
Execution Management of Applications with Runtime Restrictions on Opportunistic
Grids Environments

Marcio Rodrigo Melo Martins, Berto de Tácio Pereira Gomes, Jesseildo Figueredo Gonçalves
Universidade Federal do Maranhão, Programa de Pós-Graduação em Engenharia de Eletricidade
Av. dos Portugueses s/n, Campus Universitário do Bacanga, CEP. 65085-580, São Luı́s-MA-Brasil

marciorodrigomm, bertodetacio, jesseildo@gmail.com

Francisco José da Silva e Silva
Universidade Federal do Maranhão, Departamento de Informática

fssilva@deinf.ufma.br

Abstract—An opportunistic grid computing environment
takes advantage of idle computing cycles of regular computers
and workstations that can be spread across several adminis-
trative domains for running high performance applications.
Opportunistic grids are usually constructed from personal
computers that do not need to be dedicated for executing grid
applications. The grid workload must coexist with local appli-
cations executions, submitted by the nodes regular users. Thus,
its execution environment is typically dynamic, heterogeneous
and unpredictable failures occur frequently. In addition, the
resources of an opportunistic grid can be used at any time
for the execution of local tasks, making it difficult to preview
the conclusion of the tasks running on the grid nodes. These
characteristics hinder the successful execution of applications
for which there are time restrictions related to its completion.
This paper presents a management mechanism specifically
designed for opportunistic grid computing environments for
handling the execution of applications with time deadlines
set by users during their submission to the system. The
proposed mechanism is based on a dynamic scheduling and
rescheduling approach and was evaluated using a simulated
model considering various typical scenarios of opportunistic
grids. The results demonstrated the benefits of the proposed
approach in comparison to traditional scheduling approaches
applied in opportunistic grids.

Keywords-opportunistic grids; application scheduling; soft
deadline; simulation.

I. INTRODUCTION

A computer grid is a computing system that coordinates
distributed resources using standard protocols and interfaces
to enable integration and sharing of computational resources,
such as computing power, software, peripherals and data on
corporate networks and between institutions. The computer
grid technology currently receives great attention from both
academia and industry since it have established itself as an
attractive alternative for executing a wide range of applica-
tions that require massive computational power or process
large volumes of data in various areas, such as computational
biology, weather and market simulations.

Currently, corporations and universities typically have
hundreds or thousands of desktop machines, which are used

by workers as their personal workstations or by students
in instructional and research laboratories. When analyzing
the usage of each of these machines one concludes that
they sit idle for a significant amount of time. Even when
the computer is in use, it normally has a large portion of
idle resources. Opportunistic grid middleware enables the
use of the existing computing infrastructure available in lab-
oratories and offices in universities, research institutes, and
companies to execute computationally intensive applications.
They are usually constructed from personal computers that
do not need to be dedicated for executing grid applications.
The grid workload must coexist with local applications
executions, submitted by the nodes regular users.

The process of application scheduling in a grid system
consists in assigning the applications tasks to available re-
sources in accordance to specific goals, such as to minimize
the applications response time and/or maximize the use of
computational resources. However, the construction of a
scheduling strategy focused on opportunistic grid environ-
ments is a challenging task due to several features present
in these computing environments, such as: (a) instability,
that arises from the fact that nodes are not dedicated and
applications do not run in a controlled environment; (b) high
heterogeneity of computing nodes and network links, usually
comprising resources spread across different administrative
domains; (c) the middleware goal of not interfering with
the regular use of resources, which requires migration and
rescheduling of applications when resources become un-
available. In addition, the resources of an opportunistic grid
can be used at any time for the execution of local tasks,
making it difficult to preview the conclusion of the tasks
running on the grid nodes. In particular, these characteristics
hinder the successful execution of applications for which
there are time restrictions related to its completion.

This paper presents a management mechanism specifically
designed for opportunistic grid computing environments for
handling the execution of applications with time deadlines
set by users during their submission to the system. The

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

proposed mechanism is based on a dynamic scheduling and
rescheduling approach and was evaluated using a simulated
model considering various typical scenarios of opportunistic
grids. The results demonstrated the benefits of the proposed
approach in comparison to traditional scheduling approaches
applied in those environments. The text is structured as
follows: Section II describes the related work that influ-
enced the development of this work. Section III presents
our proposed mechanism, its concepts, components, and
implementation. Section IV describes the results of several
experiments that were conducted for evaluating the proposed
approach. Finally, in Section V, we describe the conclusions
derived from this work and presents future perspectives
arising from this initial effort.

