not be accessed freely; organizations must
protect and secure them. To achieve this, organizations usually
secure themselves and do not release this type of data. By
doing so, the possible benefits available from private data
are not explored. To avoid privacy breaches and publish
organizational data, multiple data privacy preservation tech-
niques were developed. Most of them are based on pseudo-
anonymization or complete anonymization of the data [8]. The
use of anonymized private data led to privacy-preserving data
analysis methods. These methods offer a way to use private
data safely, considering privacy requirements [9].

CERN has always stood for the principles of open data and
open science, facilitating collaborative, transparent, and repro-
ducible research and development whose results are publicly
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available [6]. One such initiative is the CERN anonymized
Mattermost dataset, which contains anonymized user data, re-
lationships between users, organizations, buildings, teams, and
channels. The goal of this dataset is to facilitate innovation for
channel recommendations, user clustering, feature extractions,
and others [10].

This paper, which is an extension of our previous work
on privacy-protected identification of user clusters in large
organizations, aims to analyze the provided CERN datasets
and determine the privacy aspects and attributes that can be
used for privacy-sensitive clustering methods and applications
in recommender systems [1]. Based on the observations stated
above, more specifically, the main research questions are as
follows:

• RQ1: Which user information can be extracted from the
anonymized Mattermost organizational open data?

• RQ2: Is it possible to detect user groups without invading
user privacy?

• RQ3: What is the performance of clustering algorithms
when applied to sparse anonymized user data?

The remainder of this paper is organized as follows. Section
II covers the literature overview and discusses current topics
in privacy-preserving data mining, open data, sparse data,
clustering methodologies, and clustering evaluation metrics.
In Section III, we discuss and describe the CERN Mattermost
dataset. Section IV focuses on the analysis of various cluster-
ing methodologies and algorithms on the previously mentioned
data and evaluates the best performing algorithms on the notifi-
cation system dataset. Section V describes the user evaluation
and analysis of the application of clustering algorithms on
sparse anonymized user data from the notification system.
Section VI discusses the findings of the statistical and user
evaluation and explains the use of clustering methodologies.
We conclude the work in Section VII with a discussion of the
research questions and future work.

II. BACKGROUND AND RELATED WORK

A. Networks and Graphs

Networks are defined as interconnected or interrelated
chains, groups, or systems and can be found in a variety of
areas, such as the World Wide Web, connections of friends,
connections between cities, connections in our brain, power
line links, and citation links. In essence, a network is a set
of interconnected entities, which we call nodes, and their
connections, which we call links. The nodes describe all
types of entities, such as people, cities, computers, Web
sites, and so on. Links define relationships or interactions
between these entities, such as connections between people,
flights between airports, links between Web pages, connections
between neurons, and more. A special type of network is a
social network. It is a group of people connected by a type of
relationship (friendship, collaboration, or acquaintance) [11].

The data structure commonly used for the representation
of networks is called a graph. A graph is defined as a set of
connected points, called vertices (or nodes), that are connected

via edges, also called links. The set of vertices is denoted as
V = {v1, v2, v3, . . . }, while the set of edges is denoted as
E = {e1, e2, e3, . . . }. The resulting graph G consists of a set
of vertices V and a set of edges E that connect them and can
be written as G = (V,E). Two vertices connected by an edge
are called adjacent or neighbors, and all vertices connected to
a vertex are called neighborhood [12].

Graphs have a variety of measures associated with them.
These measures can be classified as global measures and nodal
measures. Global measures refer to the global properties of
a graph, whereas nodal measures refer to the properties of
nodes. The most important measures are degree measures,
strength measures, modularity measures, and clustering coef-
ficient measures. The degree measure is a nodal. It is the sum
of edges connected to a node. The sum of the weights of all
edges connected to a node is defined as the strength measure,
while the extent to which a graph divides into clearly separated
communities (that is, subgraphs or modules) is described by
modularity measures [13].

B. Clustering Methods

Fundamental tasks in data mining are clustering and clas-
sification, among others. Clustering is applied mostly for
unsupervised learning problems, while classification is used
as a supervised learning method. The goal of clustering is
descriptive, and that of classification is predictive [14].

