International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

29

Evaluating Security Products:

Formal Model and Requirements of a New Approach

Pierre-Marie Bajan* Christophe Kiennert! Hervé Debar!
*Université Paris-Saclay and Institut de Recherche Technologique SystemX (Saclay, France),
Email: {first.last}@irt-systemx.fr
TTélécom SudParis (Evry, France),
Email: {first.last}@telecom-sudparis.eu

Abstract—In a previous paper, we presented a new method to
generate evaluation data for the evaluation of security products
and services. That approach tackles the issues of producing
a workload with a rich semantic at a large scale. Testbed
environments are the most appropriate tool for such task but
induce a lot of effort and costs to implement. We presented a
model to produce semantic data that can be implemented on
light virtual networks and thus deployed at a large scale. This
paper is an extension of our complete formal model. In this
extension, we identify additional requirements for our model and
define our ambitions. We translate those ambitions in verifiable
properties of our model. Our prototype, although currently
limited, provides the basis for an evaluation method that is
customizable, reproducible, realistic, accurate and scalable. We
generate realistic activity for up to 250 simulated users interacting
with a real-world webmail server in an experiment to verify the
properties of our model.

Keywords—cybersecurity; simulation; evaluation; formal method.

I. INTRODUCTION

Security products are composed of services and products
designed to protect a service, machine or network against
attacks. Like other products, they must be tested to guarantee
adherence to specifications. In a previous paper [1] published at
ICIMP 2018, we divided evaluation tests into two categories:
semantic tests — tests of capability that require data with a
high-level of semantic; and load tests — tests that subject the
product to a large workload.

With current testing methods [2], load tests are semanti-
cally poor, thus not realistic. Meanwhile, semantic tests either
require vast amount of resources to reach large scales (e.g.,
testbed environments), or rely on real life captures with their
own set of challenges (e.g., elaboration of the ground truth
and privacy concerns). Moreover, a complete evaluation of
a security product tests different properties of the product.
Thus the evaluator needs to select different methods with the
right granularities. The granularity of interactions of the data
corresponds to the level of control or precision of the data.
For an evaluator, the right granularity for a testing method is a
granularity that is fine enough to test specific vulnerabilities or
properties. A granularity too large does not match the need of
the evaluator and a granularity too fine may result in a drastic
increase of the preparation burden of the evaluator for little to
no improvement of the results. Rather than relying on several

methods with different granularities, we aim to elaborate a
method to produce data with a customizable granularity and the
possibility to achieve large scale generation with appropriate
semantic.

In this paper, we present a methodology to produce simu-
lated evaluation data with different granularities independently
of the network support. To achieve variable granularity of our
model, we formally presents the concepts of our simulation and
define properties that must be respected and verify. We also
extract five requirements from our analysis of existing methods
to determine the criteria of an ideal method: customizable,
reproducible, realistic, accurate and scalable. To ensure that
the method we propose is as ideal as possible, we convert
those requirements in additional properties of our method. We
then ensure that the developed prototype of our method respect
all the raised properties in a series of experiments.

The remainder of this paper is organized as follows. Section
IT reviews the related work on the production of evaluation
data and their limits. Section III is our analysis of current
methods compiled into five criteria for an data generating
method. Section IV defines the concepts of our methodology
and uses those concepts to introduce our model. Section V
explains the different choices we made for the implementation
of our prototype and shows the experiment results to validate
our model. Finally, we conclude our work in Section VI.

II. RELATED WORK

We first present existing related to the generation of semantic
tests.

A. Semantic tests

Semantic tests generate evaluation data with high semantic
value. Their goal is to generate realistic workloads to produce
real-life reactions of the security product or to test specific
functionalities and vulnerabilities of the product. There are two
approaches to those tests: take data from the real world (the
highest level of semantic), or execute specialized tools and
homegrown scripts.

Real world data can come from several sources: provided
by real world organizations, or obtained from honeypots where
attackers were tricked into interacting with a recording system

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

to learn about the current trends (ex: generation of intrusion
detection signatures using a honeypot [3]). However, the
evaluator does not have a complete knowledge of the content
of the data. Some of them can be misidentified or the intent
behind some actions misinterpreted. Moreover, real world data
are difficult to obtain. Organizations are reluctant to provide
data that can damage their activity, and data anonymization has
the drawback of deleting relevant information (e.g., challenges
of anonymization [4] and desanonymization techniques [5]).
As for honeypots, the evaluator can never know beforehand
the amount of data he can obtain or what kind of data he will
gather.

Another way to obtain high semantic data is to generate
them according to a defined scenario, relying on tools and
scripts to produce specific and calibrated data. Those scripts
can be homegrown scripts, exploits, or software testing scripts
that try every function of a software to validate its specifica-
tions. Manually generating the data (e.g., video transcoding
[6], file copy operations [7], compiling the Linux kernel [8],
etc.) offers the greatest control over the interactions inside
the data, but the automation of the activity generated through
scripts with tools like exploit databases (Metasploit [9], Nikto
[10], w3af [11], Nessus [12]) also offers good control. How-
ever, those methods are quite time-consuming or require in-
depth knowledge of the evaluated product. Moreover, the
granularity of control for varied for each tool and may not
be appropriate for the evaluator.

B. Load tests

Load tests create stress on the tested product [13]. The
most common tests use workload drivers like SPEC CPU2000
[8], ApacheBench [14] [15], iozone [15], LMBench [16] [8],
etc. They produce a customizable workload with a specific
intensity. The evaluator can also manually start tasks or pro-
cesses known to stimulate particular resources (e.g., kernel
compilation [14] [16], files download [17], or execution of
Linux commands [17]). Those methods are designed to test
particular resources of a system (like I/O, CPU and memory
consumption) or produce large amount of workload of a spe-
cific protocol. For example, SPEC CPU 2017 generates CPU-
intensive workloads while ApacheBench generates intensive
HTTP workloads. However, the semantics of the workloads
are low: the generated data are characteristic of the driver used
and do not closely resemble real life data.

C. Deployment of scalable semantic tests

Evaluators prefer tests that are both intensive and with a
high semantic, as the performance of security products like
intrusion detection systems often deteriorate at high levels of
activity [18]. The prefered method is to deploy semantic tests at
a large scale. However, the deployment of tests with a realistic
semantic at a large scale provides its own challenge.

Semantic tests are deployed on a large scale network support
like a testbed environment where a large amount of resources
and contributors are gathered to create a large-scale test.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

30

Evaluators must either have access to a testbed environment
with enough resources to deploy large-scale experiments or
use the results of other organizations that conducted large-
scale experiments and made their data publicly available for
the scientific community (DARPA/KDD-99 [19], CAIDA [20],
DEFCON [21], MawiLab [22], etc.).