II. RELATED WORK

Currently, there are several works related to the devel-
opment of scheduling algorithms for computer grids aim-
ing different performance goals, such as minimizing the
completion time of application or to maximize the use
of grid resources, without taking into account the users
requirements [1] [2] [3] [4]. Other studies have also emerged
with the purpose of meeting user defined Quality of Service
(QoS) metrics [5] [6] [7]. These works emphasizes the
difficulties of providing support for execution time con-
straints of submitted applications (deadlines). They present
new approaches to scheduling, or the adequacy of existing
approaches, in order to consider QoS requirements and
metrics for the evaluation of scheduling strategies and/or
fault tolerance mechanisms in computer grids.

Buyya et al. [5] present a scheduling algorithm for Param-
eter Sweep applications on global grids. The algorithm goal
is to map applications to resources considering, whenever
possible, the best cost-benefit ratio between the applications
execution time and the cost to perform these computations.
Thus, if multiple machines offer the same completion time
for a given application, it should be scheduled to the one
that offers the least cost (QoS requirement). The algorithm
is called DBC cost-time optimization. The grid user option-
ally provides the following parameters when submitting an
application for execution: the time she/he is willing to wait
until the completion of the application execution (deadline),
and the price she/he is willing to pay for the realization of
the computation (budget). The algorithm follows an on-line
approach. It runs until there are applications to be scheduled
able to be executed according to the provided deadline and
cost, as defined by its users. The algorithm was evaluated
using the GridSim simulator.

Yu and Buyya [6] present a genetic algorithm for schedul-
ing workflow applications. The purpose of this algorithm
is to run applications within a certain period with the
lowest possible cost (QoS). In order to evaluate the proposed
approach, the authors implemented the algorithm and com-
pared it with a set of non-genetic heuristics for two different

types of workflow applications (balanced and unbalanced)
using the GridSim simulator.

Kyong Kim et al. [7] address an issue that is becoming
increasingly important in cluster computing environments:
the need to reduce energy consumption for running applica-
tions, which gave rise to the term power-aware scheduling.
The authors present two scheduling algorithms for Bag-of-
Tasks applications, a shared space policy resource allocation,
and a time-shared based one. The shared space policy allows
the execution of only one task at a time in a given processing
unit, while the time-shared policy allows multiple tasks to
share the same processing unit, running in alternating time
slices. The algorithms goal is to meet time constraints set
for the execution of applications, minimizing the energy
consumption in cluster systems. An adopted assumption
is that the grid nodes have support to Dynamic Voltage
Scaling (DVS), a power management technique that allows
the dynamic adjustment of the voltage used by a given
hardware component. According to the authors, the proposed
algorithms can reduce energy consumption by adjusting the
levels of voltage used by the grid nodes.

What distinguishes our work from the above described
approaches is the specific attention to opportunistic grid
environments. In this way, we consider the possible existence
of local workload on the grid nodes, on which we have
no control. This prevents the accurate prediction of the
tasks execution time, forcing the use of a mechanism to
monitor the tasks execution progress and the possible need
for rescheduling and migrating them. Moreover, we also
take into consideration that desktop grids are subject to
various types of failures and may exhibit physical problems
(from both, nodes and network links), logical errors (in the
application or the communication protocols, for example)
and suffer invasions of malicious software. Another common
failure type is related to the resources dynamism, which
are usually not dedicated and can suddenly become un-
available, even when performing computations on behalf of
the grid. In addition, applications are usually composed of
long-running tasks, which can take hours or even days to
run, exacerbating the possibility of failure [8]. In order to
circumvent that, we integrated to our solution an application
execution autonomic fault tolerance mechanism developed
for opportunistic grids environments [9]. This mechanism
is based on the use of an autonomic checkpoint approach,
which dynamically adjusts the time interval between succes-
sive checkpoints of a running task based on the node Mean
Time Between Failures (MTBF) history, thus contributing to
increase the success rate of the applications execution and, at
the same time, reducing the cost involved in the checkpoint
process.

