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Abstract—Web spambots are becoming more advanced, utilizing
techniques that can defeat existing spam detection algorithms.
These techniques include performing a series of malicious actions
with variable time delays, repeating the same series of malicious
actions multiple times, and interleaving legitimate (decoy) and
malicious actions. Existing methods that are based on string
pattern matching are not able to detect spambots that use these
techniques. In response, we define a new problem to detect
spambots utilizing the aforementioned techniques and propose an
efficient algorithm to solve it. Given a dictionary of temporally
annotated sequences S modeling spambot actions, each associated
with a time window, a long, temporally annotated sequence T
modeling a user action log, and parameters f and k, our problem
seeks to detect each degenerate sequence S̃ with c indeterminate
action(s) in S that occurs in T at least f times within its associated
time window, and with at most k mismatches. Our algorithm
solves the problem exactly, it requires linear time and space,
and it employs advanced data structures, bit masking and the
Kangaroo method, to deal with the problem efficiently.

Keywords–Web spambot; Indeterminate ; Disguised; Actions log.

I. INTRODUCTION

A spambot is a computer program designed to do repetitive
actions on websites, servers or social media communities.
These actions might be harmful, such as carrying out certain
attacks on websites/ servers or may be used to deceive users
such as involving irrelevant links to increase a website ranking
in search engine results. Spambots can take different forms that
are designed according to a spammer desire such as using web
crawlers for planting unsolicited material or to collect email
addresses from different sources like websites, discussion
groups or newsgroups with the intent of building mailing lists
for sending unsolicited or phishing emails. Usually, Spammers
create fake accounts to target specific websites or domain
specific users and start sending predefined designed actions
which are known as predefined scripts. Therefore, websites
administrators are looking for automated tools to curtail the
actions of web spambots. Although there are attempts to
prevent spamming using anti-spambots tools, the spammers try
to adopt new forms of spambots by manipulating spambots’
actions behaviour to appear as it were coming from a legitimate
user to bypass the existing spam-filter tools. One of the main
popular techniques used in web spambots is content-based
which inject repetitive keywords in meta tags to promote a

website in search engines, as well as link-based techniques
that add links to a web page to increase its ranking score in
search engines. There are several works for preventing the use
of content-based or link-based techniques by web spambots
[1]–[6]. However, they focus on identifying the content or links
added by spambots, rather than detecting the spambot based on
their actions. There are also techniques that analyze spambot
behavior [5] [7]. These techniques utilize supervised machine
learning to identify the source of spambot, rather than detecting
the spambot. More relevant to our work are string pattern
matching-based techniques that detect spambots based on their
actions (i.e., based on how they interact with the website
these spambots attack) [8] [9]. These techniques model the
user log as a large string (sequence of elements corresponding
to actions of users or spambots) and common/previous web
spambot actions as a dictionary of strings. Then, they perform
pattern matching of the strings from the dictionary to the large
string. If a match is found, then they state that a web spambot
has been detected. For example, the work by Hayati et.al
[8] proposes a rule-based, on-the-fly web spambot detection
technique, which identifies web spambots by performing string
matching efficiently using tries. The work of [9] improves
upon [8] by considering spambots that utilize decoy actions
(i.e., injecting legitimate actions, typically performed by users,
within their spam actions, to make spam detection difficult)
and using approximate pattern matching based on the FPT
algorithm to detect such spambots. However, both [8] and [9]
are limited in that they consider consecutive spambot actions.
This makes them inapplicable in real settings where a spambot
needs to be detected from a log representing actions of both
users and spambots, as well as settings where a spambot
injects legitimate actions in some random fashion within a
time window. The reason that the works of [8] and [9] are
inapplicable in these settings is that they do not take into
account temporal information of neither the sequence (i.e., the
user log) nor the pattern (i.e., the spambot actions). Recently,
Artificial Intelligence (AI) has been employed in security
purposes to recognize cyber crimes and to reduce the time
and money needed for manual tasks and threats monitoring at
businesses. In our paper, we use one of the main approaches
for AI-based threats detection which is based on monitoring
behavior of a stream of data in a log file and try to detect
the places of spambots. To the best of our knowledge, our
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contribution is novel as no other work takes into account the
temporal information of a sequence of actions in a user log,
nor the estimated time window of a pattern of actions in a
dictionary. These challenges made finding an effective solution
to our problem a new challenge as there is no other work
addressing the issue of time (the spambot can pause and speed
up) or errors (deceptive or unimportant actions). It is worth
mentioning that our methods are not comparable to others
as they address different issues. The other challenge that we
faced was when conducting our laboratory experiments for our
algorithm as there was no publicly available data set modeling
the real temporal annotated sequence of a user log. The only
available is the public data sets (WEBSPAM-UK2006/7) which
are a collection of assessments and set of host names and based
on the spamicity measure to decide whether a web page is a
spam, non-spam or undecided.