However, publicly available datasets, on top of often con-
taining errors [2], are not designed for the specific needs
of each evaluator. The evaluator needs to have an in-depth
knowledge of the characteristics of the activities recorded in
the dataset to avoid having an incorrect interpretation of the
results of studies using those datasets. Finally, there is the
issue of freshness of the traces. Those large-scale experiments
produce one-time datasets that are quickly outdated.

III. OUR ANALYSIS

From the analysis of existing method, we took into consider-
ation the strengths and weaknesses of each method and came
to the conclusion that, among the current existing methods,
testbed environments are the best tool available for an evaluator
to properly evaluate products. They allow the evaluator to have
a single evaluation environment that can perform semantic tests
that doubles as load tests. The large scale of the environments
allows the evaluator to use a wide range of tools in a single
experiment. With a proper activity model to conduct the
evaluation, the evaluator can have an evaluation traffic close to
reality with full control over parameters like intensity of the
workflow or the introduction of incidents. The evaluator has
full knowledge of the activity of the simulation and does not
have to face issues from real world data like anonymisation.

However, testbeds environments have a serious flaw: the
prohibiting cost of setting up, maintaining and generating
large-scale experiments. We analyzed the reasons of that cost
to find a way to make evaluation data with the same semantic
richness than testbed environments more easily available. We
came to the conclusion that one of the main culprit of the cost
of such environments is the network infrastructures.

In this section we offer our analysis on how to reduce the
cost of network infrastructure by crafting a method compatible
with lower-end network simulator. We also share the analysis
of the criteria of an ideal method to generate evaluation
data. During our study of related work, we observed that
the strengths and and weaknesses of all the methods mostly
revolved over five major requirements: customization, repro-
ducibility, realism, accuracy and scalability. We explain in this
section those requirements in further details.

A. Using process virtual machines

One of the reasons for that cost is that the network in-
frastructures for testbed environments are composed of either
physical machines or virtual machines (VMs) that create sim-
ulated hardware upon which the evaluator installs a complete
operating system. There are virtual network infrastructures that
use lighter VMs that do not simulate the hardware but only
primary functions of the operating system (Wine, Mininet,

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IMUNES, etc.). However, evaluators do not use those network
infrastructures because those light VMs do not support a wide
range of real-world application and programs.

For example, IMUNES generates cloned kernels coupled
with Jail in FreeBSD systems to use them as virtual machines
[23]. Those cloned kernels do not handle a graphical interface
and cannot launch a browser. Thus, using this type of virtual
network for a testbed environment seriously limits the possible
actions taken by the VMs, even if a lot more cost-effective for
large scale virtual network.

Rather than working on improving the virtualization tools,
we decided to take another approach on the issue and to im-
prove the method to generate evaluation data with a semantic
richness. We propose a new production method that generates
controlled activity data from short traces independently of the
network support. This method consists in a single program
reproducing the simulation data of a large variety of programs
with a level of quality sufficient for an evaluator need. This
program does not complete the tasks of the real-world pro-
grams but only reproduce model data of such programs. Even
if the reproduced data are not perfect, they must at least comply
with the evaluation requirements of the evaluator.

Thus, rather than deploying VMs that can handle commonly
used real-world programs, we can deploy a large number of
light VMs that can run our program producing evaluation
data from model data. It can be implemented on a testbed
environment or on a network support with lower requirements
like a lower end network simulator. We also want our method
to meet the need of evaluators to generate tests with a rich
variety (different systems, properties of the data, etc.) and to
devise hybrid tests, both semantic and load oriented.

B. Essential requirements for an data generation method

Our ambition is to propose an evaluation data method that
can incorporate most of the strengths of current data generation
method while leaving out their weaknesses.

In a cross analysis of what was presented as strengths
or weaknesses of other methods, we highlight five goals, or
requirements for an ideal method, that represent the most
relevant aspect of the current state of evaluation data method.

Ideally, an evaluation data method must be:

o Customizable: one of the main strengths of executable
workloads is that the evaluators can customize the
generated activity to match their needs. It allows them
to use the same tools to test a security product with
different metrics. Meanwhile traces only allow the test
of one scenario per trace. We want our method to be able
to offer a wide variety of parameters to modulate and
produce evaluation data according to the needs of the
evaluator. We also want our method to avoid the usual
issue of the freshness of traces.

e Reproducible: one of the biggest weakness of exe-
cutable workloads is that it is often time-consuming
to restore the victim environment to its previous state,
especially in a sophisticated setting like a testbed. A

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

31

significant advantage of traces is that it is easy to feed
to a security product. In consequence, traces are used as
a standard for the community. We want a method that
can provide evaluation data with little to no overhead to
restore a victim environment.

e Realistic: real-world production traces and honeypots al-
low evaluators to confront security products and services
with real-life data and attacks. With a realistic activity
model, manual generation can produce a close to real
life evaluation data. Its capture, after deployment at a
large scale in a testbed environment, are the publicly
available traces. The community considers that method
of generating data as sufficiently realistic to be used as
a reference. As such, we want our method to be able to
provide realistic evaluation data to the level of publicly
available traces provided with a realistic activity model.

e Accurate: one of the main weakness of traces obtained
from real-world production and high level interaction
honeypots is the difficulty to generate the ground truth
of traces. The evaluator cannot guarantee the accuracy
and correctness of the generated ground truth. Isolating
attacks from one another or legitimate traffic is chal-
lenging. An ideal evaluation data method should have
full knowledge of the activity generated.

e Scalable: large-scale testbeds allow the evaluators to
generate complex and realistic traffic despite the large
cost of doing so. Publicly available traces aim to provide
that complex traffic at structures that cannot afford that
high cost. We want our method to be able to generate
the evaluation data of large scale networks while offering
the possibility to choose the size of this network.

These five requirements are the ambition of our evaluation
data method. Even if our method ends up not being as ideal,
we want our approach to respect as much as possible those
requirements.

We also want to be able to provide evaluation data for live
testings and offline testings. As such, we want our method to
be close to executable workloads.

IV. DATA PRODUCTION METHOD MODEL

In this section, we present a formal model for our data
production method. A formal representation of our model
allows us to present a generic approach that is not restrained
to a single implementation. Network simulators do not use
similar simulation techniques, even among the same category
of network simulators. The support of different network infras-
tructures provides different strengths that may be of interest
to the evaluators. In the same way, implementation choices
can also impact the properties and capacity of our model.
A formal model presents a generic model that allows for
different implementation approaches. By clearly defining the
properties of our model, we can devise tests to verify that the
implementation is in accordance with the model.

In our model, we define four core concepts: Elementary
actions, Data generating functions, Scenarios, and Scripts.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After those definitions and the presentation of our simulation
model, we deduce formal requirements on our model according
to the five ideal criteria. In short, we add several properties to
our model to ensure to respect as closely as possible the criteria
of an ideal method.

A. Concepts and definitions

1) Elementary action: We call Elementary action (A) a short
ordered set of interactions that represents an action between
two actors of the activity. Those actors are either a Host — a
source of generated data — or a Service — a set of functionalities
available to a Host. A Service can be an external server or an
internal service.