Finally, we argue that the dynamism and instability of
the resources that comprise opportunistic grids environ-
ments make them inappropriate for running applications
with severe running time restrictions (hard deadlines) and,

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

therefore, our approach is geared to meet soft applications
execution time constraints (soft deadlines).

III. THE PROPOSED MECHANISM

The development of the approach presented in this paper
was done in the context of the project InteGrade 1 [10],
a multi-institutional effort to develop a middleware for
opportunistic grids. In this middleware, the user informs con-
straints and preferences to be taken in consideration when
submitting an application for execution. Constraints define
minimum requirements for the selection of nodes, such as
a specific hardware and software platform. Preferences are
used to define an order in the selection of resources for the
application execution, such as running it on machines with
preferably more than 1 GB of main memory available. In this
work, we also consider the users preferences with respect
to time constraints for the application execution. The user is
then able to specify whether the application being submitted
belongs to one of the classes nice or soft-deadline. In the
latter case, the user must provide a deadline for executing
the desired application. For soft-deadline applications, the
goal is the completion of applications within the informed
extend of time. For the nice applications, the goal is just the
application successful completion.

The application execution management mechanism for
opportunistic grids proposed in this paper consists of the
following components:

1) A prediction mechanism for the time execution of
applications on the grid nodes;

2) An on-line scheduling heuristic which maps the appli-
cation tasks to nodes that could potentially meet the
application deadline as specified by it’s user;

3) A mechanism that tracks the tasks execution progress
on each grid node, checking whether or not is neces-
sary to move them to other nodes in order to meet the
specified deadline;

4) An adaptive application fault tolerance mechanism
based on checkpoint, whose goal is to ensure the
successful execution of applications, even in the event
of failures.

Two of these four components were based on previous
work, they are: the execution time prediction mechanism
and the adaptive fault tolerance mechanism. The adopted
execution time prediction mechanism is based on [11]. In
this paper, the author presents two approaches for predicting
the execution time of applications. In the first approach, the
calculation of the estimated runtime is based on records of
the application previous runs. The second approach, used in
our work, is based on knowledge concerning the application
execution model. The application code is analyzed, estimat-
ing the execution time of each task according to the capacity

1Homepage: http://www.integrade.org.br

of the grid resources. Sun and Wu [12] developed a mathe-
matical model to predict performance for a non-dedicated
distributed environment. Their work was based on Gong
et al. [13]. The prediction model took into consideration
that the workstations comprising the distributed environment
may be privately owned, which is exactly the case of oppor-
tunistic grid computing. In this way, parallel tasks submitted
to the grid compete for execution with local sequential jobs
submitted by the machines owners. The model also considers
systems with heterogeneous machine utilization and hetero-
geneous service distribution and separates the influence of
machine utilization, sequential job service rate, and parallel
task allocation on the parallel completion time. A tacit
assumption of the proposed model is that the parallel task
can be partitioned freely into small pieces and it does not
considered the effects of synchronization, communication,
process migration, or granularity of parallelism. The adap-
tive application fault tolerance mechanism of is based on
[9]. In this work, the authors present an autonomic strategy
for application execution fault tolerance for opportunistic
grids. The mechanism is based on two levels of adaptations:
(a) parametric reconfiguration of fault tolerance strategies
(checkpointing and replication); and (b) structural changes
of the fault tolerance mechanism, by fully replacing the used
technique. In our work, we explored the autonomic recon-
figuration of the checkpoint technique, which dynamically
adjusts the time interval between successive checkpoints of
a running task based on the node MTBF history.

A component running on each grid node called Local
Resource Manager (LRM) is responsible for tracking the
execution progress of a task scheduled for its grid resource.
This component receives from the grid scheduler the task
execution request along with its respective constraints and
properties, including its class (nice or soft-deadline) and
the given deadline for its completion. Running tasks should
regularly report the LRM about their execution progress
using a well-defined API. On each received notification, the
LRM estimates if the completion of the application should
occur within the time limit and, if not, notifies the applica-
tion through a callback method, forcing its suspension and
the save of its state in a stable storage (checkpoint). The
task execution request is then forwarded to the scheduler,
which will map it to another grid node that could meet the
requested deadline, if available.

