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Abstract—In this paper, we present our spambot overview on the
creativity of the spammers, and the most important techniques
that the spammer might use to deceive current spambot detection
tools to bypass detection. These techniques include performing a
series of malicious actions with variable time delays, repeating the
same series of malicious actions multiple times, and interleaving
legitimate and malicious actions. In response, we define our
problems to detect the aforementioned techniques in addition
to disguised and "don’t cares" actions. Our proposed algorithms
to solve those problems are based on advanced data structures
that are able to detect malicious actions efficiently in linear time,
and in an innovative way.
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I. INTRODUCTION

A bot is a software application that is designed to do certain
tasks. Bots usually consume network resources by accom-
plishing tasks that are either beneficial or harmful. According
to Distil Networks’ published report ’2020 Bad Bot Report’,
prepared by data from Imperva’s Threat Research Lab, the bots
make up 40% of all online traffic, while the human driven
traffic makes up to 60%. The report shows that the bad bots
traffic has risen to 24.1% (A rise of 18.1% from 2019), while
good bots traffic decreased to 13.1% (A 25.1% decrease from
2018) [1]. The good bots, for example, are essential in indexing
the contents of search engines for users’ search, and recently
have been used by some companies and business owners to
improve customer services and communications in a faster way
by employing the use of Artificial Intelligence (AI). These
bots are useful in large businesses or businesses with limited
resources through the use of chatbots, which can benefit the
organization in automating customer services like replying to
questions and conducting short conversations just like a human.
However, bots can be harmful in what is known as a spambot.
A spambot is a computer program designed to do repetitive
actions on websites, servers, or social media communities.
These actions can be harmful by carrying out certain attacks
on websites/ servers or may be used to deceive users such
as involving irrelevant links to increase a website ranking
in the search engine results. Spambots can take different
forms which are designed according to a spammer’s desire.
They can take the form of web crawlers to plant unsolicited
material or to collect email addresses from different sources
like websites, discussion groups, or news groups with the

intent of building mailing lists to send unsolicited or phishing
emails. Furthermore, spammers can create fake accounts to
target specific websites or domain specific users and start send-
ing predefined designed actions which are known as scripts.
Moreover, spammers can work on spreading malwares to steal
other accounts or scan the web to obtain customers contact
information to carry out credential stuffing attacks, which is
mainly used to login to another unrelated service. In addition,
spambots can be designed to participate in deceiving users on
online social networks through the spread of fake news, for
example, to influence the poll results of a political candidate.
Therefore, websites administrators are looking for automated
tools to curtail the actions of web spambots. Although there
are attempts to prevent spamming using anti-spambots tools,
the spammers try to adopt new forms of creative spambots by
manipulating spambots actions’ behaviour to appear as it was
coming from a legitimate user to bypass the existing spam-
filter tools.

This work falls under the name of digital creativity where
the http requests at the user log can be represented as tempo-
rally annotated sequences of actions. This representation helps
explore repeated patterns of malicious actions with different
variations of interleaving legitimate actions and malicious
actions with variable time delays that the spammer might resort
to deceive and bypass the existing spam detection tools. Con-
sequently, our proposed algorithms for tackling the creative
deception techniques are based on advanced data structures and
methods to keep the performance and efficiency of detecting
creative deception sequences at first priority. Here, we are
going to provide a summary of the creativity of the spambot
programmers, and the most important creative techniques that
the spammer might use to deceive current spambot detection
tools. Then, we are going to present our proposed solutions
at this field to tackle those problems based on employing the
AI approach to monitor the behaviour of the stream of actions
using advanced data structures for pattern matching and to
uncover places of the spambot attacks.

In Section II, we detail the related works in the literature
review. In Section III, we introduce notations, background
concepts, and formally define the problems we address. In
Section IV, we present our solution for detecting deception
with errors. In Section V, we present our solution for detecting
deception with disguised actions and errors. In Section VI, we
present our solution for detecting deception with don’t cares
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actions. In Section VII, we conclude.

