
DFASC: Distributed Framework for Analytics Security in the Cloud

Mamadou H. Diallo, Christopher T. Graves, Michael August,
Kevin Groarke, Michael Holstrom, and Megan Kline

Naval Information Warfare Center Pacific, San Diego, CA USA
U.S. Department of Defense

Email: {mamadou.h.diallo, christopher.t.graves, michael.august,
kevin.groarke, michael.holstrom, megan.kline}@navy.mil

Abstract—Processing big data requires advanced technologies
that can extract useful information from large scale data to
support decision making. These advanced technologies are cur-
rently being offered in the form of analytic tools hosted in
the cloud, and are being developed using different techniques
such as artificial intelligence, machine learning, data mining,
and statistical analysis. However, these tools are not very secure
since the data they operate on must be in plaintext in the
cloud, thereby leaving the data vulnerable to both insider and
outsider attacks. To address these security issues when running
data analytics in the cloud, we propose DFASC, a Distributed
Framework for Analytics Security in the Cloud. At the core
of the framework is homomorphic encryption (HE), which
enables operations to be performed directly on encrypted data
without using the private decryption key. Using HE, DFASC can
distribute homomorphically encrypted data and analytics into
the nodes of a distributed system and allow the analytics to
operate on the encrypted data in each node. As a framework,
DFASC provides mechanisms to enable the incorporation of HE
libraries and data processing algorithms into the framework,
which can than be used to implement analytic tools. A funda-
mental challenge with HE is its performance overhead due to
the computationally intensive HE operations. This challenge of
accelerating individual HE operations needs to be solved before
secure big data processing in the cloud can be made practical. The
distribution of the analytics not only improves the performance
of the underlying analytic algorithms, it also helps to speed
up the underlying HE operations. To enable the sharing of the
encrypted data between parties in the cloud, DFASC incorporates
a cryptographic key management infrastructure. To analyze
feasibility of the framework, it was extended to implement a
system that classifies images using a Neural Network algorithm.
The experimental results show performance improvement of the
system, including in HE operations, as the number of nodes in
the cluster is increased.

Index Terms—Homomorphic Encryption; Cloud Computing;
Privacy; Data Analytics; Data Sharing.

I. INTRODUCTION

Recent advances in communications and networking tech-
nology have revolutionized the way information systems are
being developed and used. Cloud computing technology is a
result of these advances and provides a computing paradigm
with a large amount of computing power and storage re-
sources. Advances in cryptography are also enabling the
development of stronger security protocols for cloud-based
systems [1]. The cloud computing market is growing at a

rapid pace, and includes top cloud providers such as Amazon
Web Services, Microsoft Azure, and Google Cloud Platform.
According to the Fortune Business Insight magazine, ”The
global cloud computing market size stood at USD 199.01
billion in 2019 and is projected to reach USD 760.98 billion
by 2027” [2]. These resources are being used to develop
information systems for individuals and organizations such
as social media platforms, collaborative environments, and
Internet of Things (IoT) based systems. These information
systems are generating increasingly larger amounts of data as
they are being used by individuals and organizations, resulting
in a tremendous amount of data. For instance, the number
of Internet users was estimated to be 2.4 billion in 2014,
3.4 billion in 2016, 3.7 billion in 2017, and 4.4 billion in
June 2019. These high numbers of Internet users are reflected
in the amount of data being generated on the Internet. For
example, in 2019, Google reported 300,000 billion searches
conducted worldwide daily and FaceBook over 4.3 billion
messages posted daily.

Performing data analytics in the cloud is becoming increas-
ingly significant for organizations of all types and sizes. These
analytics are based on techniques such as artificial intelligence,
data mining, machine learning or statistical methods [3], [4],
[5]. Organizations are taking advantage of these analytic tools
to gain powerful insights out of the ever-growing pools of
organizational data. These cloud based data analytic tools are
being developed for various application domains [6], [7], [8],
[9]. However, there is also a growing concern about data
security and privacy in cloud-based systems and applications
that provide analytic tools [10], [11], [12], [13]. In particular,
cybersecurity attackers are becoming more sophisticated, and
attacks on data in large organizations are occurring more
frequently [14].

The current cybersecurity vulnerabilities in the cloud stem
from the fact that data is not protected while being manipulated
by analytic tools in the cloud, which is inherited from the
shortcomings of current cryptographic techniques for securing
data. The recommended randomized encryption schemes, such
as the Advanced Encryption Standard (AES) and Blowfish,
provide strong protection of data in transit and at rest, but do
not protect data in processing. This means that data needs to

149

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be decrypted in memory before processing of the data can take
place, which leaves the data vulnerable to attacks from both
internal and external attackers.

There are many examples of both insider and outsider
attacks on large organizations’ information systems. The per-
sonal data of 77 million Sony users was leaked in 2011.
Information from 38 million Adobe accounts was stolen in
2013. A major example of an insider attack was Edward
Snowden’s leakage of data from within the NSA in 2013.
Data from 110 million Target customers was also hijacked
in 2013. In 2015, US Office of Personal Management records
for more than 21.5 million people were stolen by an outsider.
Credit information on 143 million American, Canadian and
British customers was stolen from Equifax in 2017. These
attacks occurred because of a vulnerable attack surface within
the information systems of these organizations.

Another challenge is how the data can be shared securely
among parties in the cloud. For organizations outsourcing their
data in the cloud, sharing the data is an important benefit. For
instance, a medical system that manages patient health records
can be deployed in the cloud and hospitals can collaboratively
use the system to share the health records between them. This
issue of data sharing in the cloud has been significantly studied
and various techniques have been introduced. However, most
of these techniques are based on PKI, which requires a Cer-
tificate Authority (CA) to manage the cryptographic keys. The
CA is a third party entity and as such increases the complexity
of building cloud systems. Deployment and maintenance of a
PKI is complex and expensive, and certificate management can
be challenging.

To address the shortcomings of existing standard crypto-
graphic schemes, Homomorphic Encryption (HE) has been
proposed [15]. HE schemes have revolutionized data security,
as they enable computation to be performed directly on the
encrypted data without needing the private decryption keys.
Given ciphertexts as input, HE allows computation to be
performed directly on the ciphertexts to generate encrypted
results. When these encrypted results are then decrypted, they
yield the correct plaintext answer for the computation as if it
were performed entirely in plaintext. However, HE, while sig-
nificantly improving data security in untrusted environments,
comes with significant computation and storage overhead [16].
In general, the computational complexity of HE is orders of
magnitude higher than that of standard operations on plaintext.
A given ciphertext encoding is also much larger than its
corresponding plaintext. Acceleration of HE is an active area
of research, and great strides have been made to speed up the
underlying HE operations. Note that more progress still needs
to be made for HE to be practical for performing big data
analysis. Even with its significant computational overhead, HE
can still be practical today for certain types of application
domains such as interactive applications [17].

In this paper, we introduce DFASC, a distributed framework
for analytics security in the cloud. DFASC leverages HE to
provide data security for cloud analytics not only in transit

and at rest, but most importantly, when being processed.
The framework is modularized and extensible to enable the
incorporation of different types of HE schemes. The frame-
work also provides mechanisms for incorporating data analytic
tools that use HE schemes across the nodes of the distributed
framework. This enables data analytic tools to operate directly
on the encrypted data. To enable data sharing, the framework
includes a cryptographic key management infrastructure based
on the approach introduced in [18]. Using this approach, an
organization can analyze data in the cloud and share the results
with other organizations. Distributing analytic tool execution
across the nodes of the framework speeds up the expensive
operations of the HE schemes to improve the overall perfor-
mance of the tools. The framework enables tool developers
using various machine learning and data mining algorithms
to use the framework to build analytic tools, in addition to
enabling system developers to leverage these analytic tools
within their applications. The secure systems developed based
on the framework can then be made available to end-users to
analyze their data securely and privately in the cloud. Having
access to different analytics will enable end-users to trade off
between the quality of the results of the data analysis and
the time it takes to perform the analysis. Furthermore, end-
users will have the ability to share their data with other parties
securely and privately.