The scheduling heuristic proposed in this paper follows
an on-line approach, allowing the mapping of more than
one task to a given grid node. The mapping of soft-deadline
tasks is performed taking into account the nodes Mean Time
Between Failure (MTBF) and their processing capacity.
Soft-deadline tasks are scheduled to nodes that have been
identified as stable (high MTBF) and whose capacity allows
to conclude a task within the specified time constraint, as
informed by the user during the application submission. Due
to the cost imposed by the use of a checkpoint approach

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

and the possible local workload, a node is considered able
for accomplishing the task if its capacity allows the task
execution within the estimated deadline increased with a
margin of 10%. If the local workload exceeds this initial
estimative, the task execution monitoring mechanism (as
described in the previous paragraph) is responsible for
identifying the node inability in meeting the deadline and
for re-submitting the task for a new scheduling.

The proposed approach includes a mechanism for ad-
vanced resource reservation that works as follows: when
performing a task mapping, if there are no nodes available
that meet the above criteria, the algorithm seeks for busy
nodes that could satisfy the provided deadline and that the
already running tasks meet the following conditions: (a) if
the task class is nice, it will be suspended to make way
for the soft-deadline task, reserving the resource for the
later execution of the suspended nice task, that will be
performed based on the last saved checkpoint; (b) if the task
class is soft-deadline, the algorithm checks if the predicted
remaining time for its execution increased with the time
necessary to execute the task being scheduled is sufficient
for accomplishing the provided deadline of the latter. If this
condition holds, the resource is reserved for the execution of
the task at hand, that will be carry out after the execution of
the task already in place. Finally, if there are no resources
that meet the above criteria, the user will have the application
submission refused.

Nice tasks are scheduled for nodes considered less stable
(with lower MTBF). This is done by ordering the available
nodes according to a decreasing MTBF order and selecting
the last one. If there are no nodes available, the algorithm
searches for nodes running nice tasks and reserves the first
node found for the later execution of the task being sched-
uled. Finally, if all the grid nodes are running soft-deadline
tasks, the algorithm randomly chooses one, reserving it for
executing the task after the already running computation has
finish its execution.

IV. EVALUATION

We evaluated our proposal through simulations that took
into consideration various typical opportunistic grids sce-
narios, using as the evaluation metric the amount of soft-
deadline applications executed within the user informed
execution time restrictions. Since this work was done in
the context of project InteGrade, we compared the results
obtained with our approach with the regular InteGrade
scheduling algorithm, that works as follows. The InteGrade
scheduling algorithm [14] follows an on-line approach. It
uses a filter to select resources based on constraints and
preferences provided by users during the process of submit-
ting applications. Constraints define minimum requirements
for the selection of machines, such as hardware and software
platforms, resource requirements such as minimum memory
requirements. Preferences define the order used for choosing

the resources, like rather executing on a faster CPU than
on a slower one. The tasks that make up an application
are then mapped to the nodes according to the ordered
list of resources. If requirements and preferences are not
specified, the algorithm maps the tasks to random chosen
grid resources. The algorithm can map more than one task
per node.

For performing the simulations, we used the AGST (Au-
tonomic Grid Simulation Tool) 2 [15], an object-oriented
discrete event simulator. The simulator provides, among
others, tools for modeling grid resources and their network
interconnections, grid applications and their submissions, the
occurrence of resource faults, resources local workload, the
use of workload and fault traces following the SWF (Stan-
dard Workload Format) 3 and FTA (Failure Trace Archive) 4

standards, a database model for storing relevant simulation
generated data. Nevertheless, AGST major contribution is
the definition and implementation of a simulation model
based on the MAPE-K [16] autonomic management cycle,
that can be used to simulate the monitoring, analysis and
planning, control and execution functions, allowing the sim-
ulation of an autonomic computing grid. This is an important
feature, since in our work we adopted an autonomic fault-
tolerance mechanism.