Clustering is used to discover new sets of groups from sam-
ples. It groups instances into subsets using different measures.
Measures used to determine similar or dissimilar instances
are classified into distance measures and similarity measures.
Different clustering methods have been developed, each of
them using different principles. Based on research, clustering
can be divided into five different methods: hierarchical, parti-
tioning, density-based, model-based clustering, and grid-based
methods [14][15].

Hierarchical Methods - Clusters are constructed by recur-
sively partitioning items in a top-down or bottom-up fashion.
For example, each item is initially a cluster of its own; then
the clusters are merged based on a measure until the desired
clusters are formed [15].

Partitioning Methods - These methods typically require a
predetermined number of clusters. Items are moved between
different predetermined clusters based on different metrics
(error-based metrics, similarity metrics, distance metrics) until
desired clusters are formed. To achieve the optimal cluster
distribution, extensive computation of all possible partitions
is required. Greedy heuristics are used for this computation
because it is not feasible to calculate all possible partitions
under time constraints [14].

Density-Based Methods - These methods are based on the
assumption that clusters are formed according to a specific
probability distribution. The aim is to identify clusters and
their distribution parameters. The distribution is assumed to
be a combination of several distributions [16].

Model-based Clustering methods - Unlike the previously
mentioned methods, which group items based on similarity
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and distance metrics, these methods attempt to optimize the
fit between the input data and a given mathematical model
[17].

Grid-based methods - The previous clustering methods
were data-driven, while grid-based methods are space-driven
approaches. They partition the item space into cells discon-
nected from the distribution of the input. The grid-based
clustering approach uses a multiresolution grid data structure.
It groups items into a finite number of cells that form a grid
structure on which all clustering operations are performed. The
main advantage of the approach is its faster processing time
[18].

C. Evaluation Metrics

According to the literature, there are two main types of eval-
uation metrics for recommendation systems; they are statistical
accuracy metrics (SAM) and decision support accuracy metrics
(DSAM) [19]. SAM methods such as Mean Absolute Error
(MAE) evaluate the precision of a recommender system by
comparing the predicted values with the actual ratings of the
original predictions and ratings [20][21]. DSAM determines
the effectiveness of a prediction engine by helping users select
relevant items from the available ones. The most common
measures are sensitivity, specificity, and precision. Using the
right model validation techniques helps to understand the
models and estimate the performance of a model [19].

Figure 1. Classification Evaluation Representation based on [22]

Figure 1 illustrates the main elements used for classification
evaluation. True positive values are values when the actual

and predicted conditions are positive. False positive values
are states in which the predicted value is positive, but the
actual value is negative. The true negative value indicates that
the actual and predicted conditions are the same and are both
negative. The state in which the actual condition is positive
but the prediction is negative is referred to as false negative
values. [23].

Actual positive (AP) values, as seen in equation (1), refer
to the number of true positives (TP) together with the number
of false positives (FP).

AP = TP + FN (1)

Actual negative (AN) values, as seen in equation (2), refer
to the number of false positives (FP) together with the number
of true negatives (TN).

AN = FP + TN (2)

Predicted positive (PP) values, as seen in equation (3), refer
to the number of true positives together with the number of
false negatives.

PP = TP + FP (3)

The predicted negative (PN), as seen in equation (4), refers
to the number of false negatives along with the number of true
negatives [23].

PN = FN + TP (4)

Sensitivity describes the ratio of correct predictions to
all actual positive conditions and is calculated as shown in
equation (5) [24].

sensitivity =
TP

AP
(5)

The specificity describes the ratio of correct rejections to
all actual negative conditions and is calculated as shown in
equation (6) [24].

specificity =
TN

AN
(6)

The precision describes the ratio of correct predictions out of
all positively predicted values and is calculated as shown in
equation (7) [25].

precision =
TP

PP
(7)

According to [26], the f-score is a measure of the accuracy of
the prediction. It is the harmonic mean between precision and
sensitivity and is calculated as shown in Equation (8).

fscore = 2
precision ∗ sensitivity
precision+ sensitivity

(8)
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D. Open Data, Sparse Data, and Privacy-aware Data Analy-
sis

Open Data describes data available without restrictions for
anyone to use for analysis and research [5]. Open innovation
is defined as the use of purpose-oriented inputs and outputs
of knowledge to stimulate internal innovation while increasing
the demands for external use of innovation, respectively. The
goal of open innovation and open data is to increase account-
ability and transparency while providing new and efficient
services [27].