In this work, we focus on time annotated sequences, where
each action is associated with a time stamp. Our goal is to
detect one or more spambots, by finding frequent occurrences
of indeterminate spambot actions within a time window that
can also occur with mismatches. Our work makes the following
specific contributions:
1. We introduce an efficient algorithm that can detect one or
more sequences of indeterminate (non solid) actions in text T
in linear time. We ignore the temporal factor in describing this
algorithm to facilitate the process of clarification and focus
on detecting disguised web spambots efficiently. It is worth
mentioning that our algorithm can compute all occurrences of
a sequence S̃ in text T in O(m+ logn+ occ), where m is the
length of the degenerate sequence S̃, n is the length of the text
T and occ is the number of the occurrences of the sequence
S̃ in text T .
2. We propose an efficient algorithm for solving (f, c, k,W )-
Disguised Spambots Detection with indeterminate actions and
mismatches. Our algorithm takes into account temporal in-
formation, because it considers time-annotated sequences and
because it requires a match to occur within a time window.
The latter requirement models the fact that spambots generally
perform a series of disguised actions in a relatively short period
of time. Our algorithm is a generalization of the previous
problem and based on constructing a generalized enhanced
suffix array, bit masking with help of Kangaroo method which
help in locating indeterminate spambots with mismatches
fast. Our proposed algorithm (f, c, k,W )-Disguised Spambots
Detection with indeterminate actions can find all occurrences
of each S̃i in S, such that S̃i occurs in T at least f times
within the window Wi of S̃i and with at most k mismatches
according to Hamming distance.

The rest of the paper as follows. In Section II, detailed
literature review, In section III we introduce notations and
background concepts. In Section IV, we formally define the
problems we address. In Section V, we formally detail our
solutions and present our algorithms. In Section VI, we present
experimental results. In Section VII, we conclude.

II. LITERATURE REVIEW

Web spam usually refers to the techniques that the spam-
mers used to manipulate search engine ranking results to
promote their sites either for advertising purposes, financial
benefits or for misleading the user to a malicious content trap

or to install malware on victim’s machine. For these purposes,
spammers can use different techniques such as content-based
which is the most popular type of web spam, where the
spammer tries to increase term frequencies on the target page
to increase the score of the page. Another popular technique is
through using link-based, where the spammer tries to add lots
of links on the target page to manipulate the search engine
results [10] [11]. Ghiam et al. in [11] classified spamming
techniques to link-based, hiding, and content-based, and they
discussed the methods used for web spam detection for each
classified technique. Roul et al. in [10] proposed a method
to detect web spam by using either content-based, link-based
techniques or a combination of both. Gyongyi et al. in [12]
proposed techniques to semi-automatically differ the good
from spam page with the assistance of human expert whose his
role is examining small seed set of pages to tell the algorithm
which are ’good pages’ and ’bad pages’ roughly based on their
connectivity to the seed ones. Also, Gyongyi et al. in [13]
introduced the concept of spam mass and proposed a method
for identifying pages that benefit from link spamming. Egele et
al. [14] developed a classifier to distinguish spam sites from
legitimate ones by inferring the main web page features as
essential results, and based on those results, the classifier can
remove spam links from search engine results. Furthermore,
Ahmed et al. [15] presented a statistical approach to detect
spam profiles on online social networks (OSNs). The work in
[15] presented a generic statistical approach to identify spam
profiles on online social networks. For that, they identified 14
generic statistical features that are common to both Facebook
and Twitter and used three classification algorithms (naive
Bayes, Jrip and J48) to evaluate features on both individual and
combined data sets crawled from Facebook and Twitter net-
works. Prieto et al. [16] proposed a new spam detection system
called Spam Analyzer And Detector (SAAD) after analyzing a
set of existing web spam detection heuristics and limitations to
come up with new heuristics. Prieto et al. in [16] tested their
techniques using Webb Spam Corpus(2011) and WEBSPAM-
UK2006/7, and they claimed that the performance of their
proposed techniques is better than others system presented in
their literature. On the other side, other contributions try to
detect web spambot using supervised machining learning. In
this regard, Dai et al. [17] used supervised learning techniques
to combine historical features from archival copies of the web
and use them to train classifiers with features extracted from
current page content to improve spam classification. Araujo
et al. [18] presented a classifier to detect web spam based on
qualified link (QL) analysis and language model (ML) features.
The classifier in [18] is evaluated using the public WEBSPAM-
UK 2006 and 2007 data sets. The baseline of their experiments
was using the precomputed content and link features in a
combined way to detect web spam pages, then they combined
the baseline with QL and ML based features which contributed
to improving the detecting performance. Algur et al. [19]
proposed a system which gives spamicity score of a web page
based on mixed features of content and link-based. The pro-
posed system in [19] adopts an unsupervised approach, unlike
traditional supervised classifiers, and a threshold is determined
by empirical analysis to act as an indicator for a web page to
be spam or non-spam. Luckner et al. [20] created a web spam
detector using features based on lexical items. For that, they
created three web spam detectors and proposed new lexical-
based features that are trained and tested using WEBSPAM-
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UK data sets of 2006 and 2007 separately, then they trained
the classifiers using WEBSPAM-UK 2006 data set but they
use WEBSPAM-UK 2007 for testing. In the end, the authors
based on the results of the first and second detectors as a
reference for the third detector where they showed that the data
from WEBSPAM-UK 2006 can be used to create classifiers
that work stably both on the WEBSPAM-UK 2006 and 2007
data sets. Moreover, Goh et al. [21] exploited web weight
properties to enhance the web spam detection performance
on a web spam data set WEBSPAM-UK 2007. The overall
performance in [21] outperformed the benchmark algorithms
up to 30.5% improvement at the host level and 6 − 11%
improvement at the page level. At the level of online social
networks (OSNs), the use of social media can be exploited
negatively as the impact of OSNs has increased recently and
has a major impact on public opinion. For example, one of the
common ways to achieve media blackout is to employ large
groups of automated accounts (bots) to influence the results
of the political elections campaigns or spamming other users’
accounts. Cresci et al. [22] proposed an online user behavior
model represents a sequence of string characters corresponding
to the user’s online actions on Twitter. The authors in [22]
adapt biological DNA techniques to online user behavioral
actions which are represented using digital DNA to distinguish
between genuine and spambot accounts. They make use of
the assumption of the digital DNA fingerprinting techniques
to detect social spambots by mining similar sequences, and
for each account, they extract a DNA string that encodes its
behavioral information from created data set of spambots and
genuine accounts. After that, Cresci et al. [23] investigate the
major characteristics among group of users in OSNs. The study
in [23] is an analysis of the results obtained in DNA-inspired
online behavioral modeling in [22] to measure the level of
similarities between the real behavioral sequences of Twitter
user accounts and synthetic accounts. The results in [23] show
that the heterogeneity among legitimate behaviors is high and
not random. Later, Cresci et al. in [24] envisage a change in the
spambot detection approach from reaction to proaction to grasp
the characteristics of the evolved spambots in OSNs using the
logical DNA behavioral modeling technique, and they make
use of digital DNA representation as a sequence of characters.
The proactive scheme begins with modeling known spambot
accounts with digital DNA, applying genetic algorithms to
extract new generation of synthetic accounts, comparing the
current state-of-art detection techniques to the new spambots,
then design novel detection techniques.