The goal of Elementary actions is to divide the activity
we simulate in actions that correspond to an entry of the
ground truth, such as “connection to the web interface of a
webmail server”. The ground truth is an exact representation
of the activity generated. Therefore, a finer set of Elementary
actions for an activity means a finer representation of the
simulated activity and a finer control of the activity model for
the evaluator. Roughly translated, even if the model does not
forbid it, an Elementary action is not meant to be a large set of
interactions like “a day of activity of user U”. An Elementary
action intends to represent a short action like “connection to
service S” or “adding an entry to service S’”.

For each Elementary action, we acquire Model data that are
the captured data of the execution of this Elementary action
during real activity (activity not issued from our simulation).
Model data take different forms (traces, logs, values, etc.)
according to the nature of the data the evaluation target can
handle.

Furthermore, the evaluator can classify the Model data. The
evaluator uses that classification to help label the resulting
Simulation data and create a labeled ground truth. However,
the evaluator is in charge of deciding a classification as
it can change according to the need of the evaluator. For
example, the evaluator can create two classes of Model data to
represent malicious activity and benign activity, respectively.
In other contexts, the evaluator can define other classes. For the
evaluation of administration tools of a network, the actors to
consider are different (security: attacker/user, administration:
admin/user/client) and the evaluator will have to define classes
of data accordingly.

After capturing Model data for every Elementary action
relevant for the evaluation, the resulting set of Model data
is then given to a Data generating function.

2) Data generating function: We define a Data generating
function (f) as a function that creates Simulation data from
Model data. Simulation data (d*™™*'e*°") is the execution of
an Elementary action (A) during a simulated activity.

A Data generating function (f) takes two inputs: Model data

(d™°dly and a set of Elementary action parameters (p*). We
define later the Elementary action parameters.

The properties of the Simulation data and Model data
represent the level of realism as seen by the evaluator. They

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

32

correspond to a set of specific features of the data, either
qualitative or quantitative. The properties of the data are of
different forms: acknowledgement of the data by the Service,
size of sent packets, value of a measure, etc. and they represent
the level of realism chosen by the evaluator.

Our definition of Data generating function does not include
requirements on the output, the Simulation data. We express
our demands for Simulation data as Equivalence. We call
Equivalence (~) the fact that two activity data have the same
properties.

activity ! activity
dy ~dy
<~
Properties(d%™""™) = Properties(d ;")

It is important to specify that two data are only equivalent
in the eyes of evaluator. The only identical properties of two
equivalent data are the properties of interest to the evaluator. So
if not all properties are necessarily identical, it also means that
two equivalent data are not necessarily identical. For example,
if the evaluator is only interested in the volume of the traffic
and the size of the packets, two packets with the same size but
different content will be equivalent.

A Data generating function can produce Simulation data
that are not identical but equivalent for the same inputs but
executed at different times. For instance, if the generation
of the Simulation data includes the addition of randomly
generated parameters like tokens. However, we do not consider
times as an input of our formalism of Data genration functions.
We do not include time as an input because, although time can
impact if the Simulation data are identical, it does not impact
the equivalence of Simulation data.

The evaluator selects a set of Elementary actions to decide
the finesse of control over the simulation and he chooses a
Data generating function to reproduce the properties of the
data he requires. If the Data generating function that produces
Simulation data from a dataset of Model data cannot produce
data with the same properties, it is useless for the evaluator.
Thus, we define the following verification property of Data
generating functions:

Property 1: a Data generating function f is said to be
useful to a set of Model data D if all Simulation data
generated by f from any Model data that belong to D is
equivalent to the data used as model.

VpA Y deDand f /f(dph) = dsimulation
f 1S useful toD& VYdeD,d~ Jgsimulation

The evaluator can select the Data generating function among
a pool of Data generating functions with Simulation parame-
ters (p**™@ietion) The evaluator chooses the function that is
useful to his Model data and provides the Data generating
function with additional parameters called Elementary action
parameters (p*). Elementary action parameters allow the eval-
uator to modify the behavior of the Data generating function.
It can be to match a larger dataset of Model data or to provide
a finer control.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We call Elementary action parameters (p**) associated to
an Elementary action (A) a set of parameters provided to a
Data generating function (f) to produce Simulation data that
can impact positively the usefulness of the Data generating
function.

f(da,p?) is useful to D

\VZ A
P f(da,0) is useful to D’

} =D CD

For example, we take a Data generating function that
preserves the property “acknowledgement of the data by the
Service” of traces given to it. That function, in order to be
useful to the dataset that has the same property, will change
some time-sensitive information on the input data like a cookie
or a session ID. However, different Services may mark this
information differently. A service S; might mark the session
ID with the tag ”&session_id=" while a service S; will mark
it with the tag ”&_session=". Some services might also have
other additional change in their interactions that other services
do not have. To avoid relying on a different Data generating
function for every service due to those insignificant differences,
we want to parameter the transformations applied by the Data
generating function.

Moreover, the evaluator might want to produce Simulation
data from the same Model data but with different results.
For example, the evaluator wants to reproduce the Elementary
action “connect to a webmail” with the conservation of the
property “acknowledgement of the data by the Service”. How-
ever, left as it is, the Simulation data always present the same
credentials. The evaluator may want to simulate connection
to the webmail with different IDs without being force to
provide a different Model data for every set of credentials.
It is necessary to be able to parameter the function to make
small modifications rather than having a lot of Model data for
the same Elementary action.

The Data generating functions are controlled and fed by
a simulation control program. This program gives order to
virtual hosts to execute specific Data generating functions with
specific inputs. The orders are issued on a separate virtual
network. The resulting data exchanged between the simulation
control program and the virtual hosts are called Control data.

To sum up, Data generating functions are selected with
Simulation parameters by the evaluator for the properties they
preserve and the evaluator adapts or controls the Simulation
data with Elementary action parameters. The data exchanged
by the program that controls the simulation and the Host that
runs a Data generating function is the Control data (d°°™*"°)
and is essentially the ground truth of the simulation. The
compilation of the Control data informs us of all the actions
taken during the simulated activity.

3) Scenario and Scripts: A Script is the representation of a
realistic behavior of a Host. We define a Script as an ordered
set of Elementary actions coupled with Elementary action
parameters. A Script (Scripty) is defined for each individual
Host and describes the activity it must generate during the
simulation. The set of defined Scripts is called the Scenario
(Sce) of the simulation.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

33

A Script can be represented as a graph of actions, as
illustrated in Figurel.