II. LITERATURE REVIEW

Spamming is the use of automated scripts to send unso-
licited content to large members of recipients for commer-
cial advertising purposes or fraudulent purposes like phishing
emails. Webspam refers to a host of techniques to manipulate
the ranking of web search engines and cause them to rank
search results higher than the others [2]. Examples of such
techniques include content-based which is the most popular
type of web spam, where the spammer tries to increase term
frequencies on the target page to increase the score of the page.
Another popular technique is through using link-based, where
the spammer tries to add lots of links on the target page to
manipulate the search engine results [3] [4]. There are several
works for preventing the use of content-based or link-based
techniques by web spambots [5]–[10]. However, these works
focus on identifying the content or links added by spambots,
rather than detecting the spambot based on their actions. For
example, Ghiam et al. in [4] classified spamming techniques
to link-based, hiding, and content-based, and they discussed
the methods used for web spam detection for each classified
technique. Roul et al. in [3] proposed a method to detect
web spam by using either content-based, link-based techniques
or a combination of both. Gyongyi et al. in [11] proposed
techniques to semi-automatically differ the good from spam
page with the assistance of human expert, whose his role
is examining small seed set of pages, to tell the algorithm
which are ’good pages’ and ’bad pages’ roughly based on
their connectivity to the seed ones. Also, Gyongyi et al. in [12]
introduced the concept of spam mass and proposed a method
for identifying pages that benefit from link spamming. Egele et
al. [13] developed a classifier to distinguish spam sites from
legitimate ones by inferring the main web page features as
essential results, and based on those results, the classifier can
remove spam links from search engine results. Furthermore,
Ahmed et al. [14] presented a statistical approach to detect
spam profiles on Online Social Networks (OSNs). The work
in [14] presented a generic statistical approach to identify spam
profiles on OSNs. For that, they identified 14 generic statistical
features that are common to both Facebook and Twitter, then
they used three classification algorithms (naive Bayes, Jrip and
J48) to evaluate those features on both individual and com-
bined data sets crawled from Facebook and Twitter networks.
Prieto et al. [15] proposed a new spam detection system called
Spam Analyzer And Detector (SAAD) after analyzing a set of
existing web spam detection heuristics and limitations to come
up with new heuristics. They tested their techniques using
Webb Spam Corpus(2011) and WEBSPAM-UK2006/7, and
they claimed that the performance of their proposed techniques
is better than others system presented in their literature. There
are also techniques that analyze spambot behaviour [9] [16].
These techniques utilize Supervised Machine Learning (SML)
to identify the source of the spambot, rather than detecting the
spambot. In this regard, Dai et al. [17] used SML techniques
to combine historical features from archival copies of the web,
and use them to train classifiers with features extracted from
current page content to improve spam classification. Araujo
et al. [18] presented a classifier to detect web spam based on
qualified link (QL) analysis and language model (ML) features.
The classifier in [18] is evaluated using the public WEBSPAM-
UK 2006 and 2007 data sets. The baseline of their experiments