Sparse data is characterized by a relatively high percentage
of variables that do not contain actual information. These vari-
ables contain values such as ”empty” or NA [28]. Sparse data
bias is a statistical bias that results from unevenly distributed
data. Models trained on sparse data can be biased towards
more common observations, leading to poor performance on
less common observations. It can occur in unbalanced datasets
or when dealing with missing data [29].

Privacy-preserving analytics are a set of methods for collect-
ing, measuring, and analyzing data that respect individual pri-
vacy rights. These methods allow data-driven decisions while
still giving individuals control over personal data. Restricting
access to the data could be found to restrict support for various
types of data analysis. Adopting approaches to restricting
information in the data so that they are free of identifiers and
free of content with a high risk of individual identification.
Techniques have been proposed to release data without reveal-
ing sensitive information for various applications. Interest in
the development of privacy-preserving data mining algorithms
has been growing over the years [30].

III. DATASET

The Mattermost dataset was extracted from an internal
PostgreSQL (Structured Query Language) database and is
accessible as a JSON (JavaScript Object Notation) formatted
file [10]. It includes data from January 2018 to November
2021 with 21231 CERN users, 2367 Mattermost teams, 12773
Mattermost channels, 151 CERN buildings, and 163 CERN or-
ganizational units. The dataset states the relationships between
Mattermost teams, Mattermost channels, and CERN users.
It contains various pieces of information, such as channel
creation, channel deletion times, user channel joining, and
leave times. It also includes user-specific information, such as
building and organizational units, messages, and the mention
count. To hide identifiable information (e.g., team name, user
name, channel name), the dataset was anonymized using a
combination of techniques such as omitting attributes, hashing
string values, and removing connections between users, teams,
and channels. It is important to note that there are various
other anonymization techniques, including pseudonymization,
differential privacy, and k-anonymity, that could affect the
results of privacy-preserving analytics in different ways. The
usage of these methods can cause algorithms applied to
anonymized datasets to perform differently, since each method
introduces a certain level of information loss.
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create_at
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Figure 2. CERN Mattermost dataset Entity Relation Diagram

The entity relationship diagram shown in Figure 2 describes
entities with data attributes and relationships between entities.

A. Data Transformation

The dataset was analyzed and prepared to filter out super-
fluous teams, channels, and users. According to the analysis,
approximately 22.6% teams consist of one single person and
can be removed as they form isolated nodes that do not
contribute to the community structure.

Table I shows the five-number summary of the number
of members within teams with more than one member. The
five-number summary consists of three quartiles, Q1, Q2 or
median, and Q3, which divide the dataset into two parts with
the lower part having 25%, 50% and 75% of the dataset’s
values, respectively. The other two values of the five-number
summary consist of the minimum and maximum value of the
dataset.

Using the quartiles from the five-number summary, the
lower and upper team size fences can be calculated, which
act as boundaries above or below which teams are considered
outliers. The upper fence can be calculated by UpperFence =
Q3+1.5∗IQR, where IQR represents the interquartile range.
IQR is defined as IQR = Q3 −Q1. This results in an upper
bound of 51.5.

Table I
FIVE-NUMBER SUMMARY OF TEAMS WITH MORE THAN ONE

MEMBER.

Minimum Q1 Median Q3 Maximum
Team Members 2 4 10 23 4512

When counting the number of teams above that threshold,
approximately 87.7% of the teams have less than 52 members.
The lower fence is calculated by LowerFence = Q1 − 1.5 ∗
IQR and yields −24.5. Since we do not have negative team
sizes, we can limit the lower bound to 2, since team sizes of
1 are isolated nodes.
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B. Graph Creation

Channel membership relations were used to generate graphs
that act as a basis for community detection and user group
analysis. A weighted edge is added between two users if
they share the same channel, and the weight of the edge is
increased for each additional channel they share. The idea
behind channel membership for graph creation is that team
members within CERN join channels related to their orga-
nization and work interest. Consequently, the more channels
members have in common, the more likely they are to belong
to the same organizational structure. The goal is to find the best
communities that resemble the CERN organizational structure
and communities.