A. Performed Experiments

The simulated grid environment comprises 100 ma-
chines within the same administrative domain, intercon-
nected through a 100 Mbps network. In this environment,
the average processing power is equivalent to a Pentium IV
machine with 2.4 GHz (2,770 MIPS, considering the TSCP
benchmark 5), since we considered this as a good representa-
tive for personal computers. In order to take into considera-
tion the environment resource heterogeneity, grid nodes were
synthetically generated through an uniform distribution. We
performed several simulations considering two heterogeneity
factors: U(1.385; 4.155) MIPS and U(791; 4.746) MIPS.
Using the first factor, the the processing power of the fastest
machine is about 3 times greater then the processing power
of the slowest one. In the later case, the difference is
approximately 6 times.

The simulations took into consideration the existence of
local workload in the grid resources. The defined workload
model was based on Conde [17]. In this work, data regarding
the use of resources (CPU and memory) from several
machines belonging to laboratories of the Computer Science
Department at the University of São Paulo were collected
and stored in a trace file. By reading and analyzing these
files, it was possible to simulate the workloads for both
weekdays and for weekends. We developed an application

2http://www.lsd.ufma.br/∼agst
3http://www.cs.huji.ac.il/labs/parallel/workload/swf.html
4http://fta.inria.fr/
5http://home.comcast.net/∼tckerrigan/bench.html

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

that generates workload vectors, each one having 24 posi-
tions representing the 24 hours of a day. The vectors were
passed as parameters to the AGST, that simulates the nodes
workload.

For the grid workload, we synthetically generated a total
of 770 regular grid applications for each experiment, varying
their size (in millions of instructions) through an uniform
distribution U(39.888×103; 159.552×103) MI. Considering
the average processing power of the grid machines (2,770
MIPS), each application execution would take 4 to 16 hours.
We performed simulations taking into consideration several
applications arrival rate per second: 0.002 (0.12 applications
per minute); 0.004 (0.24 applications per minute) and 0.006
(0.36 applications per minute). During the simulations, we
also varied the amount of soft-deadline applications com-
prising the simulated application set, using the following
parameters: 25%, 50%, 75% and 100%. Table I summarizes
the parameters used in the performed simulations.

Table I
SUMMARY OF THE SIMULATION PARAMETERS

machines (nodes) 100

heterogeneity factor factor 3 = U(1.385; 4.155) and
factor 6 = U(791; 4.746)

regular grid applications 770 (tasks)

applications arrival rate 0.12; 0.24 and 0.36 (app/min)

percentage of soft applications 25; 50; 75 and 100 (%)

applications size in MI 4 to 16 hours =
U(39.888× 103; 159.552× 103)

We performed a total of 48 simulations, by combining
the two simulated scheduling strategies (our approach and
the regular InteGrade one), the three applications arrival
rate, the four amount of soft-deadline applications and the
two environment resource heterogeneity factors. For each
simulation, we generated 20 sets of 770 applications, leading
to a total of 960 experiments.

Figure 1 presents the results obtained with the two
scheduling strategies when using a 0.002 (0.12 applica-
tions per minute) arrival rate and an environment resource
heterogeneity factor of the fastest machine being about 3
times greater than the processing power of the slowest one.
As one can see, our proposed approach meets the runtime
execution constraint of almost 100% of the soft-deadline
submitted applications, even when 100% of the submitted
application is of that class. This is approximately 25% better
than the regular InteGrade algorithm, which accomplished
almost 80% of the applications deadlines. In this case, both
approaches presented a good performance, since the grid
workload is relatively low.

Figure 2 shows the result in a scenario where the grid
workload is higher, using an application arrival rate of 0.006
(0.36 applications per minute), maintaining the environment
resource heterogeneity factor of the fastest machine being

Figure 1. 0.12 applications per minute, heterogeneity factor 3

about 3 times greater than the processing power of the
slowest one. As can be seen, in this case the regular
InteGrade approach presents a worse result than was seen in
the previous simulation, leading only to a 20% of deadlines
accomplished when 50% of the submitted applications were
soft-deadline. Our approach presented a much better result,
meeting almost 50% of the informed deadlines, which
represents a gain of 150%.