was using the precomputed content and link features in a
combined way to detect web spam pages, then they combined
the baseline with QL and ML-based features which contributed
to improving the detecting performance. Algur et al. [19]
proposed a system which gives spamicity score of a web page
based on mixed features of content and link-based. The pro-
posed system in [19] adopts an unsupervised approach, unlike
traditional supervised classifiers, and a threshold is determined
by empirical analysis to act as an indicator for a web page to
be spam or non-spam. Luckner et al. [20] created a web spam
detector using features based on lexical items. For that, they
created three web spam detectors and proposed new lexical-
based features that are trained and tested using WEBSPAM-
UK data sets of 2006 and 2007 separately, then they trained
the classifiers using WEBSPAM-UK 2006 data set but they
use WEBSPAM-UK 2007 for testing. Then, the authors based
on the results of the first and second detectors as a reference
for the third detector, where they showed that the data from
WEBSPAM-UK 2006 can be used to create classifiers that
work stably both on the WEBSPAM-UK 2006 and 2007 data
sets. Moreover, Goh et al. [21] exploited web weight properties
to enhance the web spam detection performance on a web
spam data set WEBSPAM-UK 2007. The overall performance
in [21] outperformed the benchmark algorithms up to 30.5%
improvement at the host level, and 6−11% improvement at the
page level. At the level of OSNs, the use of social media can
be exploited negatively as the impact of OSNs has increased
recently and has a major impact on public opinion. For
example, one of the common ways to achieve media blackout
is to employ large groups of automated accounts (bots) to
influence the results of the political elections campaigns or
spamming other users’ accounts. Cresci et al. [22] proposed
an online user behavior model which represents a sequence
of string characters corresponding to the user’s online actions
on Twitter. The authors in [22] adapt biological Deoxyri-
bonucleic Acid (DNA) techniques to online user behavioral
actions, which are represented using digital DNA to distinguish
between genuine and spambot accounts. They make use of
the assumption of the digital DNA fingerprinting techniques
to detect social spambots by mining similar sequences, and
for each account, they extract a DNA string that encodes its
behavioral information from created data set of spambots and
genuine accounts. Thereafter, Cresci et al. [23] investigate the
major characteristics among group of users in OSNs. The study
in [23] is an analysis of the results obtained in DNA-inspired
online behavioral modeling in [22] to measure the level of
similarities between the real behavioral sequences of Twitter
user accounts and synthetic accounts. The results in [23] show
that the heterogeneity among legitimate behaviors is high and
not random. Later, Cresci et al. in [24] envisage a change in the
spambot detection approach from reaction to proaction to grasp
the characteristics of the evolved spambots in OSNs using the
logical DNA behavioral modeling technique, and they make
use of digital DNA representation as a sequence of characters.
The proactive scheme begins with modeling known spambot
accounts with digital DNA, applying genetic algorithms to
extract new generation of synthetic accounts, comparing the
current state-of-art detection techniques to the new spambots,
then design novel detection techniques.

More relevant to our work are string pattern matching-
based techniques that detect spambots based on their actions
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(i.e., based on how they interact with the website these
spambots attack) [25] [26]. These techniques model the user’s
log as a large string (sequence of elements corresponding
to actions of users or spambots) and common/previous web
spambot actions as a dictionary of strings. Then, they perform
pattern matching of the strings from the dictionary to the large
string. If a match is found, then they state that a web spambot
has been detected. For example, the work by Hayati et.al
[25] proposes a rule-based, on-the-fly web spambot classifier
technique, which identifies web spambots by performing exact
string pattern matching using tries. They introduce the idea
of web usage behavior to inspect spambots behavior on the
web. For that, they introduce an action string concept, which
is a representation of the series of web usage actions in
terms of index keys to model user behavior on the web. The
main assumptions of Hayati et.al proposed method are: web
sites spambots mainly to spread spam content rather than
consume the content, and the spambot sessions last for some
seconds unlike the human sessions that last normally for a
couple of minutes. The trie data structure is built based on
the action strings for both human and spambots where each
node contains the probability of a specific action being either
human or spambot. Each incoming string through the trie is
validated, and the result falls into two categories: match and
not match. Hayati et.al used Matthews Correlation Coefficient
(MCC) of binary classification to measure the performance
of their proposed framework. The work of [26] improves
upon [25] by considering spambots that utilize decoy actions
(i.e., injecting legitimate actions, typically performed by users,
within their spam actions, to make spam detection difficult),
and using approximate pattern matching based on the Fast
computation using Prefix Table FPT algorithm [27] under
Hamming distance model to identify spambot action strings
in the presence of decoy actions. However, both [25] and [26]
are limited in that they consider consecutive spambot actions.
This makes them inapplicable in real settings where a spambot
begins to take on sophisticated forms of creative deception
and needs to be detected from a log representing actions of
both users and spambots, as well as settings where a spambot
injects legitimate actions in some random fashion within a time
window to deceive detection techniques. Also, both [25] and
[26] do not address the issue of time (the spambot can pause
and speed up) or errors (deceptive or unimportant actions). The
algorithms presented here are not comparable to [25] and [26]
as they address different issues.

III. BACKGROUND AND PROBLEMS DEFINITIONS

In this section, we introduce the main concepts and defi-
nitions of the key terms used throughout this paper. Then, we
state the main problems that the paper will address.