@ @ N

Figure 1. Example of a Script

B. Our model

dsimulatiun
simulation A

fP

Host 0

simulation A
p AP

Simulation
control
program

d"" (ground truth)

simulation

simulation A 1A 1simulation
941y d,

A

simulation
Host 1 iy s

Figure 2. Generation of simulated activity from short traces

Figure 2 is a representation of our model. In that figure,
the evaluator provides the simulation control program with the
Simulation parameters (p>*™**°n) and the Scenario (Sce):

Sce = {Scriptp,, Scripty, } = {([A>pA]’) ([AvplA]v etc.)}

The simulation control program interprets the Scenario and
the Simulation parameters and deduces the number of Hosts
in the current simulation. It instructs the Hosts Hy and H;
to reproduce the Elementary action (A) with the parameters
psimulation and pA Then, each Host retrieves the Model data
associated to the Elementary action and executes the Data
generating function (f) selected in the Simulation parameters.
That function produces Simulation data, which are sent to a
Service. The use of different Elementary action parameters by
Hy and H; results in the generation of different Simulation
data even when the Data generating function and the Model
Data are the same:

di‘imulation _ fpsi'rnulation (dnAwdel,pA)

simulation
model 1A
(dA » P)

S

dsimulation — d/ simulation
A A

! simulation __ rp
da =f

However, while those two Simulation data may not be equal,
they are equivalent.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After the Hosts inform the simulation control program
that they finished simulating the Elementary action A, they
await the next simulation orders from the simulation control
program.

The model we presented is the situation where all the Hosts
are simulated and the Services are real services. If some Hosts
also acted as Services, they could also initiate the generation
of Simulation data according to requests received from other
Hosts in the form of other Simulation data.

In our model, the processing of the Control data of Hosts
simulated by our model generates the ground truth of the
simulation. Therefore, we do not process data from Hosts
unrelated to the simulation (external hosts connected to the
simulation). The evaluators must incorporate those elements
to their ground truth.

Lastly, we must present one of the significant issues of
our model: the parameterization of the Elementary actions.
The parameterization is the addition of Elementary action
parameters to extend the scope and variability of the Data
generating function while still preserving various data proper-
ties. However, the higher level the preserved properties are,
the more complex the reproduction of Elementary actions
becomes. Therefore, designing a Data generating function for
a highly realistic simulation, where for instance not only packet
size is preserved but also data acknowledgment, requires to
consider three main aspects:

e typing: identification and generation of short-lived data
like tokens, identifiers of session, etc.

e semantics: modification of inputs with a high semantic
value in the Model data: credentials, mail selection, mail
content, etc.

e scalability: a large scale execution of the Data gener-
ation function can have consequences on the previous
aspects and requires additional changes (e.g., creation
of multiple user accounts in the Service database).

These three aspects are integrated to the Elementary action
parameters. However, a few in-depth issues still require further
consideration and development in order to elaborate a model
able to adapt to various test situations without the intervention
of the evaluator. The typing issue can be solved with methods
based on machine learning, but others may require specific
methodologies according to the context of the evaluation. For
example, in the case of the reproduction of a real-life network,
the semantic and scalability issues can be solved with analysis
of an extended Model data acquisition period. The evaluator
can identify and highlight inputs in the Model data with a high
semantic value for the simulation.

C. Formalisation of data generation method requirements

Here, we discuss how to translate the requirements into
properties of the model of our method or, in case it is not
possible, into implementation requirements.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

34

1) Reproducibility: Reproducibility concerns two different
aspects: an experiment carried out several times in the same
condition must produce the same results, and a previous
experiment should not impact a new experiment — which comes
down to the ability to restore the simulation environment to a
starting state.

The first requirement of reproducibility means that when
reproducing a similar event in the same context, our simulation
must provide a similar result. We translate it as a property on
Data generating functions:

Property 2 (Reproducibility property of Data generating function):

A Data generating function f is said to be reproducible if,
for any Model data, the resulting Simulation data generated
at any instant is equivalent to any Simulation data previously
produced with the same input data.

at instant t, f(d,p?) = dsimulation }

VYd e D, Vt' £t _ .
a at instant t', f(d,pA) — (' simulation

f is Teproducible o dsimu,lation ~ d/ simulation

The second requirement of reproducibility is not a require-
ment on our model but on the virtual infrastructure of our
simulation. The implementation of our model must allow
the creation of networks in similar conditions without any
lasting impact from any previous use of the simulation. This
requirement will impact the choice we make for the network
support of our simulation implementation.

2) Realism: The realism of our simulation depends on two
factors:

e The Data generating function and Model data: the
Simulation data produced are only as realistic as the
Data generating function and the input data allow it. The
verification property of the Data generating function (cf.
Property 1) ascertains that the Simulation data produced
is as realistic as the Model data used as input of the
Data generating function. Thus, for Simulation data to
be realistic, the Model data must also be considered
realistic for the same criteria of realism. Moreover, the
Data generating function must preserve the properties of
the Model data that the evaluator considers as realistic.

e The Scenario: the activity our simulation produce is only
as realistic as the Scenario. At its core, the Scenario is
the activity model of the evaluator for the simulation.
A realistic activity model with realistic Model data will
result in a realistic activity. We want our model to verify
that property.

Property 3 (Verification property of the Scenario): The
Model data generated by a real activity according to a
Scenario must be equivalent to the Simulation data generated
by a simulated activity of the same Scenario.

In short, our simulation model can generate an activity
according to a Scenario with the guarantee that the properties
of the Simulation data are as realistic as the input data. As
to what properties are guaranteed, it will depend on the Data
generating function chosen by the evaluator. In a more concrete

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example, if our method makes a simulation of a network
activity with a Data generating function that preserves the
packet size of the model data, we can guarantee that the
produced Simulation data will present a volumetric network
activity as realistic as the Scenario of the simulation and the
Model data.

3) Adaptability: The evaluator can adapt a simulation on
our model with several aspects.

Firstly, the Scenario. The Scenario allows the evaluator
to generate the activity of different activity models. With a
large variety of Elementary actions, the evaluator can create
complex Scenarios and obtain realistic Hosts’ behavior during
the simulation. Moreover, the more atomic the Elementary
actions are, the more precisely the evaluator can control the
simulation and create Scenarios adapted to his needs.

Secondly, the Elementary action parameters. They can pre-
serve the realism of the Simulation data while offering an-
other degree of customization. The evaluator can significantly
improve the semantic value of the Simulation data by using
those parameters to modify customizable inputs in the Model
data (credentials, POST form inputs, etc.).

Lastly, the Data generating functions. The variety of Data
generating functions to select from is one strength of our
model. Each Data generating function offers a guarantee of
realism as seen in Section IV-C2. We can define levels of
realism that correspond to the selection of different Data
generating functions. As the realism property of our model
partly depend on the Data generating function, a customizable
Data generating function means an adaptable realism of the
simulation.

* Minimal realism
simulate the time taken by actions

* Reproduce packet volume
generate empty packets

* Reproduce packets
* Reproduce modified packets

* Similar reproduction of system data
CPU time, disk charge, logs ...