The paper is organized as follows. In Section II, we describe
the challenges in processing data and our proposed solution. In
Section III we describe our overall approach. In Section IV we
present our approach for data sharing within the framework.
In Section V we outline the data flow through the system. In
Section VI we discuss our implementation of the framework
and sample application. In Section VII we present the results
of experiments performed on the system. In Section VIII we
contrast our paper with related works. We end the paper with
a conclusion and future work in Section IX.

II. BACKGROUND

In this section, we take a look at how organizations make
use of data analytics in the cloud and give an overview of HE,
which can be used to provide data security in the cloud.

A. Data Analysis in the Cloud

Data analytics in the cloud, or cloud analytics, is a service
model where data analytics are pushed to the cloud to take
advantage of the cloud’s resources. A hybrid model can also
be used as a to allow analytics to be implemented partially on
the client side and connected to cloud side to form an integral
system, which can be scaled in the cloud as the need arises.
In this way, a hybrid approach can be used to split the data
analysis between the client and the server. These analytics
are developed using techniques such as artificial intelligence,
machine learning, data mining, and statistical modeling and
analysis.

Due to the benefits they are providing to organizations of all
types and sizes, cloud analytics are gaining popularity. They

150

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are steadily making their way into enterprise applications in
the cloud in various areas, such as customer support, fraud
detection, and business intelligence [6]. As organizations are
becoming aware of these cloud analytics, the need for them is
increasing. The major cloud service providers are responding
to this need for tools that provide data analysis and business
intelligence capabilities within the cloud by adding these
features to their cloud services [19]. Thus, the trend of organi-
zations outsourcing their Information Technology operations to
the cloud, combined with the trend of cloud service providers
adding more intelligence to their cloud services, indicates
that increasingly organizations will make use of the cloud to
analyze their large and potentially sensitive data sets.

However, the cloud is vulnerable to cyberattacks from both
internal and external attackers, and running analytics in the
cloud on organizationally sensitive data can result in loss of
data security. In [20], an analysis of the security threats in
big data analysis using MapReduce and Hadoop revealed the
complexity of securing cloud analytics. One security challenge
is related to the large amount of data to be processed, which
makes current security techniques impractical because they are
too slow to be effective [21]. Another security challenge is
related to the various sources of data to be combined and
processed in the cloud [22]. To address these vulnerabilities
of the cloud, we use HE to ensure the confidentiality of the
data that are collected, stored, and processed in the cloud.

B. Homomorphic Encryption Schemes

Homomorphic Encryption (HE) is a cryptographic scheme
that enables operations to be performed directly on encrypted
data without using decryption keys. The HE computations are
represented as either Boolean or arithmetic circuits, which
are characterized by their depth. There are different types of
HE schemes based on the types of operations they support.
Partially Homomorphic Encryption (PHE) schemes support
only one type of operation, addition or multiplication, while
Fully Homomorphic Encryption (FHE) schemes allow arbi-
trary computation on ciphertexts. Between these two extreme
cases, there are schemes that are Somewhat Homomorphic
Encryption (SHE), which support both addition and multipli-
cation but are limited in the number of operations (the depth
of the circuit) that can be executed on ciphertexts.

The existence of fully homomorphic encryption was theo-
rized in 1978 by Rivest [23]. However, it was only in 2009
that the first working Fully Homomorphic Encryption (FHE)
scheme was constructed by Gentry [15]. Gentry’s approach
involves taking a Somewhat Homomorphic Encryption scheme
and “squashing” the decryption circuit to reduce the noise in a
process called “bootstrapping” to get the Fully Homomorphic
Encryption. The security of his scheme assumes the hardness
of two problems: certain worst-case problems over ideal
lattices, and the sparse subset sum problem. However, this
process was impractical due to the required computation time.
Since then, a number of more practical FHE schemes have
been proposed.

a) FHE Scheme Based on Ring Learning With Errors:
Most of the FHE schemes that have been proposed base their
security on the hardness of the (Ring) Learning With Errors
(RLWE) problem [24]. The RLWE problem has been proven
to provide a strong security guarantee while supporting more
practical FHE schemes. Before describing some of these FHE
schemes, let us first define the RLWE problem.

Definition of RLWE: let n = 2k and choose a prime
modulus q such that q ≡ 1 mod 2n. Let the ring Rq =
Zq[x]/〈xn + 1〉, represent the set of all the polynomials over
the finite field Zq for which xn ≡ −1. Given samples of the
form (a,b = a× s+ e) ∈ Rq ×Rq where s ∈ Rq is a fixed
secret vector, an element a ∈ Rq is chosen uniformly, and e
is chosen randomly from an error distribution in Rq . Given
this definition of the RLWE problem, finding s is infeasible.

Using the RLWE problem, a message m ∈ Rq can be
encrypted by using the b element above as a one-time pad
encryption scheme [25]. The ciphertext can be represented by
c = b+m, where c ∈ Rq .

BGV Scheme Brakerski, Gentry, and Vaikuntanathan pro-
posed a Leveled FHE scheme based on the RLWE problem
and referred to the scheme as BGV [26]. It is referred
to as ”leveled” due to the fact that its parameters depend
(polynomially) on the depth of the circuits that it is capable of
evaluating. “Leveled” FHE means that the size of the public
key is linear in the depth of the circuits that the scheme can
evaluate, that is, its size is not constant. The key operation in
the scheme is the REFRESH procedure, which switches the
moduli of the lattice structure and switches the key.

C. Homomorphic Encryption Libraries

Following the constructions of the FHE schemes, software
libraries implementing the schemes are being developed. The
first of such libraries to be implemented is HElib, first released
in 2012 [27]. This first version of HElib implemented only
the Brakerski-Gentry-Vaikuntanathan (BGV) scheme, but the
latest version now includes the approximate FHE scheme
proposed by Cheon, Kim, Kim and Song (CKKS) [28], the
newest FHE scheme. Following HElib, a number of other FHE
development efforts have been launched as presented in the
survey of the current FHE libraries in [29]. Here we limit
our discussion to PALISADE [30] and Microsoft’s Simple
Encrypted Arithmetic Library (SEAL) [31].

The PALISADE library is being developed under an open-
source project that provides efficient implementations of lat-
tice cryptography building blocks and leading homomorphic
encryption schemes. PALISADE is designed for usability,
providing simpler APIs, modularity and cross-platform sup-
port. The current version of PALISADE supports the BGV,
Brakerski-Fan-Vercauteren (BFV) [32], CKKS, and FHEW
schemes and a more secure variant of the TFHE scheme,
including bootstrapping [30]. The Microsoft SEAL is also an
open-source library that provides an efficient implementation
of lattice cryptography using leading homomorphic encryption

151

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

schemes. The current version of SEAL also supports the BGV,
BFV, and CKKS schemes. The proposed DFASC framework
integrates these two libraries: PALISADE and SEAL.

III. FRAMEWORK

In this section, we describe the architecture of the proposed
DFASC framework, the integration of HE libraries and data
processing algorithms into the framework, the data sharing
protocol used to enable clients to share encrypted data, and
the threat model of the framework.

A. Architecture

The DFASC framework is designed using a hybrid client-
server/distributed model, where clients send requests to a
remote server, and the server forwards the client’s requests
to a distributed system for processing. The results of the data
processing are returned to the remote server for storage and
to be made available to the clients. The high-level design
of the framework is presented in Figure 1. The architecture
is composed of two main components: Trusted Client and
Untrusted Cloud Environment.

The Trusted Client comprises three main sub components,
Client Manager, HE Manager, and Configurations Manager.
The Client Manager coordinates the activities of the client and
manages the interactions with the server. The HE Manager
provides support for HE operations including generation and
storage of public and private keys, encryption and decryption
of data, and keys revocation. The Configurations Manager
keeps track of the cloud resources for the clients, which change
dynamically as the system is being used. Note that system
developers will need to extend the framework to build concrete
systems for specific application domains. In addition to the
above core components, system developers need to implement
a user interface for end-users to interact with the system.