III. BACKGROUND AND MAIN TERMINOLOGIES

Let T = a0a2 . . . an−1 be a string of length |T | = n over
an alphabet Σ of size |Σ| = σ. The empty string ε is the string
of length 0. For 1 ≤ i ≤ j ≤ n, T [i] denotes the ith symbol
of T , and T [i, j] the contiguous sequence of symbols (called
factor or substring) T [i]T [i+1] . . . T [j]. A substring T [i, j] is
a suffix of T if j = n and it is a prefix of T if i = 1. A string
p is a repeat of T iff p has at least two occurrences in T . In
addition p is said to be right-maximal in T iff there exist two
positions i < j such that T [i, i+ |p|−1] = T [j, j+ |p|−1] = p
and either j + |p| = n + 1 or T [i, i + |p|] 6= T [j, j + |p|]. A
degenerate or indeterminate string , is defined as a sequence
X̃ = x̃0x̃1 . . . ˜xn−1, where x̃i ⊆ Σ for all 0 ≤ i ≤ n− 1 and
the alphabet Σ is a non-empty finite set of symbols of size
|Σ|. A degenerate symbol x̃ over an alphabet Σ is a non-empty

subset of Σ, i.e. x̃ ⊆ Σ and x̃ 6= ∅. |x̃| denotes the size of x̃
and we have 1 ≤ x̃ ≤ |Σ|. A degenerate string is built over
the potential 2|Σ|−1 non-empty subsets of letters belonging to
Σ. If |x̃| = 1, that is |x̃| repeats a single symbol of Σ, we say
that x̃i is a solid symbol and i is a solid position. Otherwise,
x̃i and i are said to be a non-solid symbol and non-solid
position respectively. For example, X̃ = ab[ac]a[bcd]bac is a
degenerate string of length 8 over the alphabet Σ = {a, b, c, d}.
A string containing only solid symbols will be called a solid
string. A conservative degenerate string is a degenerate string
where its number of non-solid symbols is upper-bounded by a
fixed position constant c [25], [26]. The previous example is
a conservative degenerate string with c = 2.

A suffix array of T is the lexicographical sorted array
of the suffixes of a string T i.e., the suffix array of T is
an array SA[1 . . . n] in which SA[i] is the ith suffix of T
in ascending order [27]–[29]. The major advantages of suffix
arrays over suffix trees is the space as the space needed
using suffix trees becomes larger with larger alphabets such as
Japanese characters, and it is useful in computing the frequency
and location of a substring in a long sequence (corpus) [28].
LCP (T1, T2) is the length of the longest common prefix
between strings T1 and T2 and it is usually used with SA
such that LCP [i] = lcp(TSA[i], TSA[i−1]) For all i ∈ [1..n]
[27] [30].

IV. PROBLEMS DEFINITIONS

The two main problems that the paper will address can be
defined as follows.

Problem A: Disguised (Indeterminate) Actions
Some spambots might attempt to disguise their actions

by varying certain actions. For example, a spambot takes
the actions ABCDEF , then ACCDEF , then ABDDEF
etc. This can be described as A[BC][CD]DEF . They try to
deceive by changing the second and third action. The action
[BC] and [CD] are variations of the same sequence. We will
call the symbols A,C,D,E, F solid, the symbols [BC] [CD]
indeterminate or non-solid and the string A[BC][CD]DEF
degenerate string which is denoted by S̃. In fact, they can
disguise any of the actions. In this case, we are not concern
which actions will be disguised but we assume that the
numbers of attempts to disguise is limited. Let us assume that
the number of disguised actions is bounded by a constant c.
For the moment, we will ignore the temporal factor of the
disguises at this problem to facilitate the clarification of the
discovery of the spambot actions, and we will consider the
temporal factor in describing problem B as it is a generalization
of problem A. Actually, we combine both temporal and fake
actions discovery by apply both algorithms simultaneously. For
now, let us consider the series of actions taking place on the
server.

Definition IV.1. Given a sequence T = a1 . . . an, find all
occurrences of S̃ = s1s2 . . . sm in T , where si might be solid
or indeterminate.