Figure 2. 0.36 applications per minute, heterogeneity factor 3

In another simulated scenario, we maintained the appli-
cation arrival rate of 0.006 (0.36 applications per minute),
altering the environment resource heterogeneity factor by
having the fastest machine processing power being about 6
times greater than the slowest one. In this case, for a total
of 50% of soft-deadline applications on each application set,
our approach accomplished 60% of the requested deadlines,

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

while the regular InteGrade achieved only 25%. This indi-
cates that our approach can take advantage of the greater
resource environment heterogeneity for achieving a higher
performance.

Space constraints prevent us from showing the results
of all the 48 performed simulations, but from the previous
described ones, we can conclude that our approach performs
much better than the regular InteGrade, considering the
objective of running applications with runtime restrictions
on opportunistic grid environments.

V. CONCLUSIONS AND FUTURE WORK

Opportunistic grids execution environments are typically
dynamic, heterogeneous, unpredictable and highly prone of
failures. In addition, the resources of an opportunistic grid
can be used at any time for the execution of local tasks,
making it difficult to preview the conclusion of the tasks
running on the grid nodes. These characteristics hinder the
successful execution of applications for which there are time
restrictions related to its completion.

This paper presented a new approach to application execu-
tion management considering user defined run time restric-
tions (soft deadlines) developed specifically for opportunistic
grid environments. The proposed approach consists of a
mechanism for predicting the execution time of applications
in grid nodes, an on-line scheduling heuristic, a mechanism
that tracks the execution progress of tasks running on the
grid nodes and an adaptive fault tolerance mechanism based
on the use of checkpoint. When properly combined, these
mechanisms comprise a management model that allows ap-
plications to run within their time restrictions whenever pos-
sible, even in an environment as dynamic as the one typically
provided by opportunistic grids. The proposed approach has
been properly evaluated in a simulated environment, with
experimental results demonstrating significant improvements
when compared to traditional scheduling approaches used on
computer grids.

In the future, we intend to explore and evaluate our
proposal considering other classes of applications commonly
used on computer grids, such as Bag-of-Tasks, Workflows
and Parameter Sweep.

ACKNOWLEDGMENTS

This work is supported by the Brazilian Federal Research
Agency, CNPq, grant No.478853/2009-2, as well as by the
state of Maranhão Research Agency (FAPEMA).

REFERENCES

[1] D. da Silva, W. Cirne, and F. Brasileiro, “Trading cycles
for information: Using replication to schedule bag-of-tasks
applications on computational grids,” in Euro-Par 2003
Parallel Processing, ser. Lecture Notes in Computer Science,
H. Kosch, L. Böszörményi, and H. Hellwagner, Eds. Springer
Berlin / Heidelberg, 2003, vol. 2790, pp. 169–180. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-45209-6 26

[2] H. Casanova, D. Zagorodnov, F. Berman, and A. Legrand,
“Heuristics for scheduling parameter sweep applications in
grid environments,” in Proceedings of the 9th Heterogeneous
Computing Workshop, ser. HCW ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 349–364. [Online]. Avail-
able: http://portal.acm.org/citation.cfm?id=795691.797922

[3] L. de Assis, “Uma heurı́stica de escalonamento adaptativa
à disponibilidade da informação para aplicações bag-of-
tasks data-intensive em grids computacionais,” Master’s
thesis, Universidade Federal de Campina Grande, Campina
Grande, Paraı́ba, Brasil, Setembro 2009. [Online].
Available: http://docs.computacao.ufcg.edu.br/posgraduacao/
dissertacoes/2009/Dissertacao LeonardodeAssis.pdf

[4] E. Santos-Neto, W. Cirne, F. Brasileiro, and A. Lima,
“Exploiting replication and data reuse to efficiently schedule
data-intensive applications on grids,” in Job Scheduling
Strategies for Parallel Processing, ser. Lecture Notes
in Computer Science, D. Feitelson, L. Rudolph, and
U. Schwiegelshohn, Eds. Springer Berlin / Heidelberg,
2005, vol. 3277, pp. 54–103. [Online]. Available: http:
//dx.doi.org/10.1007/11407522 12