The Untrusted Cloud Environment is composed of an
Untrusted Server and an Untrusted Distributed System. All
the data sets sent by the clients to the Untrusted Cloud
Environment will remain encrypted at all times. The sub-
components of the Untrusted Server include a Service Engine
for coordinating all the activities related to distributing data
and operations into the Untrusted Distributed System; an HE
Manager for managing HE libraries stored in the HE Libraries
storage; an Analytics Manager for managing the analytic
algorithms persisted in the Libraries storage; a Sharing Man-
ager for sharing encrypted data between the clients; and a
Configurations storage for storing various cloud configura-
tions and metadata. The Service Engine communicates with
the Untrusted Distributed System to coordinate its activities,
including sending workloads and partitioning the nodes within
the cluster.

The Untrusted Distributed System provides the infrastruc-
ture for distributing analytics algorithms. The inputs to the
Untrusted Distributed System include the set of data to be
processed and the software program to be executed on the

nodes of the distributed system that will process the data. At
the core of the distributed system is a Distribution Manager,
which provides the mechanisms for generating the clusters of
distributed nodes. The nodes are generated by the Distribution
Manager on demand based on the configurations provided by
developers. In addition, the Untrusted Distributed System pro-
vides an interface to enable interaction with other distributed
systems.

Client Manager

Trusted Client Untrusted Cloud Environment

En
cry

pte
d

Ra
w

Da
ta

En
cry

pte
d

Re
su

lts

Processing Node

HE Lib
Compute

Storage

Service Engine

Configurations

HE Lib

Compute

Storage

HE Lib
Compute

Storage

HE Lib
Compute

Storage

HE Lib
Compute

Storage

Processing
Node

Processing Node

Processing Node
Processing

Node

Libraries HE
Libraries

HE
Manager

Analytics
Manager

Sharing Manager

HE Manager

Configurations
Manager

Untrusted Server Untrusted
Distributed

System

Distribution
Manager

Client Manager

HE Manager

Configurations
Manager

Trusted Client

Fig. 1: Distributed Framework Architecture

B. HE Library Integration

At the core of DFASC is the mechanism for incorporating
HE libraries into the framework. Like the standard crypto-
graphic algorithms, homomorphic encryption algorithms have
a well-defined set of operations. These operations include key
generation, encryption, decryption, and ciphertext operations.
To accommodate various FHE libraries, DFASC abstracts out
the common core operations of HE libraries and builds those
operations into the framework. It adopts a parameterization
approach to enable each library to provide all necessary
parameters to execute the operations. At a low-level of the
implementation, a binary operation takes as inputs two integers
A and B, and returns the result as an integer C. These
operations are abstracted out into an interface that can then be
used to integrate a given HE library. As part of the framework,
we integrated the PALISADE and SEAL libraries.

C. Data Processing Algorithm Integration

DFASC provides an extensible interface to enable devel-
opers to extend or customize DFASC to add new machine
learning and data mining algorithms into the framework.
Considering the complexity of using existing HE libraries, the
first machine learning algorithm we considered for the DFASC
framework is the linear Support Vector Machine (SVM). The
second machine learning algorithm we implemented within
the framework was an artificial neural network. In the future,
we plan on adding more machine learning algorithms into the
framework.

152

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Support Vector Machines: SVMs are supervised learning
models that can be used to analyze data based on classification
and regression analysis. The SVM serves as a non-probabilistic
binary linear classifier.

Consider a set S of sample data elements, and two subsets
SA and SB of S, where SA ∪ SB = S, and each element of
S (S1 ∈ S) is annotated as belonging to SA or SB . The SVM
training algorithm generates a mathematical model that can be
used to categorize new elements of S as belonging to SA or
SB .

First, we are given a labeled training dataset of n points of
the form (~x1, y1), . . . , (~xn, yn). This training dataset contains
both the inputs and the desired outputs. Given the training
dataset, we then compute the SVM model to be used for
classification. This model then separates the elements of S
into two classes, SA and SB , based on the classifier that was
generated from the training data. The internal operations of
the linear SVM include the dot product of vectors, addition,
and subtraction. To demonstrate the utility of the DFASC
framework, we implemented an SVM classifier on top of our
distributed framework using the PALISADE library.

2) Neural Networks: Neural networks (NN) are a learning
mechanism that model the biological brain. They consist
of a set of transformations of a signal vector throughout a
graph of nodes. Each node, called a neuron, is connected
to the next layer of neurons via edges, called links. Each
link has a weight associated with it. Each neuron processes
its input signal as a linear combination of the weights of
its input neurons according to an activation function and
produces an output signal that gets forwarded to neurons in
the next layer of the network. The training phase constructs
a model by updating the weights associated with each neuron
in the network. After being constructed, the model can be
represented by a mathematical function and used to classify
real world inputs to the neural network. In this way, neural net-
works are considered a black box machine learning approach.
Deep neural networks typically have many layers and utilize
specialized neural network architectures. Over the past few
years there has been a resurgence in neural network research
due to the success of deep neural networks when applied to
certain application domains such as object detection and image
classification. To demonstrate the applicability of the DFASC
framework to parallelize an encrypted image classification
task, we implemented a feedforward neural network classifier
on top of our distributed framework using a homomorphic
encryption library.

D. Security Model

In this section, we describe the threat model and security
properties of the framework.

1) Threat Model: We adopt the honest-but-curious adver-
sarial model. We assume that the client-side is trusted while
the cloud environment is untrusted. We assume that Cloud
Service Providers (CSP) as well as users can act as adversaries.

When users send data into the cloud, the CSP has the ability
to store the data in different locations and make use of it
without the user’s knowledge. We assume that the CSP will
not deliberately tamper with users’ data by inserting, deleting,
modifying, and truncating parts of the data. An adversarial
CSP may not provide false answers in response to user queries.
We assume that the adversarial CSP cannot obtain a user’s
secret keys.

2) Security Properties: In the DFASC framework all users
are required to register in the system to get credentials for
authentication. Only users verified through authentication can
gain access to the system. In addition to authentication, the
framework employs a policy-based authorization service to
provide access control to data. Using this service, users can
decide who can get access to what parts of their encrypted data
in the cloud. Homomorphic encryption schemes have been
proven to be very secure. All the private keys for decrypting
the data remain with clients, and only public keys are sent to
the cloud.

IV. DATA SHARING

One challenge in sharing data securely in the cloud is how
to enable recipients to access the shared data. Many different
techniques and approaches have been proposed in the literature
to address this challenge [33], [34], [35]. Most of these
approaches are based on the Public Key Infrastructure (PKI)
technology, which is used to authenticate users and devices
against information systems. PKI relies on a CA, which acts as
a trusted third party responsible for managing and certifying
public keys ownership. The CA associates a given user ID
with a public key by generating a signature referred to as a
certificate. In this approach, all users of a system can exchange
their public keys for the purpose of data sharing. In this case,
a Sender wanting to share data with a Recipient would use
the public key of the Recipient to encrypt the data. The
Recipient would use the corresponding secret key to decrypt
the data. Through the use of digital signatures, the CA can
guarantee that public keys will not be subject to impersonation,
where a malicious party could replace the public key of a
legitimate party with a compromised one.

One drawback of the PKI based data sharing is that it
requires complex computations for data encryption and de-
cryption, which can slow down systems with extensive data
sharing. Another drawback is the dependency on the trusted
third party CA, which increases the communication overhead
in a system. To address these challenges, various techniques
that combine public key and symmetric key cryptography have
been proposed. For these approaches, the symmetric keys
are used to encrypt and decrypt data and the PKI system
is used to share the symmetric keys between the users. All
sharing approaches based on PKI are exposed to the security
vulnerabilities associated with a CA. If a CA is breached, the
certificates can be compromised resulting in sending the data
to the wrong users.