A. Background
Let T = a0a2 . . . an−1 be a string of length |T | = n, over

an alphabet Σ, of size |Σ| = σ. The empty string ε is the string
of length 0. For 1 ≤ i ≤ j ≤ n, T [i] denotes the ith symbol
of T , and T [i, j] the contiguous sequence of symbols (called
factor or substring) T [i]T [i+ 1] . . . T [j]. A substring T [i, j] is
a suffix of T if j = n and it is a prefix of T if i = 1. A string
p is a repeat of T , iff p has at least two occurrences in T . In
addition p is said to be right-maximal in T , iff there exist two
positions i < j such that T [i, i+ |p|−1] = T [j, j+ |p|−1] = p

and either j + |p| = n+ 1 or T [i, i+ |p|] 6= T [j, j + |p|] [28],
[29]. For convenience, we will assume each T ends in a special
character $, where $ does not appear in other positions and it
is less than a for all a ∈ Σ.

A degenerate or indeterminate string , is defined as a
sequence X̃ = x̃0x̃1 . . . ˜xn−1, where x̃i ⊆ Σ for all 0 ≤ i ≤
n−1 and the alphabet Σ is a non-empty finite set of symbols of
size |Σ|. A degenerate symbol x̃ over an alphabet Σ is a non-
empty subset of Σ, i.e. x̃ ⊆ Σ and x̃ 6= ∅. |x̃| denotes the size
of x̃ and we have 1 ≤ x̃ ≤ |Σ|. A degenerate string is built over
the potential 2|Σ|−1 non-empty subsets of letters belonging to
Σ. If |x̃| = 1, that is |x̃| repeats a single symbol of Σ, we say
that x̃i is a solid symbol and i is a solid position. Otherwise,
x̃i and i are said to be a non-solid symbol and non-solid
position respectively. For example, X̃ = ab[ac]a[bcd]bac is a
degenerate string of length 8 over the alphabet Σ = {a, b, c, d}.
A string containing only solid symbols will be called a solid
string. A conservative degenerate string is a degenerate string
where its number of non-solid symbols is upper-bounded by a
fixed position constant c [30] [31]. The previous example is a
conservative degenerate string with c = 2.

A suffix array of T is the lexicographical sorted array
of the suffixes of the string T i.e., the suffix array of T is
an array SA[1 . . . n] in which SA[i] is the ith suffix of T
in ascending order [32]–[34]. The major advantage of suffix
arrays over suffix trees is space. The space needed using
suffix trees increases with alphabet size. Thus, suffix arrays
are more useful in computing the frequency and location of
a substring in a long sequence, when the alphabet is large
[33]. LCP (T1, T2) is the length of the longest common prefix
between strings T1 and T2 and it is usually used with SA such
that LCP [i] = lcp(TSA[i], TSA[i−1]) for all i ∈ [1..n] [29]
[32].

The suffix tree T for a string S of length n over the alphabet
Σ is a rooted directed compacted trie built on the set of suffixes
of S. The suffix tree has n leaves and its internal nodes have at
least two children, while its edges are labelled with substrings
of S. The labels of all outgoing edges from a given node
start with a different character. All leaves of the suffix tree
are labelled with an integer i, where i ∈ {1 . . . n} and the
concatenation of the labels on the edges from the root to the
leaf gives us the suffix of S which starts at position i. The nodes
of the (non-compacted) trie, which have branching nodes and
leaves of the tree are called explicit nodes, while the others
are called implicit nodes. The occurrence of a substring P in
S is represented on T by either an explicit node or implicit
node and called the locus of P . The suffix tree T can be
constructed in O(n) time and space. In order to have one-to-
one correspondence between the suffixes of S and the leaves
of T, a character $ /∈ Σ is added to the end of the label edge
for each suffix i to ensure that no suffix is a prefix of another
suffix. To each node α in T is also associated an interval of
leaves [i..j], where [i..j] is the set of labels of the leaves that
have α as an ancestor (or the interval [i..i] if α is a leaf labelled
by i). The intervals associated with the children of α (if α is
an internal node) form a partition of the interval associated
with α (the intervals are disjoints sub-intervals of [i..j] and
their union equals [i..j]). For any internal node α in the suffix
tree T, the concatenation of all edge labels in the path from
the root to the node α is denoted by ᾱ and the string depth of
a node α is denoted by |ᾱ| [28].
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Definition 1. A TEMPORALLY ANNOTATED ACTION SE-
QUENCE is a sequence T = (a0, t0), (a1, t1)...(an, tn), where
ai ∈ A, with A set of actions, and ti represents the time that
action ai took place. Note that ti < ti+1 , ∀ i ∈ [0, n] see
(Figure 1).

a0

t 0

a1

t 1

a2

t 2

a3

t 3

an

t n

Figure 1. Temporally annotated action sequence T.

