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Abstract—Recently, it has been proposed that the natural
connectivity can be used to efficiently characterize the robust-
ness of complex networks. Natural connectivity quantifies the
redundancy of alternative routes in a network by evaluating
the weighted number of closed walks of all lengths and can be
regarded as the average eigenvalue obtained from the graph
spectrum. In this paper, we explore the natural connectivity
of random graphs both analytically and numerically and show
that it increases linearly with the average degree. By comparing
with regular ring lattices and random regular graphs, we show
that random graphs are more robust than random regular
graphs; however, the relationship between random graphs and
regular ring lattices depends on the average degree and graph
size. We derive the critical graph size as a function of the
average degree, which can be predicted by our analytical
results. When the graph size is less than the critical value,
random graphs are more robust than regular ring lattices,
whereas regular ring lattices are more robust than random
graphs when the graph size is greater than the critical value.

Keywords-natural connectivity; robustness; complex net-
works; random graphs; regular graphs.

I. INTRODUCTION

Networks are everywhere. Many systems in nature and
society can be described as complex networks. Examples of
networks include the Internet [1], metabolic networks [2],
electric power grids [3], supply chains [4], urban road
networks [5], world trade web [6] and many others. Complex
networks, more generally, complex systems have become
pervasive in today’s science and technology scenario and
have recently become one of the most popular topics within
the interdisciplinary area involving physics, mathematics,
biology, social sciences, informatics, and other theoretical
and applied sciences (see [7]–[9]). Complex networks rely
for their function and performance on their robustness, that
is, the ability to endure threats and survive accidental events.
Due to their broad range of applications, the attack robust-
ness of complex networks has received growing attention.

Recently, we showed that the concept of natural connec-
tivity can be used to characterize the robustness of complex
networks [30]. The concept of natural connectivity is based
on the Estrada index of a graph, which has been proposed
to characterize molecular structure [31], bipartivity [32],
subgraph centrality [33] and expansibility [34], [35]. Natural
connectivity has an intuitive physical meaning and a simple

mathematical formulation. Physically, it characterizes the
redundancy of alternative paths by quantifying the weighted
number of closed walks of all lengths leading to a measure
that works in both connected and disconnected graphs.
Mathematically, the natural connectivity is obtained from
the graph spectrum as an average eigenvalue and it increases
strictly monotonically with the addition of edges. Abundant
information about the topology and dynamical processes can
be extracted from a spectral analysis of the networks. Natural
connectivity sets up a bridge between the graph spectra and
the robustness of complex networks and receives growing
attention [36]–[38]. In our previous study [39], we have
shown that the natural connectivity of regular ring lattices is
independent of the network size and increases linearly with
the average degree. In this paper, we investigate the natural
connectivity of random graphs and compare it with regular
graphs.

The paper is structured as follows. In Section 2, we
introduce the concept of natural connectivity and some basic
elements of random graphs. In Section 3, we derive the
natural connectivity of random graphs. In Section 4, we
compare the natural connectivity of random graphs with that
of regular graphs. Finally, the conclusions are presented in
Section 5.

II. RELATED WORK

Simple and effective measures of robustness are essential
for the study of robustness. A variety of measures, based
on different heuristics, have been proposed to quantify the
robustness of networks. For instance, the vertex (edge)
connectivity of a graph is an important, and probably the
earliest, measure of robustness of a network [10]. However,
the vertex (edge) connectivity only partly reflects the ability
of graphs to retain connectedness after vertex (or edge)
deletion. Other improved measures include super connec-
tivity [11], conditional connectivity [12], restricted connec-
tivity [13], fault diameter [14], toughness [15], scattering
number [16], tenacity [17], the expansion parameter [18]
and the isoperimetric number [19]. In contrast to vertex
(edge) connectivity, these new measures consider both the
cost to damage a network and how badly the network is
damaged. Unfortunately, from an algorithmic point of view,

14Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications



the problem of calculating these measures for general graphs
is NP-complete. This implies that these measures are of no
great practical use within the context of complex networks.
Another remarkable measure used to unfold the robustness
of a network is the second smallest (first non-zero) eigen-
value of the Laplacian matrix, also known as the algebraic
connectivity. Fiedler [20] showed that the magnitude of
the algebraic connectivity reflects how well connected the
overall graph is; the larger the algebraic connectivity is,
the more difficult it is to cut a graph into independent
components. However, the algebraic connectivity is equal
to zero for all disconnected networks. Therefore, it is too
coarse a measure to be used for complex networks..