* Fake machine
capable of faking the services applications

Levels of realism

Figure 3. Levels of realism

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

35

In Figure 3, we exhibit several levels of realism associated
with several Data generating functions. We divide these levels
into three main types: Temporal, Network and System.

The first type, Temporal, is the minimal level of realism
possible and is useful only when the evaluator is solely
interested in the elapsed time of different Scenarios. In this
case, the simulation of activity consists of Hosts waiting the
average time of each Elementary action.

The second type of levels of realism, Network, is chosen
when an evaluator is solely interested in the simulated network
traffic. We identify three levels for this type:

e Reproduce packet volume: if the evaluator has an
interest in the network charge of the simulation, with
no interest for the content. From the Model data of
each Elementary action, the Data generating function
reproduces all the packets up to the transport layer before
padding the payload with random bytes to match the size
of the input data’s packets.

e Reproduce packets: if the evaluator is interested in
reproducing the input data with the full payload. The
Data generating function reproduces the packets while
changing the appropriate fields (tokens, session IDs, etc.)
for a correct exchange between the Host and the Service.

e Reproduce modified packets: if the evaluator needs
more precise control of the previous Reproduce packets
level of realism. The Data generating function produces
the packets as described above, but Elementary action
parameters customize the output. For example, if the
Data generating function reproduces the Model data to
connect to the webmail server, the evaluator also modify
the credentials used to connect to the Service by the
Model data.

Finally, the third type of realism is System. It is the highest
level of realism we imagined for the simulation. With Repro-
duction of system data, we want to reproduce the system data
measured on the Hosts so that it matches the Model data. For
the last degree of realism we want the Data generating function
to reproduce the data of service applications — to provide
network and system data without executing the applications.
It is, in essence, a Fake machine.

All those different levels of realism correspond to different
Data generating functions that the evaluator can select for his
simulation. It is also possible to imagine and add other levels
of realism or Data generating functions with different uses.
Those levels of realism represent our implementation goal for
a customizable realism of our model.

To be noted, the nature of the Model data described in each
type of level of realism is different. Temporal uses measure
values as Model data, Network has network traces, and the
Model data of System are a combination of system data and
network traces.

To sum it up, the evaluators can customize the simulation
of our model according to:

e The scenario and network topology (size, topology,
connexion to external networks, ...)

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e The Model data: the scope of Elementary actions
(smaller or larger number of interactions)

e The Elementary action parameters: customize inputs
with semantic value (credentials, information fields, sub-
mission contents, etc.)

e The Data generating function: the evaluator can select
a level of realism useful for a specific dataset or the
preservation of specific properties.

4) Accuracy: The constitution of the ground truth is deduced
from the analysis of the Control data. We want the Control
data of our model to contain the information on the input of
every event (ps"muletion A pAy to know when the Host has
reproduced the Elementary action, how long it took to do it
and what the result was (success, failure, error, etc.).

Our simulation must guarantee that information. We trans-
late it into an implementation requirement of our model:

Property 4 (Implementation requirement): The Control
data of the simulation must include the following information
for every entry of the Scenario associated to an Elementary
action:

e The Elementary action an Host took

e The timestamp of that action

o The Elementary action parameters sent with the action
e The result of that Elementary action

e The time it took to carry it

By combining this information with the traces used for each
Elementary action, it is possible to label a record of the activity
generated by the simulation of our model quite simply.

In our model, each Host only receives instructions to replay
one Elementary action at a time. Only the simulation control
program knows the full Scenario and knows which Elementary
action and Elementary action parameter any given Host will
replay next. Each Host is in a stateless situation at any given
point of the simulation. We could choose to give the Script of
the Host to each of them at the start of the simulation and let
them deal with the execution of the Script. However, it would
risk having the Hosts act out of sync with each other, especially
when introducing elements of randomness in the Scripts of the
Hosts.

With a centralization of the decision-making process of the
simulation, we have a central point with full knowledge of the
situation of the simulation at any given point in time, which
facilitates the constitution of the ground truth of the simulation.

However, our model is not connected to the output of the
tested product. Our model solely handles the data sent to the
tested product and can label the Simulation data produced.
While our model also receives data, it does not know if the
data was correctly processed by external components nor does
it have access to their logs. Those elements are necessary
for a complete ground truth. For example, if our simulation
asks an Host to reproduce the Elementary action “connect
to the webmail server of the company”, we will know what
Data generating function it used, when and how long it took
for the Host to do it and if the execution of the function

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

36

went well. However, we do not have access to the log of the
webmail server telling us if the connection was successful.
That information is not present in the Control data. The
evaluator would have to provide that information to the ground
truth generated by the simulation.

In this example, we assumed that we are in the case where
we simulate only the clients of real-life services. If we also
simulated the Services, then the Control data would also
contain the information on the output of the tested product.

The scope we guarantee for the constitution of an accurate
ground truth only goes as far as the elements simulated by our
simulation goes. The constitution of the ground truth with the
data of external elements connected to our simulation is at the
charge of the evaluator.

5) Scalability: Scalability is an essential issue for evaluation
data. It is a property that rapidly increases the difficulty and
cost of most methods to generate evaluation data. However,
it is an interesting property because it allows the constitution
of complex and large-scale activity close to a real-world envi-
ronment. One of the interesting property of having a scalable
network simulation is that the Simulation data generated by
two Hosts (Hg and H) is not the same thing as the Simulation
data of a single Host Hy doing the same action twice.

simulation

E{d fpsim,ulation pA}/ dSHiZ;nUlation = fIZ‘)I() » ’pA)
’ ’ dsimulation _ fP“mulatwn A)
H, =Jm » D

d;};nulation U d%z’nulation 7& dsHiOmulation %2
In the same way, having 50 Hosts making one connection is
not the same thing that having one Host making 50 connections
at the same time. The impact on the tested product is also not
the same, especially if that security product must follow the
activity of each user separately.

Our model guarantees that if two Hosts use the same useful
Data generating function on the same Model data, then the
resulting Simulation data are equivalent.

Proof.
e According to Property 1:
fisuseful toD, if ¥d € D,d ~ d*™ulation — f(d, p)
e So, if the Hosts Hy and H; produce Simulation data
with f then:
Hdp'Y d;’[inmulation = fr,(d, p?)

d;}znulation — le (d, pA)
= dﬁomulation ~d and d;ﬂnulatwn ~d

e The definition of equivalence is that two data are equiv-
alent if and only if their properties are the same. So:

Properties(

Properties(dij™*"") = Properties(d)
= Properties(d)

simulation
i,)

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

= Properties(

dsimulation) —
Hyp

. simulation
Properties(dy!)