IV. EVALUATION

A. Algorithm Evaluation

Following the procedure described in Section III-B with an
upper team threshold of 52, a weighted graph was produced.
The igraph implementation of the Large Graph Layout (LGL)
with 2000 iterations was used to visualize it [31].

LGL was used because it creates good layouts for a large
number of vertices and edges and produces well-observable
clusters. The graph produced is shown in Figure 3.

Figure 3. Graph based on channel membership relationship.

Table II lists several advanced clustering algorithms utilized
to detect communities in the Mattermost dataset along with
the corresponding evaluation results. The mentioned clustering
algorithms were selected for evaluation because they were the
commonly used algorithms for clustering and also available in
the ones in the igraph library. Evaluation metrics considered
include modularity, similarity, and the number of communities
identified by each algorithm.

Of all the available algorithms presented in Table II,
infomap (2), label propagation (3), and random walk (7)

delivered the best performance with respect to modularity,
similarity, and communities, as shown in Table II.

Random walk algorithms are based on the idea that a
random walk on a graph tends to stay within a community
and rarely cross over to other communities. It uses a spectral
clustering approach to partition the graph into communities by
performing a random walk on the graph and using the resulting
probability distribution to compute a normalized Laplacian
matrix. This algorithm is known for its ability to detect
overlapping communities and has been shown to perform well
on large-scale networks [38].

Figure 4. Communities detected by using the label propagation algorithm. A
clear separation between individual clusters in the outer part of the graph can
be observed.

The infomap algorithm utilizes random walks to assign
special codes, known as Huffman codes, to each vertex and
organizes them in a way that minimizes the description length
measured in bits per vertex. These Huffman codes are binary
strings assigned to objects based on their frequency, ensuring
that objects visited more frequently are assigned shorter encod-
ings, while less frequently visited objects receive longer ones.
This algorithm has demonstrated its effectiveness in detecting
hierarchical community structures and is widely recognized
for its high accuracy [33].

The Label Propagation Algorithm begins by assigning a
unique community label to each node in the network. These
labels are propagated through the network iteratively. During
each iteration, a node updates its label to the one that the
majority of its neighbours have. The algorithm continues to
propagate labels until convergence, where each node adopts
the majority label of its neighbours or if the maximum number
of iterations specified is reached. As the labels are propagated,
densely connected nodes quickly reach a consensus on the
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Table II
RESULTS INCLUDING FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN MATTERMOST TEAMS AND FOUND COMMUNITY

WITH DIFFERENT ALGORITHMS. VALUES WITHIN COLUMNS REPRESENT THE MEAN AND STANDARD DEVIATION OVER 25
ITERATIONS.

Algorithm Communities Modularity Minimum [%] Q1 [%] Median [%] Q3 [%] Maximum [%]
1. Community structure through
greedy optimization of modularity
[32]

41 ± 0 0.75 ± 0.00 7.85 ± 0.00 23.43 ± 0.00 45.24 ± 0.00 66.67 ± 0.00 100 ± 0.00

2. Infomap community finding [33] 414 ± 3 0.71 ± 0.00 18.13 ± 1.18 46.52 ± 0.19 61.75 ± 0.68 75.97 ± 0.61 100.00 ± 0.00
3. Finding communities based on
propagating labels [34]

463 ± 8 0.70 ± 0.00 15.68 ± 2.23 48.18 ± 1.07 61.25 ± 0.81 75.08 ± 0.28 100.00 ± 0.00

4. Community structure detecting
based on the leading eigenvector of
the community matrix [35]

43 ± 0.00 0.67 ± 0.00 5.85 ± 0.00 15.17 ± 0.00 26.92 ± 0.00 52.48 ± 0.00 95.65 ± 0.00

5. Finding community structure of
a graph using the Leiden algorithm
[36]

1290 ± 3 0.64 ± 0.00 2.04 ± 0.00 20.00 ± 0.00 42.86 ± 0.00 66.67 ± 0.00 100.00 ± 0.00

6. Finding community structure by
multi-level optimization of modu-
larity [37]

40 ± 2 0.78 ± 0.00 8.80 ± 0.77 14.79 ± 1.12 21.75 ± 1.64 50.87 ± 6.80 86.51 ± 6.57

7. Computing communities using
random walks [38]

344 ± 0 0.72 ± 0.00 8.33 ± 0.00 55.56 ± 0.00 66.67 ± 0.00 80.00 ± 0.00 100.00 ± 0.00

8. Community detection based on
statistical mechanics [39]

25 ± 0 0.77 ± 0.00 8.10 ± 0.71 11.23 ± 0.79 14.06 ± 1.05 17.700 ± 1.39 31 ± 8.51

label, leading to the disappearance of many labels. At the end
of the propagation, only a few labels remain, and nodes with
the same label are considered to belong to the same commu-
nity. This algorithm is known for its simplicity, efficiency, and
scalability [34] .