An alternative formulation of robustness within the con-
text of complex networks emerged from the random graph
theory [21] and was stimulated by the work of Albert et
al. [22]. Instead of a strict extreme property, they proposed
a statistical measure, that is, the critical removal fraction
of vertices (edges) for the disintegration of a network,
to characterize the robustness of complex networks. The
disintegration of networks can be observed from the decrease
of network performance. The most common performance
measurements include the diameter, the size of the largest
component, the average path length, the efficiency [23] and
the number of reachable vertex pairs [24]. As the fraction
of removed vertices (or edges) increases, the performance
of the network will eventually collapse at a critical fraction.
Although we can obtain the analytical critical removal
fraction for some special networks [25]–[29], generally, this
measure can only be calculated through simulations.

III. PRELIMINARIES

A. Graph and Natural Connectivity

A complex network can be viewed as a simple undi-
rected graph G(V,E), where V is the set of vertices, and
E ⊆ V ×V is the set of edges. Let N = |V | and M = |E| be
the number of vertices and the number of edges, respectively.
Let A(G) = (aij)N×N be the adjacency matrix of G, where
aij = aji = 1 if vertices vi and vj are adjacent, and
aij = aji = 0 otherwise. It is obvious that A(G) is a
real symmetric matrix. We thus let λ1 ≥ λ2 ≥ ... ≥ λN

denote the eigenvalues of A which are usually also called
the eigenvalues of the graph G itself. The set {λ1, λ2, ...λN}
is called the spectrum of G. The spectral density of G is
defined as the sum of the δ functions as follows

ρ(λ) =
1

N

N∑
i=1

δ(λ−λi) (1)

which converges to a continuous function when N → ∞,
where δ(λ−λi) = 1 if λ=λi; and δ(λ−λi) = 0, otherwise.

A walk of length k in a graph G is an alternating sequence
of vertices and edges v0e1v1e2...ekvk, where vi ∈ V and
ei = (vi−1, vi) ∈ E. A walk is closed if v0 = vk. The

number of closed walks is an important index for complex
networks. Recently, we have defined the redundancy of
alternative paths as the number of closed walks of all
lengths [30]. Considering that shorter closed walks have
more influence on the redundancy of alternative paths than
longer closed walks and to avoid the number of closed walks
of all lengths to diverge, we scale the contribution of closed
walks to the redundancy of alternative paths by dividing
them by the factorial of the length k. That is, we define a
weighted sum of numbers of closed walks S =

∑∞
k=0 nk/k!,

where nk is the number of closed walks of length k. This
scaling ensures that the weighted sum does not diverge and
it also means that S can be obtained from the powers of the
adjacency matrix:

nk = trace(Ak) =

N∑
i=1

λk
i (2)

Using Eq. 2, we can obtain

S =
∞∑
k=0

nk

k!
=

∞∑
k=0

N∑
i=1

λk
i

k!
=

N∑
i=1

∞∑
k=0

λk
i

k!
=

N∑
i=1

eλi . (3)

Hence, the proposed weighted sum of closed walks of all
lengths can be derived from the graph spectrum. We remark
that Eq. 3 corresponds to the Estrada Index of the graph [31],
which has been used in several contexts in the graph theory,
including bipartivity [32] and subgraph centrality [33]. The
natural connectivity can be defined as the average eigenvalue
of the graph, as follows.

Definition [30] Let A(G) be the adjacency matrix of G
and let λ1 ≥ λ2 ≥ ... ≥ λN be the eigenvalues of A(G).
Then the natural connectivity or natural eigenvalue of G is
defined by

λ̄ = ln

(
N∑
i=1

eλi/N

)
(4)

It is evident from Eq. 4 that λN ≤ λ̄ ≤ λ1.
A regular ring lattice RRLN,2K is a 2K−regular graph

with N vertices on a one-dimensional lattice, in which each
vertex is connected to its 2K neighbors (K on either side).
In a previous study [39], we have investigated the natural
connectivity of regular ring lattices and shown that random
regular graphs are less robust than regular ring lattices based
on natural connectivity.