153

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this paper, we adopt a simple approach proposed in [18]
for data sharing in untrusted environments, which does not
require a CA. The approach makes use of a key management
system based on PKI to provide clients with mechanisms to
generate, store, distribute, and revoke public/private keys in a
distributed system. Instead of using a CA, our approach is to
exchange the private keys using an email infrastructure, where
each client is equipped with a built-in email server.

1) Access Control to Encrypted Data: There are various
identity and access management (IdAM) systems that can be
used to restrict access to resources in a system. Among other
functionalities, these systems manage, identify, authenticate,
and authorize individuals to ensure appropriate access to
resources.

2) Data Partitioning: To facilitate data sharing, each client
needs to partition its data based on its sharing policies. Each
partition will be encrypted using a different public/secret key
pair to restrict access to the data. The sharing policies define
how the data can be partitioned in such a way that the number
of keys required to encrypt the data is minimized. Let us
denote {c1, c2, . . . , cm}, the set of all clients in the system.
Let us also denote {dci1 , dci2 , . . . , dcin }, the set of data partitions
for a given client ci. Then, for each data partition dcij , a
public/secret key pair, (pkcij , skcij), will be generated to encrypt
dcij . This will give the client a flexible approach for sharing
their data in the cloud at a fine-grained level of access control.

3) Exchanging Public Keys: For the purpose of sharing
encryption keys, each client will create a sharing public/secret
key pair (skci , pkci). The first time two clients, ci and cj ,
interact in the distributed system, they exchange their public
keys as follows. The client ci sends a message to cj containing
the tuple (Idci , pkci), where Idci represents the unique inden-
tier of ci, and the client cj replies with a message containing
the tuple (Idcj , pkcj).

4) Sharing Data: When a sender ci wants to share a data
partition dcij with a receiver cj in the distributed system,
the sender needs to provide the receiver with the secret key
skcij corresponding to pkcij used to encrypt the data partition
dcij in order to decrypt it. To protect the secret key, the
sender encrypts it using the receiver’s sharing public key. The
sender replies with the following message containing the tuple
(Idci , Enc(skcij , pkcj)), where Enc(skcij , pkcj) means that
the skcij is encrypted using the pkcj . This will guarantee that
only the intended receiver can decrypt the message containing
the secret key.

Figure 2 shows an example where two clients, c1 and
c2, have generated public/secret key pairs, (pkc1 , skc1) and
(pkc2 , skc2), for sharing secret encryption keys, partitioned
their data, and generated different public/secret key pairs to
encrypt each partition separately. The sharing keys for both
clients are published in the cloud through the Sharing Manager
and the homomorphically encrypted data stored in the cloud
through the Storage Manager. The example also shows the
partition dc11 and its corresponding secret key skc11 , to be used

to decrypt it, received by the client c2 and shared by the client
c1.

Fig. 2: Data Sharing Protocol

V. DFASC OPERATIONAL FLOWS

The architecture of the DFASC framework comprises a
number of components that interact to support the functionali-
ties of the framework from the perspective of both developers
and end-users. It abstracts out the complexity related to build-
ing a web-based client-server application, building a cloud-
based distributed system, and connecting the two entities. In
the following sections, we describe the operational flows of
the framework, focusing particularly on how developers can
extend the core components of the framework and instantiate
it to build concrete systems, and then discuss how end-users
can use those concrete systems.

A. Extending the Framework

For developers extending the framework, there are two main
features: adding a new HE library, and adding a new data
processing algorithm based on machine learning or data min-
ing techniques. At the design level, the framework employs a
modular design to isolate the HE libraries and data processing
algorithms. At the implementation level, the framework uses
containers to enable each HE library and each data processing
algorithm to be self-contained. To add an HE library, the
developer needs to deploy the HE library in a container and
expose an API to enable the HE manager to make use of
it. Similarly, a new data processing algorithm needs to be
implemented and made available to the analytics manager,
which will distribute it to the nodes at runtime. Both SVM
and Neural Network implementations are included in the
framework to serve as a guideline for developers to incorporate
their own algorithms into the framework.

B. Instantiating the Framework to Build A Concrete System

The framework provides building blocks that can be used
to build concrete distributed systems where analytic tools can
be run in the encrypted domain. The application domain will
determine the specific analytic tools to be applied using one

154

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of the available HE-enabled machine learning or data mining
algorithms. For instance, in the application we built to evaluate
the framework, both an SVM and a Neural Network were
determined to be suitable for an image classification task.
During the analysis, each data point falls in one of ten classes.
The application domain dictates the type of data and how it
needs to be encoded appropriately to ensure compatibility with
the data format of the underlying HE library. Recall that the
current HE libraries support only low level operations, such
as addition or multiplication of numbers. It is the task of the
developer to figure out how the specific data types of the
application domain can be transformed in such a way that
these low level operations of HE can be applied to the data.

C. Using the Concrete System

Once the system is completed, then it can be made available
to end users. There are two main workflows of the system for
the end user: 1) analyzing data using an analytic tool, and 2)
sharing data with other users. At a high-level, the following
operational workflow depicts the process for analyzing data in
the distributed system.

• The User opens the Client web-based GUI.
• From the Client GUI, the user uploads the raw data to

the Client local storage.
• The User selects the analytic tool to be used to process

the raw data.
• The User requests the data to be encrypted.
• The Client Engine selects the appropriate HE library, and

uses it to encrypt the data.
• The Client Engine sends the encrypted data along with

the user parameters to the Untrusted Server.
• The Untrusted Server selects the number of nodes to use

in the distributed system.
• The Untrusted Server partitions the data according to the

parameters selected by the user and pushes it to the nodes.
• The Untrusted Server notifies the User after the data has

been distributed.
• The User requests data to be processed and forwarded to

the Untrusted Server.
• The Untrusted Server delegates the workload to the

Distribution Manager.
• The Distribution Manager initiates the data processing

throughout the Untrusted Distributed System.
• After the execution is completed, the Untrusted Server

gathers the results from the Distribution Manager, and
sends them to the User.

• The Client Engine decrypts the results and displays them
on the GUI.

The following operational workflow summarizes the pro-
cess for sharing data in the distributed system. The Sharing
Manager on the Untrusted Server is responsible for sharing
encrypted data and encrypted secret keys between parties
sharing data with each other. If the recipient does not already
have the secret key to decrypt the data, then the Sharing
Manager will request the secret key from the sender, and the

sender will encrypt the secret key using the recipient’s sharing
public key and send it to the Sharing Manager, which serves
as the proxy between sender and receiver. We assume that
the user possesses a public/secret key pair to be used by the
underlying sharing protocol. We assume that each party has
the sharing public key of the receiver. We also assume the data
to be shared is stored with the Storage Manager component.

• From the Client GUI, the sender selects the set of data
to be shared, the recipients and their sharing public keys.

• The User sends the request to share the data to the
Untrusted Server.

• The Sharing Manager on the Untrusted Server passes a
message to the recipient containing a reference to the
stored encrypted data.

• The Sharing Manager notifies the recipients about the
availability of the data.

• The Recipients retrieve the shared data and use their
secret keys to decrypt the data.

VI. IMPLEMENTATION

In this section, we describe the implementation of the
DFASC framework including all the core components. We
also describe the implementation of a use case system that
instantiates the framework, referred to as Image Classifier.
The Image Classifier system includes two data analytics for
classifying images. The first analytic tool is implemented using
SVM while the second analytic is implemented using NN. As
described previously, both SVM and NN are integrated into
the framework. This Image Classifier is used to evaluate the
feasibility of the framework. We leveraged a number of open-
source projects for the implementation including the Django
web framework [36], Apache Hadoop [37], Apache Spark
[38], and Xen hypervisor [39].

A. Framework Implementation

The implementation of the framework is broken down
into three main subsystems: Client, Cloud, and Distributed
Computation.