[5] R. Buyya, M. Murshed, D. Abramson, and S. Venugopal,
“Scheduling parameter sweep applications on global grids:
a deadline and budget constrained cost-time optimization
algorithm,” Software: Practice and Experience, vol. 35,
no. 5, pp. 491–512, April 2005. [Online]. Available:
http://dx.doi.org/10.1002/spe.646

[6] J. Yu and R. Buyya, “Scheduling scientific workflow
applications with deadline and budget constraints using
genetic algorithms,” Sci. Program., vol. 14, no. 3,4,
pp. 217–230, December 2006. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1376960.1376967

[7] K. H. Kim, R. Buyya, and J. Kim, “Power aware scheduling
of bag-of-tasks applications with deadline constraints on
dvs-enabled clusters,” in Proceedings of the Seventh IEEE
International Symposium on Cluster Computing and the
Grid, ser. CCGRID ’07. Washington, DC, USA: IEEE
Computer Society, May 2007, pp. 541–548. [Online].
Available: http://dx.doi.org/10.1109/CCGRID.2007.85

[8] S. S. Sathya and K. S. Babu, “Survey of fault tolerant
techniques for grid,” Computer Science Review, vol. 4, no. 2,
pp. 101–120, May 2010. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S1574013710000134

[9] A. E. B. Viana, B. de Tácio P. Gomes, J. F. Gonçalves,
L. R. Coutinho, and F. J. da Silva e Silva, “Design and
evaluation of autonomic fault tolerance strategies using the
agst autonomic grid simulator,” in LatinAmerican Conference
on High Performance and Distributed Computing (CLCAR
’11), Colina, Mexico, Sep 2011.

[10] F. J. da Silva e Silva, F. Kon, A. Goldman, M. Finger, R. Y.
de Camargo, F. C. Filho, and F. M. Costa, “Application
execution management on the integrade opportunistic
grid middleware,” Journal of Parallel and Distributed
Computing, vol. 70, no. 5, pp. 573 – 583, May 2010.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0743731510000171

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

[11] Y. Liu, “Survey on grid scheduling,” Department of Computer
Science, University of Iowa, for PhD Qualifying Exam, April
2004.

[12] X.-H. Sun and M. Wu, “Grid harvest service: A system
for long-term, application-level task scheduling,” Parallel
and Distributed Processing Symposium, International,
vol. 0, p. 25a, april 2003. [Online]. Available: http:
//doi.ieeecomputersociety.org/10.1109/IPDPS.2003.1213102

[13] L. Gong, X.-H. Sun, and E. F. Watson, “Performance
modeling and prediction of nondedicated network
computing,” IEEE Transactions on Computers, vol. 51,
no. 9, pp. 1041–1055, September 2002. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TC.2002.1032624

[14] A. Goldchleger, F. Kon, A. Goldman, M. Finger, and
G. C. Bezerra, “Integrade: Object-oriented grid middleware
leveraging idle computing power of desktop machines,”
Concurrency and Computation: Practice and Experience,
vol. 16, no. 5, pp. 449–459, March 2004. [Online]. Available:
http://dx.doi.org/10.1002/cpe.824

[15] B. de Tácio Pereira Gomes and F. J. da Silva e
Silva, “Agst - autonomic grid simulation tool - a
simulator of autonomic functions based on the mape-k
model.” in SIMULTECH. SciTePress, 2011, pp. 354–359.
[Online]. Available: http://dblp.uni-trier.de/db/conf/simultech/
simultech2011.html#GomesS11

[16] M. C. Huebscher and J. A. McCann, “A survey of autonomic
computing-degrees, models, and applications,” ACM Comput.
Surv., vol. 40, no. 3, pp. 7:1–7:28, August 2008. [Online].
Available: http://doi.acm.org/10.1145/1380584.1380585

[17] D. Conde, “Análise de padrões de uso em grades
computacionais,” Master’s thesis, Departamento de Ciência
da Computação - Universidade de São Paulo, Brasil, SP,
Janeiro 2008, retrieved: 28/11/2011. [Online]. Available:
http://www.integrade.org.br/files/danconde dissertacao.pdf

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-198-4

PESARO 2012 : The Second International Conference on Performance, Safety and Robustness in Complex Systems and Applications