Problem B: Disguised Actions (with k Mismatches)
It is a generalization of Problem A with k errors such that

the sequence of spambot actions S̃ is degenerate actions with
errors, and the number of errors is bounded by a constant
k. Our aim is to detect new suspicious spambots which are
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resulting from changing other disguised actions by spammers
such that using few mismatches in its spambot actions S̃ to
appear like actions issued by a genuine user.

Definition IV.2. Given a sequence T = a1 . . . an and an
action sequence S̃ = s1s2 . . . sm, find all occurrences of S̃
in T where si might be solid or indeterminate with hamming
distance between S̃ and T is no more than k mismatches.

V. ALGORITHMS

In the following, we discuss our algorithms for the two
aforementioned problems which they include (preprocessing)
as preliminary stage.

A. Preprocessing

Our algorithms require as input sequences temporally an-
notated actions. These temporally annotated sequences are
produced from user logs consisting of a collection of http
requests. Specifically, each request in a user log is mapped
to a predefined index key in the sequence and the date-time
stamp for the request in the user log is mapped to a time point
in the sequence.

B. Problem A: Disguised (indeterminate) actions

In order to design an efficient algorithm for this problem,
we need to use the following steps that will make the algorithm
fast.

Step 1: For each non-solid sj occurring in degenerate
pattern P̃ = s1 . . . sm, we substitute each sj with ’#’ symbol,
where ’#’ is not in Σ. Let P̂ be the resulting pattern from
substitution process and will be considered as a solid pattern,
see (Figure 1 Step1) and (Table I).

TABLE I. CONVERTING P̃ TO P̂

P̃ A B [GX] C [AD] F

P̂ A B #1 C #2 F

Step 2: Compute the suffix array for the sequence of
actions T . Since the suffix array is sorted array of all suffixes
of a given string, we can apply binary search algorithm with
the suffix array to find a pattern of spambot actions in a text
of actions in O(mlogn) time complexity, where m is the
the length of the pattern P and n is the length of the text
T . Our algorithm uses Manber and Myers algorithm which
is described in [31], which uses a suffix array for on-line
string searches and can answer a query of type "Is P a
substring in T ?" in time O(m+ logn). The algorithm in [31],
uses a sorted suffix array, binary search against the suffix
array of T and auxiliary data structures Llcp, Rlcp which
they are precomputed arrays and hold information about the
longest common prefixes (lcps) for two subranges (L . . .M )
and (M . . .R) of binary search. Subsequently, the algorithm
speeds up the comparison and permits no more than one
comparison for each character in P to be compared with the
text T . The method is generalised to O(m+logn+occ) to find
all occurrences of P by continuing on the adjacent suffixes to
the first occurrence of P in suffix array, see (Figure 1 Step2).

Step 3: At this stage, we consider each non-solid position
sj in P̂ which is represented by ’#’ as an allowed mismatch
with the corresponding action ai in T as ’#’ is not in Σ. To
query whether that ai belongs to the set of actions in ’#’, the
algorithm uses a bit masking operation. For example, suppose
we want to see whether the action ’X’ in text T belongs to
one of the set actions [GX] in P̂ which is represented by
’#1’, see Table I, we assume that each action in degenerate
symbol represents bit ’1’ among other possible actions, and ’0’
otherwise. Furthermore, The current compared action ai in T
is always represented by bit ’1’. Thereafter, the algorithm uses
And bit wise operation between the two sets [GX] and [X]
such that [11]

∧
[01] = [01] which means that [X] ∈ [GX]. To

do that, the algorithm uses the suffix array and binary search
to find the pattern match, and for each ’#’ in the sequence is
encountered, the algorithm consider it as an allowed mismatch
and get into the verification process to check whether the action
ai in T is one of the actions in ’#’. However, each non-solid
position sj in P̂ is numbered sequentially starting from 1 up
to the number of indeterminate symbols c. Consequently, we
refer to that position for each pattern of spambots actions with
the number of the pattern P̂r and the number of #l, where
1 ≤ r ≤ ΣP̂ and 1 ≤ l ≤ Σ# ∈ P̂r, see (Figure 1 Step3).

Input: Action sequence T , spambots dictionary S where each spambot P̃ ∈ S
Output: all matching P̃ found in T

1: procedure LOCATE ALL LOCATIONS OF P̃ WITH INDETERMINATE ACTIONS IN T
2: . Step1: (Substitution)
3: for each P̃r ∈ S do
4: P̂r ← P̃r

5: m← |P̂r|
6: l← 1
7: for (j = 0 to m− 1) do
8: if ( ˆPr[j] is non solid) then
9: ˆPr[j]← #l

10: l← l + 1
11: end if
12: end for
13: end for
14: . Step2: (actions matching)
15: Build the suffix array SA for the text of actions T
16: for each P̂r ∈ S do
17: Apply the binary search with LCPs arrays of Manber and Myer in [31]
18: For each current action ai in SA compared to non solid symbol represented

by ’#l’ in P̂r . go to: step 3
19: end for
20: . Step3: (verification process)
21: mask = 1

∧
hashMatchTable[P̂r#l][ascii[ai]]

22: if mask = 1 then
23: continue
24: else . not match
25: exit matching
26: end if
27: end procedure