The Client subsystem is implemented as a web service,
which includes a template for the web-based client interface,
a web server for managing all the client services, and a
database for storing encryption/decryption keys, plaintext data,
ciphertext, and cloud configuration. We used the Django web
framework to implement this Client subsystem to connect all
the client modules. The Django Rest Framework allows for
quick development of web based REST APIs.

The Cloud subsystem implements various modules corre-
sponding to the core component of the framework to support
its various services in the cloud. These services include
managing HE libraries, data processing algorithms, analytics,
cloud configurations, and data sharing among users. REST
APIs allow developers to extend DFASC to build concrete
applications, such as adding new HE libraries and data pro-
cessing algorithms.

155

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We used Apache Spark as the basis to implement the dis-
tributed system. Spark is highly modularized, which simplifies
its integration with other systems. Spark is an ideal distribution
framework for DFASC, as it enables the distribution of data
as well as programs for execution on the cloud nodes.

As mentioned previously, we selected the PALISADE and
SEAL HE libraries as the first libraries to be integrated
with the DFASC framework. Both PALISADE and SEAL are
implemented using C++ and provide a simple interface to
access their basic functionality. The integration of these HE
libraries into our framework required building a C++ wrapper
to interact with the Django web server written in Python as
well as the Spark interfaces used for the distribution.

We used the Xen hypervisor to deploy a local instance of a
cloud infrastructure as a service (IaaS). This local cloud serves
as the testbed to generate and manage virtual machines for the
distributed system. We used this local cloud instance to deploy
and test our distributed framework.

B. Use Case: Image Classification

To analyze the feasibility and performance of the overall
DFASC framework, we designed and implemented an image
classification system using the framework. Image classification
deals with labeling of images into predefined classes and
training a classifier to classify a given image in one of those
classes. Various machine learning classifiers such as SVM, K-
Nearest Neighbors, and Decision Tree, or deep learning classi-
fiers like Convolutional Neural Networks and Artificial Neural
Networks, can be used to classify images. Image classification
is useful in various application domains including autonomous
driving, labeling x-ray images, and recognizing human faces
for security purposes.

For our image classification system, we used the two avail-
able machine learning algorithms in the DFASC framework,
SVM and NN, to implement two classifiers. As mentioned pre-
viously, DFASC includes two versions for each of the machine
learning algorithms, corresponding to PALISADE and SEAL.
In the following section, we describe the implementation of
NN. To learn how we implemented SVM, refer to our prior
publication [1].

1) NN Implementation: The specific NN we implemented
is the Feedforward Neural Network, which we trained on the
sklearn Digits Dataset [40], a reduced version of the MNIST
handwritten digit dataset. Each input to the network is a 64
value array representing one of the 8 by 8 images in the
dataset. The network was trained on plaintext data and then
adapted to predict on encrypted data. The neural network
consists of 4 layers. The input layer contains 64 neurons,
with each neuron taking in one value from the 64-value input
array. The second and third layers each consist of 128 neurons.
This value was selected because it provided accurate prediction
results on plaintext data but can be changed to optimize the
calculation speed and accuracy of encrypted prediction results.
The fourth and final layer is our output layer. The neuron with

the highest activation in this layer is the Neural Network’s
final prediction. The sigmoid activation function was chosen
since it can be adapted to operate on encrypted functions by
representing it as a polynomial function. The following is the
approximation function used:

f(x) = 0.500781+0.14670403x+0.001198x2−0.001006x3

This function is described in [41]. We use cross-entropy
to measure the distance between the predicted and actual
probability distributions, which is then used in back- prop-
agation to adjust the network’s weights and biases. Once the
network is trained, encrypted data can be fed through the
network using the sigmoid approximation function described
above. The output can then be decrypted to see the network’s
prediction. In order to speed up the calculations, multiple
inputs are distributed across the Spark cluster such that each
node performs one prediction and returns the results.

2) Implementation of Image Classification Application:
Reusing the Software Defined Radios Link Analyzer system
we introduced in [1], we implemented the Image Classifica-
tion system with two clients, User Client and Administrator
Client. Through the Administrator Client GUI, among other
functionalities, the administrator can create nodes (VMs) and
list the resources available on the distributed system. Likewise,
through the User Client GUI, users can upload data, encrypt
and decrypt data, and send encrypted data to the cloud for
processing. During the operation of the application, after
uploading the data, the user will have a set of standard machine
learning algorithms to choose from to process the data. Cur-
rently, the framework provides two algorithms, SVM and NN.
Once selected, the distributed machine learning algorithm with
the HE implementation will be run on the distributed system,
which will then return the answer in encrypted form to be
decrypted when needed.

VII. EXPERIMENTS

In this section, we describe the experiments we performed
to analyze the performance of the overall framework. The
first part of the experiments focused on analyzing how the
distributed system can improve the performance of the homo-
morphic encryption operations. The second part of the experi-
ments looked at the trade-offs between computation overheads
of cloud analytics and the accuracy of their estimations.

A. Experiments Setup

As described in the implementation section, the current
version of the DFASC framework includes two HE libraries,
PALISADE and SEAL. Each of these two libraries implements
a number of HE schemes including BGV, CKKS, and The
Brakerski-Fan-Vercauteren (BFV) [32]. For these experiments,
we used the BGV scheme as it is the most matured HE
scheme. In addition, we incorporated two machine learning
algorithms, SVM and NN, using both of the HE libraries,
PALISADE and SEAL. To analyze the feasibility of the
framework, we implemented an image classification system,

156

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

which classifies images using both SVM and NN. We use this
image classification system to perform the experiments.

For the experiments, we selected the sklearn Digits Dataset
and used it as inputs for the two versions of the image
classification tool, one for SVM and one for NN. The sklearn
Digits Dataset is a popular standard dataset for classification
written by scikit-learn [40]. It is made up of 1797 8x8 images,
where each image is of a hand-written digit. In order to use
this dataset in our experiments, we first transformed it into a
feature vector with length 64, which defines its dimensionality.
Overall, the dataset includes 10 classes, 180 samples per class
with a total of 1797 images. The relevant features are integers
from 0 to 16.

This dataset was uploaded into the Image Classification
system through its GUI. We then encrypted the data homomor-
phically, and sent it to the distributed system for processing.
For both algorithms, SVM and NN, we performed multiple
runs by varying the dataset sizes and the numbers of nodes
used in the distributed system.

B. Results of Experiments

Based on the above setup, we performed multiple experi-
ments to analyze the performance of the DFASC framework
in running the SVM and NN based analytic tools against
the encrypted dataset. Specifically, we looked at the overhead
incurred by the framework due to the expensive HE operations
for both PALISADE and SEAL. During the experiment, the
data was grouped into varying numbers of clusters as follows:
300, 600, 900, 1200, 1500, 1800. The distributed system was
configured with varying numbers of nodes as follows: 1, 16,
32, 48, 64. Then, we ran the two analytic tools with each
cluster size on each node configuration. Note that the times
reported are execution times for the classifier and do not
include the time taken to train the model.

1) Performance Analysis of the Distributed Framework:
In this experiment, we analyzed the performance of the
distributed framework as we increase the number of nodes
for a given workload. The following four tables and figures
summarize the results of the experiments.

Image Classification using SVM Implemented with PAL-
ISADE In this experiment, we ran the Image Classifier tool
using SVM implemented with PALISADE. Table I shows the
average running time of the classifier as we vary both the
number of images and the number of nodes in the distributed
system. The data from Table I is plotted in Figure 3. Note
that, when running on a single node, the range of the running
time is between 5 and 45 seconds for all six clusters of images.
Figure 3 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64). The largest gain in performance is when going from
one node to thirty two nodes. Beyond thirty two nodes, the
running time does not decrease further.