Calculating the community structure with the highest mod-
ularity value (community optimal modularity) and commu-
nity structure detection based on edge betweenness (commu-
nity edge betweenness) were not feasible in practice, since
the runtime was too long. Figure 4 displays the result of the
label propagation algorithm applied to the graph created previ-
ously. Each community is assigned a unique color to observe
the separation of individual clusters. The label propagation
algorithm finds communities with slightly less similarity than
the infomap algorithm, which performs best with respect to
similarity measurement. However, it finds many and much
more detailed communities.

Figure 5 represents the similarities of the users between the
communities found and the Mattermost teams while Figure
6 illustrates the results of 10 iterations as violin plots. An
upper threshold of 52 for the teams was used for this figure,
as described later in this section.
Of all communities detected, 75% have similarities above
47.79%, 50% have similarities above 61.18%, and 25% have
similarities above 74.99%. Similarities are measured by com-
paring the discovered community with all Mattermost teams
and counting the common members in both sets. The per-
centage value of the Mattermost team with the most common
members is used.

Depending on the number of communities found, there may
be overlaps such that one team fits multiple communities
as the best match. This might be the case where the size
of communities is smaller than the size of teams, such that
communities form subgroups of the teams. However, less
than 0.01% of the communities discovered correspond to the

Figure 5. Sample run showing similarities of users between found commu-
nities and Mattermost teams.

same Mattermost team. The average size of the communities
discovered is 20 ± 23, the minimum is 2, the first quartile
Q1 is 6, the median is 13, the third quartile Q3 is 26, and the
maximum is 421.

Figure 7 shows the similarities of users between the detected
communities and the organizational units with a threshold of
52, and Table III shows the parameters of this figure in detail.
We can observe that the similarities are relatively low, with
75% of communities having at most 5.07% similarity. This
indicates that the discovered communities generally do not
resemble organizational units very well. The main reason is
that Mattermost teams often consist of members of different
organizational units. This is especially the case where users
form groups of interest that are not related to work. This results
in discovered communities that capture the teams and structure
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Figure 6. Similarities between discovered communities and Mattermost teams
over iterations with threshold 52.

within Mattermost rather than the organizational structure of
CERN.

Figure 7. Sample run showing similarities of users between found commu-
nities and organizational units.

When creating the graph, two different methods were used
and compared for filtering teams and channels. With the first
method, the threshold was used as an upper limit for team
members, i.e., only the channels of the teams below the
threshold are considered for creating the graph.

Table III
FIVE-NUMBER SUMMARY OF SIMILARITIES BETWEEN

ORGANIZATIONAL UNITS AND DISCOVERED COMMUNITIES
USING LABEL PROPAGATION ALGORITHM. VALUES WITHIN
COLUMNS REPRESENT MEAN AND STANDARD DEVIATION

OVER 25 ITERATIONS IN PERCENT.

Minimum Q1 Median Q3 Maximum
0.0 ± 0.0 0.42 ± 0.04 1.77 ± 0.04 5.07 ± 0.29 74.68 ± 4.55

Due to the random nature of the label propagation algorithm,
the results of each run differ slightly. The mean and standard

derivation over 25 runs were calculated to obtain more precise
results. With the second method, the threshold was used
as an upper limit for channel members, i.e., all channels
below the threshold are considered for creating the graph. The
second method yields more nodes, but fewer communities, and
slightly less similarity to the first. Due to this, the first method
was preferred.