Theorem III.1. [39] Let RRLN,2K be a regular ring
lattice.Then the natural connectivity of RRLN,2K is

λ̄RN,2K
= ln

I0(

K︷ ︸︸ ︷
2, 2, ...2)

+o(1) (5)

where o(1) → 0 as N → ∞.
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B. Erdős-Rényi Random Graphs

Random graphs have long been used for modelling the
topology of systems made up of large assemblies of similar
units. The theory of random graphs was introduced by Erdős
et al. [40]. A detailed review of random graphs can be found
in the classic book [21]. A random graph is obtained by
starting with a set of N vertices and adding edges between
them at random. In this paper, we study the random graphs
of the classic Erdős-Rényi model GN,p, in which each of
the possible C2

N = N(N−1)/2 edges occurs independently
with probability p. Consequently, the total number of edges
M is a random variable with the expectation value E(M) =
p·C2

N and then the average degree < k >= (N−1)p ≈ Np.
Random graph theory studies the properties of the prob-

ability space associated with graphs with N vertices as
N → ∞. Many properties of such random graphs can
be determined using probabilistic arguments. We say that
a graph property Q holds almost surely for GN,p if the
probability that GN,p has property Q tends to one as
N → ∞. Furthermore, Erdős et al. described the behavior
of GN,p very precisely for various values of p [41]. Their
results showed that:

1) If Np < 1, then a graph GN,p will almost surely have
no connected components of size larger than o(lnN);
If Np ≥ 1, then a graph GN,p will almost surely
have a unique ”giant” component containing a positive
fraction of the vertices.

2) If Np < lnN , then a graph GN,p will almost surely
not be connected; If Np ≥ lnN , then a graph GN,p

will almost surely be connected.

It is well known that the largest eigenvalue λ1 of
GN,p is almost surely Np[1 + o(1)] provided that Np ≫
lnN (see [42], [43]). Moreover, according to the famous
Wigner’s law or semicircle law [44], as N → ∞, the spectral
density of GN,p converges to a semicircular distribution as
follows

ρ(λ) =

{
2
√
R2−λ2

πR2 |λ| ≤ R
0 |λ| > R

(6)

where R = 2
√

Np(1− p) is the radius of the ”bulk” part
of the spectrum.

IV. NATURAL CONNECTIVITY OF RANDOM GRAPHS

When N → ∞, with continuous approximation for λi,
Eq. 4 can be rewritten in the following spectral density form

λ̄ = ln

(∫ +∞

−∞
ρ(λ)eλdλ

)
= ln (Mλ(1)) (7)

where ρ(λ) is the spectral density and Mλ(t) is the moment
generating function of ρ(λ). Consequently, we obtain the
natural connectivity of Erdős-Rényi random graphs with

p ≫ lnN/N

λ̄ = ln

(∫ +R

−R

ρ(λ)eλdλ+ eλ1/N

)
= ln

(
Mλ(1) + eNp/N

)
(8)

where

Mλ(1) =

∫ +R

−R

2
√
R2 − λ2

πR2
eλdλ =

2

π

∫ +R

−R

√
R2 − λ2

R2
eλdλ

(9)
Substituting λ = R cos(θ) into Eq. (8), we obtain that

Mλ(1) =
2

π

∫ π

0

eR cos(θ) sin2(θ)dθ (10)

Note that [45]

Iα(x) =
(x/2)α

π1/2Γ(α+ 1/2)

∫ π

0

ex cos(θ) sin2α(θ)dθ (11)

where Iα(x) is the modified Bessel function and Γ(x) is the
Gamma function. Then we obtain that

I1(R) =
R

π

∫ π

0

eR cos(θ) sin2(θ)dθ (12)

Using Eq. (11), we can simplify Eq. (9) as

Mλ(1) = 2I1(R)/R (13)

Substituting Eq. (12) into Eq. (7), we obtain that

λ̄ = ln

(
2I1(R)

R
+

eNp

N

)
= Np−ln(N)+ln

(
1 +

2NI1(R)

eNpR

)
(14)

Now we propose two lemmas first.

Lemma IV.1. As N → ∞, f(p) = 2NI1(R)/(eNpR) is
a monotonically decreasing function for lnN/N < p <
1− lnN/N , where R = 2

√
Np(1− p).

Proof: It is easy to know that 2
√
lnN(1− lnN/N) <

R ≤
√
N for lnN/N < p < 1− lnN/N . Then as N → ∞,

we have R → ∞. Note that, for the large values of x ≫∣∣α2 − 1/4
∣∣, the modified Bessel functions Iα(x) have the

following asymptotic forms [46]

Iα(x) →
1√
2πx

ex (15)

Thus, for lnN/N < p < 1− lnN/N , we obtain

I1(R) → 1√
2πR

eR (16)

Then, we have

f(p) → N

√
2

π
· e

R−Np

R3/2
(17)

Note that,

df(p)
dp → eR−Np( dR

dp −N)R3/2− 3
2R

1/2· dRdp ·eR−Np

R3

= N
R3

√
2
π

(
N(2− 4p−R)− 3N(1−2p)

R

)
< 0

(18)
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Therefore, we prove that, as N → ∞, f(p) is a monoton-
ically decreasing function for lnN/N < p < 1 − lnN/N .