TABLE I: Image Classifier using SVM, Implemented with
PALISADE (data in seconds)

Images 1 16 32 48 64 Total
300 7.57 1.30 1.20 1.20 1.60 12.87
600 15.10 1.80 1.80 1.90 2.10 22.70
900 22.78 2.30 2.00 2.50 2.80 32.38

1200 30.58 3.00 2.60 2.60 3.30 42.08
1500 37.57 3.80 3.40 3.10 3.60 51.47
1800 45.42 4.40 3.60 4.00 4.10 61.52
Total 159.02 16.60 14.60 15.30 17.50 223.02

Fig. 3: Image Classifier using SVM, Implemented with PALISADE

Image Classification using NN Implemented with PAL-
ISADE In this experiment, we ran the Image Classifier tool
using NN implemented with PALISADE. Table II shows the
average running time of the classifier as we vary both the
number of images and the number of nodes in the distributed
system. The data from Table II is plotted in Figure 4. Note that,
when running on a single node, the range of the running time
is between 15 and 100 seconds for all six clusters of images.
Figure 4 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64).

Image Classification using SVM Implemented with
SEAL In this experiment, we ran the Image Classifier tool
using SVM implemented with SEAL. Table III shows the av-

TABLE II: Image Classifier using NN, Implemented with
PALISADE (data in seconds)

Images 1 16 32 48 64 Total
300 16.08 2.10 1.60 1.70 1.70 23.18
600 31.87 3.00 2.70 2.70 3.10 43.37
900 47.95 3.90 2.80 3.60 3.60 61.85

1200 64.03 4.80 4.20 3.50 4.50 81.03
1500 79.80 6.30 5.30 4.60 5.50 101.50
1800 96.18 8.10 5.00 6.00 5.90 121.18
Total 335.92 28.20 21.60 22.10 24.30 432.12

157

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: Image Classifier using NN Implemented with PALISADE

TABLE III: Image Classifier using SVM, Implemented with
SEAL (data in seconds)

Images 1 16 32 48 64 Total
300 13.93 1.60 1.50 2.70 4.30 24.03
600 27.83 2.00 2.40 3.60 4.90 40.73
900 41.62 2.80 2.90 4.10 5.40 56.82
1200 55.30 3.50 3.60 4.80 6.00 73.20
1500 69.37 4.20 4.20 5.30 6.60 89.67
1800 83.98 9.60 4.80 6.10 7.10 111.58
Total 292.03 23.70 19.40 26.60 34.30 396.03

erage running time of the classifier as we vary both the number
of images and the number of nodes in the distributed system.
The data from Table III is plotted in Figure 5. Note that, when
running on a single node, the range of the running time is
between 15 and 85 seconds for all six clusters of images.
Figure 5 shows that, for a given cluster of images, the running
time of the Image Classifier is decreasing exponentially as we
increase the number of nodes in the distributed system (from
1 to 64).

Image Classification using NN Implemented with SEAL
In this experiment, we ran the Image Classifier tool using NN
implemented with SEAL. Table IV shows the average running
time of the classifier as we vary both the number of images
and the number of nodes in the distributed system. The data
from Table IV is plotted in Figure 6. Note that, when running
on a single node, the range of the running time is between
30 and 175 seconds for all six clusters of images. Figure 6
shows that, for a given cluster of images, the running time of
the Image Classifier is decreasing exponentially as we increase
the number of nodes in the distributed system (from 1 to 64).

For a given cluster of images, as the number of nodes is
increased, the time taken to execute the classifier is reduced.
However, the optimal value is between 32 and 48 nodes.

Fig. 5: Image Classifier using SVM, Implemented with SEAL

TABLE IV: Image Classifier using NN, Implemented with
SEAL (data in seconds)

Images 1 16 32 48 64 Total
300 29.05 2.50 2.40 3.90 6.20 44.05
600 57.48 2.80 3.40 4.70 6.50 74.88
900 86.15 3.90 3.80 5.30 7.20 106.35

1200 115.22 4.60 4.90 5.80 8.00 138.52
1500 144.13 5.80 5.80 6.90 8.80 171.43
1800 172.47 11.00 6.20 7.40 8.90 205.97
Total 604.50 30.60 26.50 34.00 45.60 741.20

As the number of nodes is increased beyond 48, the time
taken increases again. This is true for both classification
algorithms and both HE libraries. One possible explanation
for this is that, since all of the nodes were implemented
as virtual machines on one physical machine, the overhead
associated with each running virtual machine competed with
the speedup gained from parallelizing the algorithm across
multiple virtual machines. As the number of virtual machines
was increased and then exceeded the number of physical
cores on the machine, significant context switching overhead

Fig. 6: Image Classifier using NN, Implemented with SEAL

158

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

was introduced, which countered any performance gains from
increasing parallelism.

2) Trade-off Between Computation Overhead and Accu-
racy: In this experiment, we compared the performance of
SVM and NN in classifying the images in the dataset. We used
the combination of the selected six clusters of images (300,
600, 900, 1200, 1500, 1800) and five clusters of cloud nodes
(1, 16, 32, 48, 64). This combination resulted in 30 different
sets of data to be used as inputs for the two analytics. The
results of running the two analytics against the 30 datasets
are summarized in the previous four tables. Figure 7 shows a
graph of a snapshot of these experiments, where the number of
nodes is fixed to 16 and the number of datasets varied through
all six clusters. As can be seen, the SVM based analytic
ran exponentially faster than the NN based analytic. On the
other side, the SVM based analytic was less accurate than
the NN based analytic. The average accuracy after running all
experiments was 85.44% for SVM based analytic and 94.65%
for NN based analytic. From these results, we can observe that
there is a tradeoff between the computation overhead and the
accuracy of the analytics.

Fig. 7: SEAL and SVM based Image Classifier with 16 Nodes

Storage Overhead This experiment focused on analyzing
the storage overhead associated with the ciphertext. The size
of each image in the dataset is 780 bytes. After the image
is encrypted homomorphically, the size of the cipher image
expands to 29,367,027 bytes for PALISADE and 467,807
bytes for SEAL. The difference between PALISADE and
SEAL resides in the techniques used by each library to encode
the ciphertext.

3) Performance of Sharing: As described earlier, we use
an email-based protocol for exchanging private keys to enable
secure data sharing between users of the system. The email
server provides an external channel to be used to securely
share decryption keys. For this experiment we analyze the
performance of the sharing protocol. The protocol includes
exchanging public keys for sharing, sharing decryption keys,
retrieving the shared encrypted data from the cloud, and

decrypting the data. We executed this sharing protocol multiple
times for both, SVM and NN, and computed the average
execution time. We observed that the average time for both
(0.90 seconds for SVM and 0.81 for NN) is less than a second.
For data sharing purposes, this delay is not very noticeable to
the user.

VIII. RELATED WORK

Different techniques have been proposed for securing cloud
analytics to increase their adoption [42]. These techniques in
general use a combination of deterministic and randomized
encryption, where a trade-off between the two is employed.
Deterministic encryption supports a limited form of queries to
be performed on the encrypted data, but is less secure, while
randomized encryption is very secure, but does not support any
operation on the encrypted data. Provably secure searchable
encryption is an example of such techniques.

Provably secure searchable encryption (SE), including
searchable symmetric encryption (SSE) and public key en-
cryption with keyword search (PEKS), enables limited queries
to be performed on encrypted data using encrypted keywords
[43], [44]. SE techniques are in general expensive in terms
of their computation and storage overhead. These techniques
include trade-offs between security, efficiency, and function-
ality [45]. However, as observed in [43], regardless of SE
schemes efficiency drawbacks, there is a noticeable lack of
query expressiveness that hinders deployment in practice. With
homomorphic encryption based security techniques, there is
no limit on the number or type of operations that can be
performed on the encrypted data.