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

37

V. IMPLEMENTATION OF THE PROPOSED METHOD

In this section, we describe the implemention of a prototype

and Properties(dj;™"'*"°") = Properties(dj;™"/*""°") that follows the requirements of our model. This prototype uses

simulation simulation
< dH(J ~ dHl
e So, we have:

d;}'(rjnulation _ ng (d,pA)

? :lS'L/;TL ll ation le (:l’ pA)
3 lati] lati
dszomu ation dsz:nu ation

We also know that two equivalent data are not necessarily
equal to each other (d ~ d° # d = d'). Therefore, it
exists a case where two Model data are equivalent and not
equal. So:

simulation

El{d fps'hnulatiun A}/ d?—}-gnujation = f}—}o (d7pA)
9)p dsimulation - psimulation d A
Hy - le (P)

simulation simulation simulation simulation
dHo ~ dHl and dHo # dHl

So, if we produce dji™ulation once more on each side we
obtain the following result on our model:

simulation

cimulation dsimulation _ P pA
Ha, oy 2o i ’A)
dﬁznu ation __ pr{1 (d’p)

simulation simulation simulation
dsir U dgr £ d3ir %2

We now have proof that one of the main interesting aspects
of a scalable simulation is not in opposition to our model.
With our model, we can produce the activity of n Hosts

that would be different from doing the same activity n times
simultaneously on a single Host.

The other aspect to consider with scalability is the network
infrastructure. To achieve a scalable simulation, we must
impose some requirements on the network support:

Property 5 (Implementation requirement 2): The network
infrastructure supporting the simulation model must be favor-
able to scalability. It should:

e Use virtual hosts: it is not possible to have a scalable
network with physical hosts so our network support must
use virtual hosts.

e Have low setup time and resources requirements: re-
sources consumption and the workforce required for set-
ting up a vast network are what often prevent evaluation
data methods from being scalable.

Following the second requirement, we aim to make our
simulation model work on a virtual network using process
VMs. We detail the implementation of a prototype in the
following section.

Mininet [24] as the network support of our simulation. Mininet
is an open-source network simulator that deploys lightweight
virtual machines to create virtual networks, and able to create
hundreds of lightweight virtual machines in a short amount of
time.

A. Model of the prototype

Our prototype contains several Data generating functions
that preserve each of these properties: execution time, packet
size, acknowledgement of the data by the Service. Based on
these Data generating functions we simulate the activity of
50 to 200 Hosts representing regular employees of a small
company interacting with the Service of a webmail server
Roundcube on a Postfix mail server. A simulation control
program follows the Script described in Figure 4 for all the
Hosts of the simulation. In Figure 4, the Elementary actions
are in italics while actions that do not generate activity data are
in a regular font. The Host can simulate two different series
of Elementary actions after a waiting period of X seconds
each time. The intensity of the Script can be modulated by
modifying the value of X.

p=0.8
Wait X seconds

Connect to webmail Connect to webmail

Read last email Read last email

Figure 4. Generation of simulated activity from short traces

Disconnect

To make sure that our method improves the existing meth-
ods, we must verify that our implementation respects the
properties we highlighted:

e the verification property of Data generating functions
(c.f. Property 1)

e the reproducibility property of Data generating functions
(c.f. Property 2)

e the verification property of the Scenario (c.f. Property
3)

e the implementation requirement on Control data (c.f.
Property 4)

e the implementation requirement for scalability (c.f.
Property 5)

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

38

TABLE I. NUMBER OF LINES IN THE WEBMAIL LOG FILES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Fil avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
userlogins 90 9 112 10 1032 36 2084 45 3085 52 4121 53 5118 74
imap 43245 5070 577175 5306 487883 22742 984642 28820 1450507 27792 1933823 21117 274825 235985
sql 4955 525 6703 563 56081 1886 113031 2452 167138 2964 223427 2906 265354 4688

B. Verification of the implementation requirements

The verification of the implementation requirements (Prop-
erties 4 and 5) are the easiest to verify.

We select the network simulator Mininet in accordance to
Property 5: it uses lightweight virtual machines and can create
a large amount of virtual hosts (around a thousand) connected
with virtual links in a matter of minutes on a regular computer.
Mininet uses the lightweight virtualization mechanisms built
into the Linux OS: processes running in network namespaces,
and virtual Ethernet pairs. Mininet can emulate links, hosts,
switches, and controllers at a very low resource cost.

Concerning the Property 4, we simply ask the simulation
control program to write in a file the information required by
that property.

C. Experiments on the prototype

We verify the other properties with two separate experi-
ments.

The first experiment is a control experiment. We deploy
5 virtual machines on the network simulator Hynesim [25]
and make them generate the activity of our simulation. We
script the Elementary actions of the Script described in Figure
4 with the web driver Selenium [26] and make the virtual
machines use their browser to interact with the webmail server.
This experiment provides referential values for our second
experiment. We expect proportionality between these values
and the results of our simulation, with respect to the number
of Hosts.

In the second experiment, we simulate different number of
Hosts (5, 50, 100, 150, 200 and 250) and make them generate
the activity of regular users using a webmail service for 30
minutes. We measure the activity at three different points:
the webmail server, the network simulator Mininet and the
server hosting the simulation. Every 30 seconds, we measure
four parameters: CPU usage, memory usage, network I/O, and
disk I/O. Figure 5 is an example of the measured activity. It
represents the network traffic received and sent by the webmail
server with 50 simulated Hosts. Each Host follows the Script
described in Figure 4, with X = 30.

We also retrieve the logs produced by the webmail server
during both experiments. The quantity and content of the
logs is analyzed in Table I and Table II. Both experiments
are done twenty times for each set of parameters to ensure
the consistency of the results (Property 2). In the results we
express the average value and standard deviation of those
twenty experiments.

600 000

recv
send

550 000

500 000 -

450000

400 000 -

350000

250000

200000

150 000

100 000

50000 -

o T T T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

slices of 30 seconds

Figure 5. Network traffic of the webmail server for a single experiment (50
Hosts)

In the second experiment, we use the Data generating func-
tion with the highest level of realism: the adapted replay. That
Data generating function preserves the data acknowledgement
by the Service and allows Elementary action parameters to
modify the inputs of submitted forms. Concretely, it means
that a server cannot distinguish the adapted replay from an
interaction with a real user. Also, with the help of Elemen-
tary action parameters, the evaluator can freely change the
credentials replayed to the webmail server.

The analysis of the logs aims to verify the Properties 1
and 3. We verify that the Postfix server correctly accepted
the data generated by the Data generating function for each
Elementary actions (Property 1) and that the logs of the
simulation reflects our estimation from the logs of the control
experiment (Property 3). We also verify that the results are
consistent over multiple instances (Property 2).