Lemma IV.2. Let pc = Nε−1 lnN , where 0 < ε ≪ 1. Then
we have f(pc) → 0 as N → ∞.

Proof: Note that 0 < ε ≪ 1, thus we have pc → 0
and 1 − pc → 1 as N → ∞. Then we obtain that Rpc →
2
√
Nε lnN . Therefore, we have

f(pc) → N
√

2
π · eRpc−Npc

R
3/2
pc

= N
√

2
π · e2

√
Nε lnN−Nε lnN

(2
√
Nε lnN)

3/2

= N1−3ε/4

2
√
π

· e2
√

Nε lnN−Nε lnN

(lnN)3/4
= N1−3ε/4

2
√
π

· e2
√

Nε lnN−Nε lnN

(lnN)3/4

= N1−3ε/4

2
√
π

· e−(
√

Nε lnN−1)2+1

(lnN)3/4

(19)
Since

√
Nε lnN ≫ 1 as N → ∞, we obtain that

f(pc) →
N1−3ε/4

2
√
π

·e
−(

√
Nε lnN−1)

2
+1

(lnN)
3/4

≈ eN1−3ε/4−Nε

2
√
π (lnN)

3/4
→ 0

(20)
The proof is completed.

From Lemmas 3.1 and 3.2, it is easy to derive that, for
pc ≤ p ≤ 1 − pc, f(p) ≤ f(pc) → 0 as N → ∞.
Consequently, we obtain the following theorem.

Theorem IV.3. Let GN,p be a random graph with
Nε−1 lnN < p < 1 − Nε−1 lnN , where 0 < ε ≪ 1.
Then the natural connectivity of GN,p almost surely is

λ̄ = Np− ln(N) + o(1) (21)

where o(1) → 0 as N → ∞.

From Eq. (20), we know that the natural connectivity
of random graphs increases linearly with edge density p
given the graph size N . Note that < k >= Np; thus, we
also observe that the natural connectivity of random graphs
increases linearly with the average degree given the graph
size N . To verify our result, we simulate 1000 independent
GN,p and compute the average natural connectivity for each
combination of N and p. In Figure 1, we plot the natural
connectivity of random graphs with both numerical results
and analytical results. We observe that the numerical results
agree well with the analytical results.

V. COMPARISONS BETWEEN RANDOM GRAPHS AND
REGULAR GRAPHS

To investigate the effect of randomness and small-world
on the network robustness, we compare the natural con-
nectivity of Erdős-Rényi random graphs GN,p with reg-
ular ring lattices RRLN,2K and random regular graphs
RRGN,2K [47]. We choose p ≈ 2K/N and < k >= 2K
and thus three types of networks have the same number of
vertices and edges. The results are shown in Figure 2. We
find that random graphs are always robustness than random
regular graphs. However, the curves of regular ring lattices
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p

λ̄

(a)
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300

350

400

450

500
(b)

N

λ̄

N=100
N=500
N=1000

p=0.1
p=0.3
p=0.5

Figure 1. Natural connectivity of random graphs: (a) λ̄ vs. p with N = 100
(circles), 500 (triangles) and 1000 (diamonds); (b) λ̄ vs. N with p = 0.1
(circles), 0.3 (triangles), 0.5 (diamonds). Each quantity is an average over
1000 realizations. The lines represent the corresponding analytical results
according to Eq. (20).

cross those of random graphs; furthermore, random graphs
are more robust than regular ring lattices prior to crossings
(dense networks), whereas regular ring lattices are more
robust than random graphs over crossings (sparse networks).
This means that there is a critical graph size Nc, that is as
a function of K. For example, for K = 5, we find that
Nc ≈ 60.

0 20 40 60 80 100
2

3

4

5

6

7

8

N

λ̄

regular ring lattices
random regular lattices
random graphs

Figure 2. Natural connectivity of random graphs of regular ring lattices
RRLN,2K (squares), random regular graphs RRGN,2K (triangles) and
random graphs GN,p (diamonds) with the same number of vertices and
edges. From bottom to top, the symbols correspond to K = 3, 4, 5,
respectively. Each quantity is an average over 1000 realizations.

17Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications



For large values of K, we can analytically predict the
values of Nc using Eq. (4) and Eq. (20) as follows

ln

I0(

K︷ ︸︸ ︷
2, 2, ...2)

 = Np− ln(N) = 2K − ln(N)

⇒ Nc ≈ e2K−I0(

K︷ ︸︸ ︷
2, 2, ...2)

(22)

The results are shown in Figure 3. Moreover, we also find
that there is a critical value pc or Kc as a function of graph
size N . Regular ring lattices are more robust than random
graphs when the edge density p < pc, whereas random
graphs are more robust than regular ring lattices when the
edge density p > pc.