Using HE to enable machine learning algorithms, including
deep learning, to process data securely has gained attention in
the research community in recent years [46], [47], [48], [49].
Many of the proposed approaches focus on using a given HE
scheme to implement a specific machine learning algorithm. In
[47], the authors show that it is possible to use a SHE scheme
to implement a linear SVM to classify images for facial
recognition. They extended Gentry’s SHE scheme to work
with low-degree polynomial functions, which are not limited
by Hamming distance or linear projection. In [50], the authors
went further by proposing an approach for implementing a
non-linear SVM for classifying images in general using a SHE
scheme. CryptoNets [51] uses the Microsoft SEAL HE library
to implement deep learning algorithms. HE parallelization is
limited to SIMD operations provided by the HE scheme. Faster
CryptoNets [52] improves the performance of CryptoNets by
leveraging the sparse representations throughout the neural
network to optimize the HE operations and improve their
performance. MSCryptoNet [53], based on multi-scheme FHE,
protects the evaluation of the classifier, where the inputs can
be encrypted with different encryption schemes and different
keys. More information on current trends in using HE to
process big data can be found in [54]. Unlike the above
approaches, we are proposing a general framework for se-
curing cloud analytics. We focus particularly on improving

159

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the performance of analytic tools, implemented with HE, by
distributing their executions in the cloud and providing a key
management infrastructure for sharing the encrypted data.

HE schemes have also been considered as a means for
securing statistical computations [55]. In [56], the authors
demonstrate the feasibility of using HE in approximating
conventional statistical regression methods. This approach
takes advantage of the fact that estimation and prediction can
both be performed in the encrypted domain; bootstrapping can
be avoided even for moderately large problems; and scales
linearly with the number of predictors. In [57], HE is used
to develop a secure system that protects both the training and
prediction data in logistic regression. Despite the non-linearity
of both the training and prediction in logistic regression, this
paper showed that it is feasible to use HE since only the
addition operation is needed, which significantly improves
performance compared to FHE. Our approach differs in that
it provides a framework to enable developers to use a variety
of analytic tools, which can be based on statistical analysis or
other analytic techniques.

Privacy-preserving data splitting is another approach pro-
posed to preserve data privacy in the cloud. In this approach,
sensitive data is split in such a way that any partition by
itself is not sensitive, and is stored separately. However, the
techniques proposed are not very secure as they either don’t
support encryption or they support only limited operations to
take place in the encrypted domain [58], [59]. Furthermore,
these techniques are focusing more on preserving privacy of
the data at rest rather than in processing.

Other proposed techniques for securing machine learn-
ing algorithms are based on multiparty computation (MPC)
[60]. Fundamentally, MPC requires interactive communica-
tions among the different nodes to perform the computations,
whereas our approach using HE allows computations to be
performed independently by the nodes. In addition, since HE
enables the computations to be performed without any key
exchange, there is no overhead of secret sharing as in MPC.
HE allows for empowering a single party to take advantage of
the cloud to securely analyze and share their data with other
parties.

IX. CONCLUSION AND FUTURE WORK

In this paper, we propose DFASC, a distributed framework
for secure computing in the cloud, to enable the development
of secure distributed systems. Secure distributed systems de-
veloped using this framework allow for analytic tools to be
implemented using HE and distributed throughout the nodes
of the distributed system. These systems will provide a high
level of data security for the analytic tools since data will
remain encrypted during transit to and from the cloud, and
during storage and processing in the cloud. In addition, the
framework provides a simple but flexible technique for sharing
encrypted data among users. This approach of using HE to
provide data security during data processing addresses the
shortcomings of standard cryptographic schemes such as the

Advanced Encryption Standards and Blowfish, and addresses
some of the vulnerabilities of outsourcing data to the cloud.
This approach will enable organizations of all types and
sizes to take advantage of large pools of computing resources
available in the cloud without giving up the privacy of their
data.

The challenge with the existing HE schemes resides in the
computation and storage overheads they incur. We addressed
the computation overhead by distributing the HE computations
across multiple nodes to reduce the computation time. For
future work, we plan on combining the high level distribution
of HE libraries and the low level parallelization of the HE
operations themselves proposed in the literature. For instance,
one proposed technique is to use General-Purpose Graphics
Processing Units (GPGPUs) to speed up the underlying opera-
tions of the HE libraries [61]. Combining these two approaches
has the potential to significantly speed up the HE operations
executed within the DFASC framework.

Currently, our framework includes two HE libraries, which
both implement the BGV and CKKS HE scheme. To improve
the validation of the framework, we plan to incorporate
additional HE libraries with additional HE schemes into the
framework. We will extend the framework to facilitate a trade-
offs analysis of these libraries and schemes.

REFERENCES

[1] M. Diallo, C. Graves, M. August, V. Rana, and K. Groarke, “DFSCC: A
distributed framework for secure computation and sharing in the cloud,”
in Proceedings of the Sixth International Conference on Big Data, Small
Data, Linked Data and Open Data (ALLDATA) 2020. IARIA XPS,
2020, pp. 27–33.

[2] A. B. Cummings, D. Eftekhary, and F. G. House, “Cloud computing
market,” Fortune Business Insights, 2019.

[3] S. Kumar, F. Morstatter, and H. Liu, Twitter data analytics. Springer,
2014.

[4] A. Alexandrov et al., “The stratosphere platform for big data analytics,”
The VLDB Journal—The International Journal on Very Large Data
Bases, vol. 23, no. 6, 2014, pp. 939–964.

[5] F. Zulkernine et al., “Towards cloud-based analytics-as-a-service (claaas)
for big data analytics in the cloud,” in 2013 IEEE International Congress
on Big Data. IEEE, 2013, pp. 62–69.

[6] D. Talia, “Clouds for scalable big data analytics,” Computer, vol. 46,
no. 5, 2013, pp. 98–101.

[7] S. K. Sharma and X. Wang, “Live data analytics with collaborative edge
and cloud processing in wireless iot networks,” IEEE Access, vol. 5,
2017, pp. 4621–4635.

[8] R. Ranjan, “Streaming big data processing in datacenter clouds,” IEEE
Cloud Computing, vol. 1, no. 1, 2014, pp. 78–83.

[9] J. L. Asenjo et al., “Industrial data analytics in a cloud platform,” Sep. 6
2016, US Patent 9,438,648.

[10] K. Ren, C. Wang, and Q. Wang, “Security challenges for the public
cloud,” IEEE Internet Computing, vol. 16, no. 1, 2012, pp. 69–73.

[11] D. Zissis and D. Lekkas, “Addressing cloud computing security issues,”
Future Generation computer systems, vol. 28, no. 3, 2012, pp. 583–592.

[12] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in 2009 Fifth International Joint Conference on
INC, IMS and IDC. IEEE, 2009, pp. 44–51.

[13] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Security & Privacy, vol. 8,
no. 6, 2010, pp. 24–31.

[14] N. Gruschka and M. Jensen, “Attack surfaces: A taxonomy for attacks
on cloud services,” in 2010 IEEE 3rd international conference on cloud
computing. IEEE, 2010, pp. 276–279.

160

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[15] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in
Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC ’09. New York, USA: ACM, 2009, pp. 169–178.

[16] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on
homomorphic encryption schemes: Theory and implementation,” CoRR,
vol. abs/1704.03578, 2017.

[17] M. H. Diallo, M. August, R. Hallman, M. Kline, H. Au, and
V. Beach, “Callforfire: A mission-critical cloud-based application built
using the nomad framework,” in Financial Cryptography and Data
Security - FC 2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February 26, 2016, Revised
Selected Papers, ser. Lecture Notes in Computer Science, J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. S. Wallach, M. Brenner, and
K. Rohloff, Eds., vol. 9604. Springer, 2016, pp. 319–327. [Online].
Available: https://doi.org/10.1007/978-3-662-53357-4 21

[18] M. H. Diallo, B. Hore, E. Chang, S. Mehrotra, and N. Venkatasubrama-
nian, “CloudProtect: Managing data privacy in cloud applications,” in
2012 IEEE Fifth International Conference on Cloud Computing, June
2012, pp. 303–310.