Figure 1: Problem A: Locate spambots with indeterminate
actions

Verification process: At this stage, the algorithm does a
bit level masking operation using the logical operator ’And’
between the current compared action ai in T and the cor-
responding non-solid position in P̂ which is represented by
’#l’. As we mentioned before, the algorithm assumes each
current compared action ai in T is represented by a bit ’1’, and
each ’#l’ of each pattern reveals its original set of actions by
setting bit ’1’ at each action belongs to its set and ’0’ otherwise
using a match table called hashMatchTable, see Table II. To
access the corresponding column in hashMatchTable directly,
the columns are indexed by the (ascii code) of each character
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belongs to the actions alphabets in Σ and ordered from 65
to 90 which are the ascii code of capital letters (or 97 to
122 for small letters). Thus, the algorithm can apply the
following formula (1

∧
hashMatchTable[P̂r#l][ascii[ai]]) to

find whether that current comparing action ai in T has a match
with one of the actions in ’#l’ where ’1’ is the corresponding
bit of ai, see (Figure 1 Step3) and (Table II).

TABLE II. HASHMATCHTABLE OF THE PATTERN
P̃1 = AB[GX]C[AD]F WHERE ITS COVERSION IS

P̂1 = AB#1C#2F

asscii(ai) 65 66 67 68 .. 71 . . . 88 89 90
ai A B C D .. G . . . X Y Z

P̂1#1 0 0 0 0 1 . . . 1 0 0

P̂1#2 1 0 0 1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P̂r#l . . . . . . . . . . . . . . . . . . . . . . . . . . .

Theorem 1. Algorithm (Figure 1) computes the occurrence of
the pattern P̂ in text T in O(mlogn) time using suffix array
with binary search.

Theorem 2. Algorithm (Figure 1) can compute all occurrences
of the pattern P̂ in text T in O(m + logn + occ) time using
an enhanced suffix array with auxiliary data structure LCP,
binary search and bit masking.

C. Problem B: Disguised Actions (with k Mismatches)
The problem we solve is referred to as (f, c, k,W )-

Disguised Spambots Detection which is a generalization of
problem A and defined as follows:

Problem. (f, c, k,W )-Disguised Spambots Detection with in-
determinate actions. Given a temporally annotated action se-
quence T (aj , tj), a dictionary S containing sequences Ŝi each
has a c non-solid symbol (represented by #), associated with
a time window Wi, a minimum frequency threshold f , and a
maximum Hamming distance threshold k, find all occurrences
of each Ŝi ∈ S in T , such that each Ŝi occurs: (I) at least f
times within its associated time window Wi, and (II) with at
most k mismatches according to Hamming distance.

The problem we introduce in our work considers spam-
bots that perform indeterminate sequence of malicious actions
multiple times. Thus, we require an indeterminate sequence
which has c non-solid symbol(s) to appear at least f times
and within a time window Wi, to attribute it to a spambot.
In addition, we consider spambots that perform decoy actions,
typically performed by real users. To take this into account,
we consider mismatches. We assume that the dictionary and
parameters are specified based on domain knowledge (e.g.,
from external sources or past experience).

1) Our algorithm for solving (f, c, k,W )-Disguised Spam-
bots Detection: The algorithm is based on constructing a
generalized enhanced suffix array data structure, bit masking
with help of Kangaroo method [32], to find the longest
common subsequence LCS between a sequence of actions in
T and an action sequence Ŝi with at most k mismatches in
linear time.

Definition V.1. The Enhanced suffix array (ESA) is a data
structure consisting of a suffix array and additional tables

which can be constructed in linear time and considered as
an alternative way to construct a suffix tree which can solve
pattern matching problems in optimal time and space [33],
[34].

Definition V.2. The Generalized enhanced suffix array (GESA)
is simply an enhanced suffix array for a set of strings, each one
ending with a special character and usually is built to find the
longest common sequence LCS of two strings or more. GESA
is indexed as a pair of identifiers (i1, i2), one identifying the
string number, and the other is the lexicographical order of the
string suffix in the original concatenation strings [35].

To do so, we start with algorithm (Figure 2). First, our
algorithm extracts the actions of the temporally annotated
action sequence T into a sequence Ta such that it contains
only the actions a0 . . . an from T (step 2). Then, we gen-

Input: Temporally annotated action sequence T , spambot dictionary S, k, f
Output: All occurrences for each spambot Ŝi in dictionary S

1: procedure DISGUISED SPAMBOTS DETECTION WITH K MISMATCHES
2: Ta ← all extracted action sequences with same their order from T
3: n← |Ta|
4: // Create GESA, where each index consists of a pair (i1, i2)
5: GESA(Ta, SŜi

)← Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

6: Create GESAR from GESA
7: Initialize hashMatchTable[no.of#][26]
8: for each spambot sequence Ŝi ∈ S do . Start matching
9: occ← 0, occur[]← empty, sus_spam← empty

10: // Calculate LCS between Ŝi and Ta

11: m← GESAR[i], (m1,m2)← GESA[m].(i1, i2)
12: // Find the closest Ta sequence suffix j which is identified by i1 = 0 and

closest to m either before or after m
13: j ← m− 1 . (j ← m + 1) in case closest j is after m
14: Find_Occ:
15: while j ≥ 0 and i1 6= 0 do . (j < n) & (i1 6= 0) in case closest j is

after m
16: j ← j − 1 . j ← j + 1 in case closest j is after m
17: end while
18: if j ≥ 0 and i1 = 0 then . ((j < n) & (i1 = 0)) in case closest j is

after m
19: (j1, j2)← GESA[j].(i1, i2)
20: Find_LCS(Ta, Ŝi, j2, m2, n, k, occ, occur[], S,

sus_spam, hashMatchTable)
21: j ← j − 1 . j ← j + 1 in case closest j is after m
22: if j ≥ 0 then . j < n in case closest j is after m
23: // Find other occurrences of suspicious spambot from Ŝi