B. Statistical Evaluation

For the statistical evaluation, the user-channel subscription
information of the most recent snapshot of the notification
system database was collected. The dataset was then divided
into a training set and a validation set. For a correct rec-
ommendation, an edge contained in the validation set should
be in the list of recommendations for a given user. This is
a classification problem as described in Section II-C. The
graph is created from the training set and communities are
discovered. The entire dataset contains 1270 user-channel
edges. When splitting them, 1016 edges fall into the training
set, while the remaining 254 edges fall into the validation set.
However, there are some points that need to be considered:

1) Some users might only be part of one channel. If
they are put in the validation set, they will never be
recommended.

2) Some users are removed when creating the graph, as
they might only be in groups above the upper user limit.
If they are removed from the graph, the user-channel
edges of the validation set will not be recommended.

3) There are recommendations that might be justified even
though they are not in the validation set.

The first two points can be addressed while creating the
graph and the recommendations, while the third point cannot.
However, the third point has a direct influence on the results,
as many of these recommendations fall into the false positive
group, directly influencing metrics such as precision and f-
score. The results of the statistical evaluation are shown in
Table IV.

Table IV
RESULTS OF THE STATISTICAL EVALUATION.

Algorithm Label Propagation Infomap
Mean Standard Deviation Mean Standard Deviation

True positive 42 6 40 6
True negative 35026 1484 35741 1095
False positive 3320 1484 2605 1096
False negative 12 4 13 4

Specificity 0.91 - 0.93 -
Sensitivity 0.78 - 0.75 -
Precision 0.012 - 0.015 -
F-Score 0.024 - 0.029 -

The results show a correct hit rate (Table IV - Sensitivity)
of 78% for the Label Propagation algorithm and 75% for
the Infomap algorithm. The correct rejection rate (Table IV
- Specificity) for the Label Propagation algorithm is 91% and
93% for the Infomap algorithm. The number of false positives
is high due to the user-channel edges that are in the list of
recommendations, but not in the validation set.
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V. USER STUDY

For the user study, specific users of the CERN notification
system were invited to participate by joining a particular chan-
nel and their user data was collected for community detection.
Their data was anonymized to respect their privacy. Then,
the user-channel subscription information of the most recent
snapshot of the notification system database was collected and
used to create the user graph and discover communities. The
results of the statistical evaluation in Section IV were used
to select the algorithm to group the users and create graphs.
Figure 8 shows the graph created from the user-channel
information. The colors represent the communities, and the
numbers on the nodes represent the selected anonymized users
from CERN. Since the CERN IT department was the first to
fully adopt the new notification system, most of the chosen
users come from this department. This can also be seen in
Figure 8, where most of the users are grouped together into
the same community.

Figure 8. Graph with communities of the most recent user-channel informa-
tion.

For each community, a list of channels is created to which
the community members subscribed and the number of com-
munity members in each channel is enumerated. The list of
channels is sorted by popularity in descending order, where
the first channel contains most of the community members.
This list acts as a list of recommendations for the community.
The recommendations are created for each notification system
user by choosing the first five channels of the most popular
ones in the community to which the user has not already
subscribed. The survey containing the recommended channels
was sent to all participants through the notification system.
Each participant was asked to rate the recommendations as
personally relevant or irrelevant.

The survey was sent to 15 users of the notification system.
Of the initial users, 13 responded, making the response rate
86.66%. Table V shows the results of the user study. Users

were marked as active or inactive depending on their interac-
tion with the system.

Table V
RESULTS OF THE USER EVALUATION.

User Id Active Relevant Channels Irrelevant Channels Precision
128 x 1 4 0.333
476 x 3 2 0.6
484 x 5 0 1
496 x 1 4 0.2
42 3 2 0.6
67 1 4 0.2
68 3 2 0.6
177 1 4 0.2
242 4 1 0.8
266 1 4 0.2
428 2 3 0.4
576 4 1 0.8
637 3 2 0.6

Active users are long-time members who use the system
on a daily basis. While inactive users are users who recently
joined the notification system or users who do not use the
system daily.

The average precision on all participants for relevant and
irrelevant channels is 50%, with no significant impact on user
activity. Figure 9 shows the results as a graphical representa-
tion on a graph.

Figure 9. Relevant channels by user as shown in table V.