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

K

N
c

Figure 3. The critical value Nc as a function of graph size K according
to Eq. (21).

To explore the critical behaviors of graphs in depth, we
randomize regular ring lattices by random rewiring [48] and
by random degree-preserving rewiring [49], which leads to
random graphs and random regular graphs, respectively. In
Figure 4, the natural connectivity is represented as a function
of the number of rewiring, starting from regular ring lattices
with N = 30 < Nc and N = 100 > Nc, where K = 5.
We find that the natural connectivity decreases during the
process of random degree-preserving rewiring and equals to
the value of a random regular graph finally. It means that
regular ring lattices are more robust than random regular
graphs for both N = 30 and N = 100. The case of random
rewiring is more complicated. Different processes of random
rewiring for N = 30 and N = 100 are shown in Figure
4. The natural connectivity increases during the process of
random rewiring for N = 30 < Nc; however, for N =
100 > Nc, the natural connectivity first decreases during
the process of random rewiring and then increases during the
process of random rewiring; finally, equals to the value of a

0 500 1000

6.6

6.7

6.8

6.9

7

7.1

7.2

number of rewirings

λ̄

(a)

λ̄

0 500 1000

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

number of rewirings

(b)

Figure 4. Natural connectivity during the processes of random rewiring
(diamonds) and random degree-preserving rewiring (triangles) starting from
regular ring lattices with N = 30 (a), N = 100 (b), where K = 5. The
solid lines represent the values of random regular graphs and the dashed
lines represent the values of random graphs. Each quantity is an average
over 1000 realizations.

random graph finally (smaller than the value of a regular ring
lattice). It means that randomness increases the robustness
of a dense regular ring lattice, but decreases the robustness
of a sparse regular ring lattice.

VI. CONCLUSION AND FUTURE WORK

We have investigated the natural connectivity of Erdős-
Rényi random graphs GN,p in this paper. We have presented
the spectral density form of natural connectivity and derived
the natural connectivity of random graphs analytically using
the Wigner’s semicircle law. In addition, we have shown
that the natural connectivity of random graphs increases
linearly with edge density p given a large graph size N .
The analytical results agree with the numerical results very
well.

We have compared the natural connectivity of random
graphs GN,p with regular ring lattices RRLN,2K and ran-
dom regular graphs RRGN,2K with the same number of
vertices and edges. We have shown that random graphs
are more robust than random regular graphs; however the
relationship between random graphs and regular ring lattices
depends on the graph size N and the edge density p or the
average degree < k >. We have observed that the critical
value Nc as a function of K, and the critical value pc and
Kc as a function of graph size N , which can be predicted by
our analytical results. We have explored the critical behavior
by random rewiring from regular ring lattices. We have
shown that randomness increases the robustness of a dense
regular ring lattice, but decreases the robustness of a sparse
regular ring lattice. Our results will be of great theoretical
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and practical significance to the network robustness design
and optimization.
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[6] M. A. Serrano and M. Bogun̋á, “Topology of the world trade
web,” Phys. Rev. E, vol. 68, no. 1, p. 015101, 2003.

[7] R. Albert and A. L. Barabási, “Statistical mechanics of
complex networks,” Rev. Mod. Phys., vol. 74, no. 1, pp. 47–
97, 2002.

[8] M. E. J. Newman, “The structure and function of complex
networks,” Siam Rev., vol. 45, pp. 167–256, 2003.

[9] L. A. N. Amaral and B. Uzzi, “Complex systems - a new
paradigm for the integrative study of management, physical,
and technological systems,” Management Sci., vol. 53, no. 7,
pp. 1033–1035, 2007.

[10] H. Whitney, “Congruent graphs and the connectivity of
graphs,” Am. J. Math., vol. 54, no. 1, pp. 150–168, 1932.

[11] G. Bauer and G. Bolch, “Analytical approach to discrete op-
timization of queuing-networks,” Comput. Commun., vol. 13,
no. 8, pp. 494–502, 1990.

[12] F. Harary, “Conditional connectivity,” Networks, vol. 13,
no. 3, pp. 347–357, 1983.

[13] A. H. Esfahanian and S. L. Hakimi, “On computing a
conditional edge-connectivity of a graph,” Inform. Process.
Lett., vol. 27, no. 4, pp. 195–199, 1988.

[14] M. S. Krishnamoorthy and B. Krishnamurthy, “Fault diameter
of interconnection networks,” Comput. Math. Appl., vol. 13,
no. 5-6, pp. 577–582, 1987.
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