24: go to Find_Occ
25: else
26: Output sus_spam,occur[]
27: end if
28: end if
29: end for
30: end procedure

Figure 2: Problem B: Disguised spambots detection with k
mismatches

eralize the enhanced suffix array to a collection of texts
Ta and set of action sequences SŜi

separated by a special
delimiter at the end of each sequence (step 5) as follows:

GESA(Ta, SŜi
) = Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

Such that, Ŝ1 . . . Ŝr are set of spambots sequences that be-

long to dictionary SŜi
, and !0, . . . , !r are special symbols

not in Σ and smaller than any alphabetical letter in Ta and
smaller than ’#’ with respect to an alphabetical order. We
will refer to a collection of tables (GESA, GESAR, LCS,
T, SŜi

) to find disguised spambots within a time window t
such that given a temporally annotated action sequence T =
(a0, t0), (a1, t1) . . . (an, tn), an action sequence Ŝ = s1 . . . sm
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and an integer t, we will compute j1, j2, . . . , jm such that
aji = si, 1 ≤ i ≤ m and

∑m
i=1 tji < t or tjm − tj1 < t

with Hamming distance between Ta and Ŝ no more than
k mismatches. For example, suppose we have the following
sequence actions:
Ta = ABBABGCDFCBACAFAABGDFF and an in-
determinate spambot sequence: Ŝ = B#1C#2F , where
#1 = [GX] and #2 = [AD] in the original sequence S̃.
Hence, the GESA(Ta, Ŝ) = Ta!0Ŝ!1, where all sequences are
concatenated in one string separated with a unique delimiter
! and the reference indexing of the GESA will consist of 29
index as shown in Figure 3. Our algorithm includes initializa-

A B B A B G C D F C B A C A F A A B G D F F !0 B #1 C #2 F !1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

1

Figure 3: Concatenation strings of Ta!0Ŝ!1

tion for hashMatchTable to do bit masking (see Figure 2, step
7). For each spambot sequence Ŝi in the spambots dictionary
SŜi

, the algorithm calculates the longest common sequence
LCS between Ŝi and Ta starting at position 0 in sequence
Ŝi and position j in sequence Ta such that the common
substring starting at these positions is maximal (see Figure
2, steps 8-24). Since the suffixes of these two sequences are
represented in the lexicographical order at GESA(Ta, SŜi

),
we need to look up the closest suffix j (which belongs
to the other sequence in Ta) to the sequence Ŝi. This can
be achieved by using GESAR table which retains all the
lexicographical ranks of the suffixes of the GESA (see Figure
2, step 6). After locating the suffix index of the pattern Ŝi,
(see Figure 5, rank 10 in GESAR(i) column as an example),
then, the closest suffix j will be the closest neighbour to that
suffix and belongs to the sequence Ta (which is identified
by an integer number i1 and equal to 0). More precisely, the
length of the longest common sequence at position GESA(i)
and matching substring of GESA(j) is given as follows:

LCS(Ŝi, Ta) = max(LCP (GESA(i1, i2), GESA(j1, j2)) = l0

Where l0 is the maximum length of the longest com-
mon prefix matching characters between GESA(i1, i2) and
GESA(j1, j2) until the first mismatch occur (or one of the
sequences terminates). Next, the second step in our algorithm
involves finding the length of the longest common subsequence
starting at the previous mismatch position l0 which can be
achieved using Kangaroo method (see Figure 4) as follows:

max(LCP (GESA(i1, i2 + l0 + 1), GESA(j1, j2 + l0 + 1)) = l1

Where l1 is the maximum length of the longest common
prefix matching characters between GESA(i1, i2 + l0 +1) and
GESA(j1, j2+l0+1) until the second mismatch occur (or one
of the sequences terminates). Once our algorithm encounters
’#’ at the pattern, it will get into the verification process (see
Figure 4, steps 27-32) that we described in problem A (using
bit masking and hashMatchTable). Our algorithm will continue
in using Kangaroo method to find other k mismatches until
the number of mismatches is greater than k or one of the
sequences terminates. Subsequently, to find other occurrences
of the spambot Ŝi in Ta, Figure 2 continues finding the second
closest suffix j that belongs to the sequence Ta simply from
GESA, see Figure 5.

1: function FIND_LCS(Ta, Ŝi, j2, m2, n,k, occ, ref : occur[], S, ref :
sus_spam, hashMatchTable[][26]) . ref: to return parameter’s value to
algorithm Figure 3

2: l← 0; k_mis← 0
3: while k_mis < k and l < n and l < |Ŝi| do
4: while Ta[j2 + l] = Ŝi[0 + l] do
5: sus_spam← sus_spam + Ta[j2 + l]
6: l← l + 1
7: end while
8: if Ŝi[0 + l] =′ #′ then
9: go to Verification process