VI. FINDINGS AND DISCUSSION

Based on Section IV with a higher threshold, more users
are within teams and channels, increasing the edge weight
between many different users. Due to this, the weight differ-
ence between the edges of the communities within and outside
becomes smaller, resulting in fewer communities. Table VI
shows the number of users, edges and the average and standard
deviation of edge weights over different thresholds. Higher
thresholds result in more nodes and edges, but the average
weight decreases, as many users are only part of a few
channels and teams. Without a threshold, the average weight
increases due to channels increasing the weight for numerous
users.
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Table VI
NUMBER OF NODES, EDGES, AND AVERAGE AND STANDARD

DEVIATION OF EDGE WEIGHTS OVER DIFFERENT
THRESHOLDS.

Threshold Nodes Edges Weight
52 9520 151501 2.94 ± 2.35

200 14906 809012 2.82 ± 2.25
500 17124 1909964 2.65 ± 1.88
1000 17948 3104814 2.53 ± 1.66
1500 18721 5000668 2.34 ± 1.58
None 19682 15194697 2.44 ± 1.62

Higher thresholds do not improve community discovery, as
the typical size of teams is up to 52, as previously stated. On
the basis of our experiments, the clustering tendency depicted
by the modularity value decreased with higher thresholds and
fewer communities were found.

The results of the user study show mediocre performance
in terms of relevance, which, however, might not be a good
indication of performance due to various factors that affect the
outcome:

1) Low number of participants
2) Low number of interactions between participants
3) Participants are primarily from the IT department
4) High chance that participants already subscribed to

channels that are relevant to them
5) Low channel diversity across the whole notification

system
Since these points mentioned above can only be addressed

when the notification system has more diverse channels and
a higher number of users, especially from other departments,
the user study gives a good first impression of the prototype.

VII. CONCLUSION AND FUTURE WORK

Data privacy preservation is one of the key issues in open
innovation and open data. This research aims to analyze
the provided CERN dataset and determine privacy aspects
and attributes that can be extracted and used for privacy-
protected identification of user clusters in large organizations.
Information such as user group matching has been the focus
of this research. Different clustering algorithms were used for
user group detection without invading user privacy. To achieve
this, only user communication and interaction data from the
CERN Mattermost dataset was used for cluster formation. The
dataset includes 21231 CERN users, 2367 Mattermost teams,
12773 Mattermost channels, 151 CERN buildings, and 163
CERN organizational units. It was expected to rediscover an
organizational structure that closely matches the organizational
hierarchical structures (Organizational Units, Departments,
Groups, Sections, etc.). Our research shows that fitting de-
tected clusters to existing organizational structures was not
successful and yielded poor results. Matching detected clusters
with interest groups, such as Mattermost teams, produced
satisfactory results. The main reason for this finding is that
users interact and communicate with individuals who share
their interests (the same channels or Mattermost teams). These

individuals might not be in the same organizational units, or
users from different organizational units might be in the same
channel, introducing noise to the data.

The algorithm evaluation results also showed that the clus-
tering tendency depicted by the modularity value decreased
with higher thresholds and fewer communities were found. In
addition, new metrics for weighting user-to-user connections
could be used to identify not only interest groups, but also
organizational connections between users.

Furthermore, the findings of the analysis of the CERN Mat-
termost dataset were applied to a new dataset retrieved from
the CERN notification system. Since this dataset resembled
the Mattermost dataset, it was expected that the clustering
algorithms produce similar results on this dataset. The user
study showed that the average precision of the best-performing
clustering algorithm is 50%. The decrease in performance
could be a product of the high level of sparsity in the dataset,
the low number of existing channels to recommend, and the
high level of users already subscribed to existing channels.

Future work might include the use of novel neural network-
based clustering algorithms. Additionally, new metrics for
weighting user-to-user connections could be used to identify
not only interest groups, but also organizational connections
between users. In addition to these improvements, the data
could be connected to external data to identify certain teams,
users, or organizational structures, and the level of communi-
cation between them.

To fully evaluate the effectiveness of channel recommen-
dations, it would be beneficial to provide a baseline of rel-
evant channels. The baseline would be formulated per user
by proposing random channels to users and checking their
relevance. This would allow for a better understanding of the
impact of the recommendation and provide better means of
evaluation. We suggest that future research includes such an
evaluation when the notification system is fully adopted by
other groups at CERN and when more users engage with the
system.
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