Table I represents the quantity of logs produced by the
webmail server during both experiments. We express the
average number of lines in the log files of the webmail and
their standard deviation. The first column is the name of the
main log files produced by the server: userlogins” logs every
connection (successful or not), “imap” logs every instruction
from the server that uses the IMAP protocol, and ’sql” logs
every interaction between the server and its database. The
entries under the name 5 VMs” correspond to the results of
the control experiment while the other entries are the results
of the simulation experiment.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

6 000
average number of sessions
— — standard deviation
5000 —H—+—+ estimation 7
A
Z
///
8 4000 - i
8 A
5 7
g A
2 3000 Pl
4

& p
@ z
5 4
s A
(93
g 2000 i
=]
c

1000 -

o +——+—+—7——F— 77—
0 50 100 150 200 250

number of Hosts simulated

Figure 6. Number of sessions created during simulation (blue)
compared to estimation (black)

The number of lines in “userlogins” represents the number
of connections during the experiments (one line per connec-
tion) and can be used to calculate the number of sessions
created during both experiments. Figure 6 shows the average
number of sessions created during the second experiment and
its standard deviation according to the number of simulated
Hosts. We also estimate the average number of sessions
inferred from the results of the control experiment, based on
proportionality (avg(”5 VMs”) x %OJCHO“S).

We observe that the number of sessions created during the
second experiment is close to our estimation. Our simulation
produces more sessions than expected but it can be explained
by the fact that our Data generating function reproduces the
Model data of an Elementary action faster than the browser
of the virtual machines. Hence, in a period of 30 minutes, the
simulated activity has gone through more cycles of the Script
than the control experiment. A projection of the number of
lines of the other log files ("imap” and “’sql”) displays similar
results.

These results establish that the simulated activity produces a
consistent amount of logs. In Figure 7, we examine the network
traffic produced by our simulated activity. The blue and red
parts represent the average number of bytes, respectively,
received and sent by the webmail server every 30 seconds,
along with the standard deviation. For comparison, the black
lines correspond to the estimation of the expected results based
on the control experiment. As before, the results of the second
experiment are close to our estimation. The deviation can be
justified with the same explanation regarding the activity speed
difference. This deviation is also partly due to the cached data.
Since these data are stored on the host after the first connection,
the amount of exchanged data during the first connection is
higher than during subsequent sessions.

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

39

1.6e06

average number received every 30s

1.4e06 |- — —- received standard deviation A

|I0—O—Oreceived estimation -

average number sent every 30s ke
— - —- sent standard deviation -

4—b&—4 sent estimation

1.2e06 -

1e06

8e05

bytes

6e05

4e05

2e05

0000 pmpememr = = — =

number of Hosts simulated

Figure 7. Network traffic of the webmail server

However, our Data generating function does not take cached
data into account. Therefore, our simulated connections request
more data from the webmail server than estimated. This
observation is part of the parametrization issues of the Data
generating function raised at the end of Section IV. Adding
Elementary action parameters to modify the behavior of the
function can solve this issue as we did for previous typing
and semantic issues. However, the addition of new Elementary
action parameters is made from empiric observation and could
be improved by adding new methods to our model like machine
learning.

Despite those issues, we have shown that the simulated
activity of the second experiment generated a large network
activity proportionally to the number of simulated Hosts, as
expected. We now focus on proving that the activity semantics
was also preserved.

For each Elementary action of the activity Script, we look
for log entries that could act as signatures for the action. We
select those signatures by comparing the logs of the different
Elementary actions. The log entries that appeared for only one
Elementary action are selected as signature of that action.

Those log entries are used to verify that the server ac-
knowledges the simulation data as it would real actions. We
also manually verified the correctness of the Data generating
function for some Elementary actions. For example, we ask
the simulation to do the action “read the email” for a different
email that the one in the Model data. Or to do the action
“connect to the webmail” with purposely wrong credentials. In
both cases, the manual analysis of the simulated data showed
that the webmail server properly acknowledged the simulated
data.

Signatures from log entries is a more global form of veri-
fication. By comparing these signatures in both experiments,
we obtain the results displayed in Table II.

From Table II, the following observations can be made:

e the number of signatures for the “connect” Elementary

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

40

TABLE II. SIGNATURE LOG ENTRIES.

5 VMs 5 Hosts 50 Hosts 100 Hosts 150 Hosts 200 Hosts 250 Hosts
Signatures Actions avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev avg stdev
imap.signl connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign2 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign3 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign4 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign5 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign6 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign7 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign8 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
imap.sign9 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
imap.sign10 connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4873 88
sql.signl connect 90 9 122 10 1032 36 2079 44 3075 55 4118 54 4874 87
sql.sign2 disconnect 90 9 122 10 1032 36 2079 44 3085 52 4121 53 S118 74
imap.sign11 open 89 9 122 10 1028 36 2069 44 3059 52 4090 53 4808 91

action 1is slightly inferior to the number of sessions
(the number of lines from “userlogins”) observed for
150 Hosts and above. It is explained by the fact that
the signatures correspond to the number of successful
connections to the webmail server. If we remove the
number of lines in the “userlogins” file that correspond
to failed connections, we find the exact number of
signatures for the “connect” Elementary action.

the number of signature for the disconnect” Elementary
action corresponds to the exact number of sessions
observed in Table I.

the number of signatures for the “open” Elementary
action is slightly inferior to the number of signatures
for the “connect” Elementary action for 50 Hosts and
above. It is likely due to the experiment ending before
the last Script cycle ended for a few Hosts.

no characteristic entry for the ”send an email” Elemen-
tary action could be found in the “userlogins”, “imap”

and ’sql” log files.

The failure of several connections in our simulation may
also be due to the parameterization of the Data generating
function. The adapted replay Data generating function was
designed to modify short-lived information from the Model
data like the token or the session identifier according to the
server reply from the requests. However, such modification was
not included in the first request. The webmail server possibly
refused some connections because they contained the same
information at the same time. Therefore, an improvement of
the typing of the adapted replay Data generating function
should raise the number of successful connections with a
high number of simulated Hosts. Table II shows that for each
successful session in our simulated activity, the webmail server
correctly interpreted the Elementary actions.

To sum up the results analysis, our prototype generates a
simulated activity that produces a realistic amount of net-
work traffic and logs from the webmail server (Property
3). Moreover, the webmail server produces the appropriate
number of logs reflecting the correct semantics. Each simulated
Elementary action resulted in the same log entries as a real one
(Property 1). Each result was verified twenty times (Property

2). Therefore, our prototype succeeds in providing scalable and
realistic data generation, thus validating our model.

VI. CONCLUSION

In this paper, we establish a new methodology to generate
realistic evaluation data on a network support (Mininet) with
far fewer requirements than the common network testbeds.
This methodology takes into consideration the need for an
evaluator to test different properties and evaluate different
vulnerabilities in a security product. Therefore, an evaluator
can select the Data generation function that matches the
properties of the product that need to be tested. The evaluator
also has a control on the granularity of the activity Elementary
actions. The finesse of the simulated activity can be improved
by introducing new Elementary actions or adding Elementary
action parameters to the Data generation function.