10: if match then
11: sus_spam← sus_spam + Ta[j2 + l]
12: l← l + 1
13: else
14: k_mis← k_mis + 1
15: end if
16: end if
17: end while
18: if |sus_spam| = |Ŝi| then
19: a_time← 0
20: for pos = j2 to |Ŝi| do
21: a_time← a_time + T [tpos]
22: end for
23: if a_time ≤ Wi then
24: occ← occ + 1; occur[occ]← j2
25: end if
26: end if
27: . Verification process:
28: if hashMatchTable[Ŝi[0 + l]][ascii[Ta[j2 + l]]] = 1 then
29: match← true
30: else
31: match← false
32: end if
33: end function

Figure 4: Problem B: LCS with Kangaroo method

i GESA[i] Suffix GESAR[i]
0 (1,28) !1 5
1 (0,22) !0b#1c#2f !0 13
2 (1,24) #1c#2f !1 11
3 (1,26) #2f !1 6
4 (0,15) aabgdff !0b#1c#2f !1 14
5 (0,0) abbabgcdfcbacafaabgdff !0b#1c#2f !1 27
6 (0,3) abgcdfcbacafaabgdff !0b#1c#2f !1 19
7 (0,16) abgdff !0b#1c#2f !1 20
8 (0,11) acafaabgdff !0b#1c#2f !1 25
9 (0,13) afaabgdff !0b#1c#2f !1 18

10 (1,23) b#1c#2f !1 12
11 (0,2) babgcdfcbacafaabgdff !0b#1c#2f !1 8
12 (0,10) bacafaabgdff !0b#1c#2f !1 17
13 (0,1) bbabgcdfcbacafaabgdff !0b#1c#2f !1 9
14 (0,4) bgcdfcbacafaabgdff !0b#1c#2f !1 24
15 (0,17) bgdff !0b#1c#2f !1 4
16 (1,25) c#2f !1 7
17 (0,12) caf aabgdff !0b#1c#2f !1 15
18 (0,9) cbacafaabgdff !0b#1c#2f !1 28
19 (0,6) cdfcbacafaabgdff !0b#1c#2f !1 21
20 (0,7) dfcbacafaabgdff !0b#1c#2f !1 26
21 (0,19) dff !0b#1c#2f !1 23
22 (1,27) f !1 1
23 (0,21) f !0b#1c#2f !1 10
24 (0,14) faabgdff !0b#1c#2f !1 2
25 (0,8) fcbacafaabgdff !0b#1c#2f !1 16
26 (0,20) f f !0b#1c#2f !1 3
27 (0,5) gcdfcbacafaabgdff !0b#1c#2f !1 22
28 (0,18) gdff !0b#1c#2f !1 0

Figure 5: GESA for the sequences Ta,Ŝ and illustration of
occurrences of Ŝ in Ta at i = 12, 14 and 15 and k = 2, where
#1 = [GX] and #2 = [AD]

As we can see from Figure 5, there are three occurrences
for spambot Ŝ in Ta with up to k = 2 mismatches. The first
occurrence is illustrated using blue color at i = 12 with one
mismatch (k = 1). The second occurrence is illustrated using
violet color at i = 14 with zero mismatch (k = 0) and the last
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occurrence is illustrated using green color at i = 15 with two
mismatches (k = 2). All curved arrows represent the Kangaroo
jumps, and the underlines represent mismatches places. Finally,
at each occurrence of Ŝi in the sequence Ta, algorithm (Figure
4) checks its time window using the dictionary S and T such
that it sums up each time ti associated with its action ai in T
starting at the position j2 in GESA(j1, j2) until the length of
the spambot |Ŝi| and compares it to its time window Wi. If the
resultant time is less than or equal to Wi, algorithm (Figure 4)
considers that the pattern sequence corresponds to a spambot
and terminates (see Figure 4, steps 18-26), so that the control
returns to algorithm (Figure 2). Once the frequency number
hits a predefined threshold f , the sequence and its occurrences
will be output by algorithm Figure 2.

VI. EXPERIMENTAL EVALUATION

We implemented our algorithm in C++ and ran it on an
Intel i7 at 3.6 GHz. Our algorithm uses linear time and space.
It constructs the suffix array by almost pure Induced-Sorting
[36], to build our GESA for the concatenated sequences (Ta
and data dictionary S), and then it applies the bit masking
and Kangaroo method to detect all uncertain actions. We use
synthetic data to test our method, because we are not aware
of publicly available datasets of real spambot behavior and
modeling the real temporal annotated sequence of a user log.

TABLE III. RESULTS FOR THE NUMBER OF DETECTED
DESGUISED SPAMBOTS AND RUNTIME. DICTIONARY SIZE
|S| = 100, 200 AND 500 (INCLUDE 20, 50 AND 100

DISGUISED SEQUENCES RESPECTIVELY) WITH f = 2, AND
HAMMING DISTANCE THRESHOLD k = 0, 1 AND 2.

|S| : |#| |T | |Tinj | Disguised actions Time (min)
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

100 : 20

10,000 13,004 85 142 376 0.036 0.038 0.043
25,000 28,100 97 152 302 0.223 0.225 0.237
50,000 52,924 93 154 542 0.890 0.894 0.974
100,000 103,028 90 161 758 3.705 3.751 3.795

200 : 50

10,000 16,060 206 313 976 0.137 0.148 0.160
25,000 30,876 306 422 1726 0.555 0.582 0.586
50,000 55,856 202 258 946 1.976 1.957 2.094
100,000 105,878 203 337 1512 7.422 7.781 7.966