[19] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and
S. U. Khan, “The rise of “big data” on cloud computing: Review and
open research issues,” Information systems, vol. 47, 2015, pp. 98–115.

[20] V. N. Inukollu, S. Arsi, and S. R. Ravuri, “Security issues associated
with big data in cloud computing,” International Journal of Network
Security & Its Applications, vol. 6, no. 3, 2014, p. 45.

[21] R. Toshniwal, K. G. Dastidar, and A. Nath, “Big data security issues and
challenges,” International Journal of Innovative Research in Advanced
Engineering (IJIRAE), vol. 2, no. 2, 2015.

[22] Y. Gahi, M. Guennoun, and H. T. Mouftah, “Big data analytics: Security
and privacy challenges,” in 2016 IEEE Symposium on Computers and
Communication (ISCC). IEEE, 2016, pp. 952–957.

[23] R. L. Rivest, L. Adleman, M. L. Dertouzos et al., “On data banks and
privacy homomorphisms,” Foundations of secure computation, vol. 4,
no. 11, 1978, pp. 169–180.

[24] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and
learning with errors over rings,” in Annual International Conference on
the Theory and Applications of Cryptographic Techniques. Springer,
2010, pp. 1–23.

[25] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption
from ring-lwe and security for key dependent messages,” in Proceed-
ings of the 31st Annual Conference on Advances in Cryptology, ser.
CRYPTO’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 505–524.

[26] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully ho-
momorphic encryption without bootstrapping,” ACM Transactions on
Computation Theory (TOCT), vol. 6, no. 3, 2014, pp. 1–36.

[27] S. Halevi and V. Shoup, “Algorithms in helib,” in Annual Cryptology
Conference. Springer, 2014, pp. 554–571.

[28] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in International Conference on
the Theory and Application of Cryptology and Information Security.
Springer, 2017, pp. 409–437.

[29] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhat-
tacharya, “A review of homomorphic encryption libraries for secure
computation,” arXiv preprint arXiv:1812.02428, 2018.

[30] K. Rohloff and G. Ryan, “The palisade lattice cryptography library,”
2017, retrieved: 01, 2020.

[31] S. S. Sathya, P. Vepakomma, R. Raskar, R. Ramachandra, and S. Bhat-
tacharya, “A review of homomorphic encryption libraries for secure
computation,” CoRR, vol. abs/1812.02428, 2018.

[32] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” IACR Cryptol. ePrint Arch., vol. 2012, 2012, p. 144.

[33] G. Wang, Q. Liu, J. Wu, and M. Guo, “Hierarchical attribute-based
encryption and scalable user revocation for sharing data in cloud
servers,” computers & security, vol. 30, no. 5, 2011, pp. 320–331.

[34] Q. Liu, G. Wang, and J. Wu, “Time-based proxy re-encryption scheme
for secure data sharing in a cloud environment,” Information sciences,
vol. 258, 2014, pp. 355–370.

[35] C.-C. Lee, P.-S. Chung, and M.-S. Hwang, “A survey on attribute-based
encryption schemes of access control in cloud environments.” IJ Network
Security, vol. 15, no. 4, 2013, pp. 231–240.

[36] A. Holovaty and J. Kaplan-Moss, The definitive guide to Django: Web
development done right. Apress, 2009.

[37] Apache Software Foundation, “Apache hadoop,” https://hadoop.apache.
org, last accessed on 12/08/20.

[38] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of the
ACM, vol. 59, no. 11, 2016, pp. 56–65.

[39] J.-Y. Hwang, S.-B. Suh, S.-K. Heo, C.-J. Park, J.-M. Ryu, S.-Y. Park,
and C.-R. Kim, “Xen on arm: System virtualization using xen hypervisor
for arm-based secure mobile phones,” in 5th IEEE Consumer Commu-
nications and Networking Conference. IEEE, 2008, pp. 257–261.

[40] D. Dua and C. Graff, “UCI Machine Learning Repository,” University
of California, Irvine, School of Information and Computer Sciences,
http://archive.ics.uci.edu/ml, last accessed on 12/08/20.

[41] Q. Liu, X. Lu, F. Luo, S. Zhou, J. He, and K. Wang, “Securebp from
homomorphic encryption,” Security and Communication Networks, vol.
2020, 06 2020, pp. 1–9.

[42] S. Sobati Moghadam and A. Fayoumi, “Toward securing cloud-based
data analytics: A discussion on current solutions and open issues,” IEEE
Access, vol. 7, 2019, pp. 45 632–45 650.

[43] C. Bösch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably se-
cure searchable encryption,” ACM Computing Surveys (CSUR), vol. 47,
no. 2, 2014, pp. 1–51.

[44] F. Han, J. Qin, and J. Hu, “Secure searches in the cloud: A survey,”
Future Generation Computer Systems, vol. 62, 2016, pp. 66–75.

[45] B. Hore, E.-C. Chang, M. H. Diallo, and S. Mehrotra, “Indexing
encrypted documents for supporting efficient keyword search,” in Work-
shop on Secure Data Management. Springer, 2012, pp. 93–110.

[46] T. Graepel, K. Lauter, and M. Naehrig, “Ml confidential: Machine
learning on encrypted data,” in International Conference on Information
Security and Cryptology. Springer, 2012, pp. 1–21.

[47] J. R. Troncoso-Pastoriza, D. González-Jiménez, and F. Pérez-González,
“Fully private noninteractive face verification,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 7, 2013, pp. 1101–1114.

[48] M. Kim, Y. Song, S. Wang, Y. Xia, and X. Jiang, “Secure logistic
regression based on homomorphic encryption: Design and evaluation,”
JMIR medical informatics, vol. 6, no. 2, 2018, p. e19.

[49] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep
learning via additively homomorphic encryption,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 5, 2017, pp. 1333–1345.

[50] A. Barnett et al., “Image classification using non-linear support vector
machines on encrypted data.” IACR Cryptology ePrint Archive, vol.
2017, 2017, p. 857.

[51] R. Gilad-Bachrach et al., “Cryptonets: Applying neural networks to
encrypted data with high throughput and accuracy,” in International
Conference on Machine Learning, 2016, pp. 201–210.

[52] E. Chou and Others, “Faster cryptonets: Leveraging sparsity for real-
world encrypted inference,” arXiv preprint arXiv:1811.09953, 2018.

[53] P. Li et al., “Multi-key privacy-preserving deep learning in cloud
computing,” Future Generation Computer Systems, vol. 74, 2017, pp.
76–85.

[54] R. A. Hallman, M. H. Diallo, M. A. August, and C. T. Graves,
“Homomorphic encryption for secure computation on big data,” in
IoTBDS, 2018.

[55] L. J. Aslett, P. M. Esperança, and C. C. Holmes, “A review of
homomorphic encryption and software tools for encrypted statistical
machine learning,” arXiv preprint arXiv:1508.06574, 2015.

[56] P. M. Esperança, L. J. Aslett, and C. C. Holmes, “Encrypted accelerated
least squares regression,” 2017.

[57] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang, “Scalable and secure
logistic regression via homomorphic encryption,” in Proceedings of the
Sixth ACM Conference on Data and Application Security and Privacy,
ser. CODASPY ’16. New York, NY, USA: ACM, 2016, pp. 142–144.

[58] D. Sánchez and M. Batet, “Privacy-preserving data outsourcing in the
cloud via semantic data splitting,” Computer Communications, vol. 110,
2017, pp. 187–201.

[59] N. Kaaniche and M. Laurent, “Data security and privacy preservation
in cloud storage environments based on cryptographic mechanisms,”
Computer Communications, vol. 111, 2017, pp. 120–141.

[60] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 2.

[61] M. H. Diallo, M. August, R. Hallman, M. Kline, H. Au, and S. M. Slay-
back, “Nomad: a framework for ensuring data confidentiality in mission-
critical cloud-based applications,” Data Security in Cloud Computing,
Security, 2017, pp. 19–44.

161

International Journal on Advances in Security, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/security/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