We add to our previous published paper several aspects.
First, we elaborate the ambition of our method into five iden-
tified requirements: customizability, reproducibility, realism,
accuracy, and scalability. Second, we explain with greater
details the different concepts of our methods and translate our
added requirements into verifiable properties of our model. It
allows us to introduce the concepts of levels of realism with
clear example of the current capacities of our model and its
future potential. We validate our model with a prototype able
to generate realistic activity up to 250 users interacting with a
webmail server. The traffic can be customized in terms of Hosts
numbers as well as Scripts content. With our added verifiable
properties of the five requirements of our model, we define
experimental tests to make sure our prototype complies with
our ambitions. In another article [27], we use this prototype
to define evaluation methodologies and evaluate a security
product: the intrusion detection system Suricata.

However, our prototype still has a few limitations. The
existing Data generating functions mostly focus on the creation
of network activity and does not generate system activity for
host-based security products. The parametrization for more
realistic Data generating functions also raises additional issues
that need to be addressed with further work. Finally, our
prototype is currently limited to the simulation of Hosts. In
parallel with the testing of network-based intrusion detection

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Security, vol 12 no 1 & 2, year 2019, http.//www.iariajournals.org/security/

systems based on our prototype, the next steps of our work will
focus on extending our prototype to include the simulation of
Services and develop new Data generating functions that focus
on the generation of system data rather than network data.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

P-M. Bajan, H. Debar, and C. Kiennert, “A new approach of net-
work simulation for data generation in evaluating security products,”
in ICIMP 2018, The Thirteenth International Conference on Internet
Monitoring and Protection, 2018.

A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer, and B. D. Payne,
“Evaluating computer intrusion detection systems: A survey of common
practices,” ACM Computing Surveys (CSUR), vol. 48, no. 1, 2015,
p. 12.

C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection
signatures using honeypots,” ACM SIGCOMM computer communica-
tion review, vol. 34, no. 1, 2004, pp. 51-56.

V. E. Seeberg and S. Petrovic, “A new classification scheme for
anonymization of real data used in ids benchmarking,” in Availability,
Reliability and Security, 2007. ARES 2007. The Second International
Conference on. IEEE, 2007, pp. 385-390.

S. E. Coull et al., “Playing devil’s advocate: Inferring sensitive infor-
mation from anonymized network traces.” in NDSS, vol. 7, 2007, pp.
35-47.

A. Srivastava, K. Singh, and J. Giffin, “Secure observation of kernel
behavior,” Georgia Institute of Technology, Tech. Rep., 2008.

F. Lombardi and R. Di Pietro, “Secure virtualization for cloud comput-
ing,” Journal of Network and Computer Applications, vol. 34, no. 4,
2011, pp. 1113-1122.

J. Reeves, A. Ramaswamy, M. Locasto, S. Bratus, and S. Smith,
“Intrusion detection for resource-constrained embedded control systems
in the power grid,” International Journal of Critical Infrastructure
Protection, vol. 5, no. 2, 2012, pp. 74-83.

K. Nasr, A. Abou-El Kalam, and C. Fraboul, “Performance analysis
of wireless intrusion detection systems,” in International Conference
on Internet and Distributed Computing Systems. Springer, 2012, pp.
238-252.

K. Ma, R. Sun, and A. Abraham, “Toward a lightweight framework
for monitoring public clouds,” in Computational Aspects of Social
Networks (CASoN), 2012 Fourth International Conference on. IEEE,
2012, pp. 361-365.

J.-K. Ke, C.-H. Yang, and T.-N. Ahn, “Using w3af to achieve automated
penetration testing by live dvd/live usb,” in Proceedings of the 2009
International Conference on Hybrid Information Technology. ACM,
2009, pp. 460-464.

F. Massicotte, M. Couture, Y. Labiche, and L. Briand, “Context-based
intrusion detection using snort, nessus and bugtraq databases.” in PST,
2005.

N. J. Puketza, K. Zhang, M. Chung, B. Mukherjee, and R. A. Olsson,
“A methodology for testing intrusion detection systems,” IEEE Trans-
actions on Software Engineering, vol. 22, no. 10, 1996, pp. 719-729.

R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of kernel
rootkits with vmm-based memory shadowing,” in International Work-
shop on Recent Advances in Intrusion Detection. Springer, 2008, pp.
1-20.

H. Jin et al,, “A vmm-based intrusion prevention system in cloud
computing environment,” The Journal of Supercomputing, vol. 66, no. 3,
2013, pp. 1133-1151.

J. Morris, S. Smalley, and G. Kroah-Hartman, “Linux security modules:
General security support for the linux kernel,” in USENIX Security
Symposium, 2002, pp. 17-31.

M. Laureano, C. Maziero, and E. Jamhour, “Protecting host-based

intrusion detectors through virtual machines,” Computer Networks,
vol. 51, no. 5, 2007, pp. 1275-1283.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

41

P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An overview
of issues in testing intrusion detection systems,” NIST Interagency,
Tech. Rep., 2003.

R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf,
K. R. Kendall, S. E. Webster, D. Wyschogrod, and M. A. Zissman,
“Evaluating intrusion detection systems without attacking your friends:
The 1998 darpa intrusion detection evaluation,” Massachusetts Inst. of
Tech. Lexington Lincoln Lab, Tech. Rep., 1999.

T. V. Phan, N. K. Bao, and M. Park, “Distributed-som: A novel per-
formance bottleneck handler for large-sized software-defined networks

under flooding attacks,” Journal of Network and Computer Applications,
vol. 91, 2017, pp. 14-25.

C. Cowan, S. Arnold, S. Beattie, C. Wright, and J. Viega, “Defcon
capture the flag: Defending vulnerable code from intense attack,” in
DARPA Information Survivability Conference and Exposition, 2003.
Proceedings, vol. 1. IEEE, 2003, pp. 120-129.

R. Fontugne, P. Borgnat, P. Abry, and K. Fukuda, “Mawilab: com-
bining diverse anomaly detectors for automated anomaly labeling and
performance benchmarking,” in Proceedings of the 6th International
COnference. ACM, 2010, p. 8.

Z. Puljiz and M. Mikuc, “Imunes based distributed network emulator,”
in Software in Telecommunications and Computer Networks, 2006.
SoftCOM 2006. International Conference on. IEEE, 2006, pp. 198—
203.

R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R.
Prete, “Using mininet for emulation and prototyping software-defined
networks,” in Communications and Computing (COLCOM), 2014 IEEE
Colombian Conference on. IEEE, 2014, pp. 1-6.

“Homepage of Hynesim,” 2018, URL: https://www.hynesim.org [ac-
cessed: 2018-04-09].

R. A. Razak and F. R. Fahrurazi, “Agile testing with selenium,” in
Software Engineering (MySEC), 2011 5th Malaysian Conference in.
IEEE, 2011, pp. 217-219.

P.-M. Bajan, H. Debar, and C. Kiennert, “Methodology of a network
simulation in the context of an evaluation: Application to an ids,”
in ICISSP 2019, The Fith International Conference on Information
Systems Security and Privacy, 2019.

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