500 : 100

10,000 25,088 630 856 2141 2.294 2.255 2.367
25,000 39,736 602 811 2488 2.440 2.575 2.582
50,000 64,666 582 791 2854 6.621 6.779 6.929
100,000 114,812 640 902 4110 21.515 21.744 22.207

However, the use of synthetic data does not affect our
findings, because our method is guaranteed to detect all
specified patterns in any temporally annotated sequence. Also
note that we do not compare with existing works because
no existing method can solve this problem. We used a
random string generator to generate: (I) temporally anno-
tated sequences with 26 distinct characters and sizes in
{10000, 25000, 50000, 100000}, and (II) dictionaries with size
in {100, 200, 500}. In every generated temporally annotated
sequence T , we injected each sequence in S to random
locations f ∈ {2, 5, 10} times, to obtain the web-spambots user
log Tinj . We also changed some sequences in S, to simulate
disguised and mismatch actions. Specifically, we replaced 20%
of actions of selected sequences in S by ’#’ symbol which
represents an indeterminate symbol that corresponds to one or
more action in Tinj , to simulate disguised actions. Also, we
changed one random element in 25% of randomly selected
sequences, to simulate a mismatch, and two random elements

in another 25% of randomly selected sequences, to simulate
two mismatches. The window length (Wi) for each sequence
in S was selected randomly in [5, 125]. Table III shows the
impact of the dictionary size |S| on the disguised spambot
actions (with mismatches) and runtime. From this table we
observe the following:
• For the same (|S| : |#|) and |T | and varying k, the

number of detected actions increases, as our algorithm
by construction detects all actions with at most k mis-
matches (so the actions for a larger k include those for
all smaller k’s). Interestingly, the sequences which have
disguised actions (represented by ’#’ symbol) are detected
as the normal sequences due to the use of bit masking
operation and hashMatchTable. Also, it is noticeable that
the runtime is hardly affected by k, due to the use of the
Kangaroo method, which effectively speeds up the finding
of occurrences of spambots. For example, the time for
the disguised spambots detection at k = 1 and k = 2,
when (|S| : |#| = 500 : 100) and (|T | = 25, 000)
is relatively the same, despite the big difference in the
number detected spambots.

• For the same (|S| : |#|) and k and varying |T |, the
number of detected actions does not directly depend on
|T |; it depends on the size of the injected actions to T ,
which generally increases with (|S| : |#|). The runtime
increases with |T |, since our algorithm always detects all
actions in T .

• For the same |T | and k and varying (|S| : |#|), the
number of detected actions increase with (|S| : |#|) as
our algorithm always detects all actions in the dictionary,
and the runtime also increases with the dictionary size.

Table IV shows the impact of the frequency f on the disguised
spambot actions and runtime. For this table, we observe the
following:

TABLE IV. RESULTS FOR THE NUMBER OF DETECTED
DISGUISED SPAMBOTS AND RUNTIME. DICTIONARY SIZE

(|S| : |#| = 100 : 20) WITH f = 2, 5 AND 10, AND
HAMMING DISTANCE THRESHOLD k = 0, 1 AND 2.

f |T | |Tinj | Disguised actions Time (min)
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

2

10,000 13,004 85 142 376 0.036 0.038 0.043
25,000 28,100 97 152 302 0.223 0.225 0.237
50,000 52,924 93 154 542 0.890 0.894 0.974
100,000 103,028 90 161 758 3.705 3.751 3.795

5

10,000 17,510 209 345 715 0.085 0.088 0.092
25,000 32,750 243 376 497 0.345 0.353 0.357
50,000 57,310 234 379 894 1.073 1.091 1.144
100,000 107,570 224 382 1075 4.184 4.147 4.247

10

10,000 25,020 417 681 1264 0.179 0.191 0.203
25,000 40,500 488 751 1149 0.514 0.532 0.539
50,000 64,620 466 751 1475 0.528 1.494 1.456
100,000 115,140 451 755 1609 4.713 4.948 5.045

• For the same f and |T | and varying k, the detected actions
for any k include all actions with at most k mismatches.
Also, the runtime is hardly affected by k and disguised
actions, due to the use of the Kangaroo method and bit
masking operation.

• For the same f and k and varying |T |, the number of
detected actions does not increase with |T |, as it depends
on the size of injected actions which generally depends
on (|S| : |#|), as explained above. The runtime increases
because our algorithm always detects all actions in T .
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• For the same |T | and k and varying f , the number of
detected actions increases as our algorithm always detects
all injected actions. Interestingly though the algorithm
scales well with f , especially when |T | is large. This
is due to the use of the Generalized enhanced suffix
array (GESA) which finds all subsequent occurrences of
a detected action occurrence directly from the adjacent
suffixes to the first occurrence suffix.

VII. CONCLUSION

We have introduced two efficient algorithms that can detect
spambots of malicious actions with variable time delays. One
can detect one or more indeterminate sequences in a web user
log using Manber and Myers algorithm and bit masking oper-
ation. The second proposed a generalized solution for solving
(f, c, k,W )-Disguised Spambots Detection with indeterminate
actions and mismatches. Our algorithm takes into account
temporal information, because it considers time-annotated se-
quences and because it requires a match to occur within a time
window. The problem seeks to find all occurrences of each
conservative degenerate sequence corresponding to a spambot
that occurs at least f times within a time window and with
up to k mismatches. For this problem, we designed a linear
time and space inexact matching algorithm, which employs the
generalized enhanced suffix array data structure, bit masking
and Kangaroo method to solve the problem efficiently.
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