Definition 2. AN ACTION SEQUENCE is a sequence: s1...sm,
where si ∈ A, with A is the set of all possible actions.

Definition 3. A DICTIONARY Ŝ is a collection of tuples
〈Si,Wi〉, where Si is a temporally annotated sequence cor-
responding to a spambot and Wi is a time window (total
estimated time for all set of actions performed by the spambot).

Definition 4. The Enhanced Suffix Array (ESA) is a data
structure consisting of a suffix array and additional tables
which can be constructed in linear time and considered as
an alternative way to construct a suffix tree which can solve
pattern matching problems in optimal time and space [35] [36].

Definition 5. The Generalized Enhanced Suffix Array (GESA)
is simply an enhanced suffix array for a set of strings, each
one ending with a special character and usually is built to find
the Longest Common Sequence (LCS) of two strings or more.
GESA is indexed as a pair of identifiers (i1, i2), one identifying
the string number, and the other is the lexicographical order
of the string suffix in the original concatenation strings [37].

B. Problems definitions
Web spambots are becoming more advanced, utilizing

techniques that can defeat existing spam detection algorithms.
These techniques include performing a series of malicious
actions with variable time delays, repeating the same series of
malicious actions multiple times, and interleaving legitimate
actions with malicious and unnecessary actions. In response,
we define our problems in the following sections and give a
summary on our algorithms which we use to detect spambots
utilizing the aforementioned techniques. Our algorithms take
into account the temporal information, because it considers
time annotated sequences and requires a match to occur
within a time window.

Problem 1: DECEPTION WITH ERRORS: Given a tem-
porally annotated action sequence T (aj , tj), a dictionary Ŝ
containing sequences Si each associated with a time window
Wi, a minimum frequency threshold f , and a maximum
Hamming distance threshold k, find all occurrences of each
Si ∈ Ŝ in T , such that each Si occurs: (I) at least f times
within its associated time window Wi, and (II) with at most k
mismatches according to Hamming distance.

Problem 2: DECEPTION WITH DISGUISED ACTIONS AND
ERRORS: Given a temporally annotated action sequence T
(aj , tj), a dictionary S containing sequences Ŝi each has a
c non-solid symbol (represented by ’#’), associated with a
time window Wi, a minimum frequency threshold f , and a
maximum Hamming distance threshold k, find all occurrences
of each Ŝi ∈ S in T , such that each Ŝi occurs: (I) at least f

times within its associated time window Wi, and (II) with at
most k mismatches according to Hamming distance.

Problem 3: DECEPTION WITH DON’T CARES ACTIONS:
Given a temporally annotated action sequence T (aj , tj),
a dictionary Ŝ containing sequences Si over the alphabet
Σ∪{∗}, each associated with a time window Wi, a minimum
frequency threshold f , and a maximum Hamming distance
threshold k, find all occurrences of each Si ∈ Ŝ in T , such
that each Si occurs: (I) at least f times within its associated
time window Wi, and (II) with at most k mismatches
according to Hamming distance.

In the following sections, we present a summary on our al-
gorithms which we use to tackle the aforementioned problems.
It is worth noting that the algorithms require a preprocessing
stage before including the main algorithm. This includes
input sequences temporally annotated actions T where these
temporally annotated sequences are produced from the user’s
logs consisting of a collection of http requests. Specifically,
each request in a user log is mapped to a predefined index
key in the sequence and the date-time stamp for the request in
the user log is mapped to a time point in the sequence. Then,
the algorithm extracts the actions of the temporally annotated
action sequence T into a sequence Ta that contains only the
actions a0 . . . an from T .

IV. DECEPTION WITH ERRORS

Current spambot countermeasure tools are mainly based
on the analysis of the spambot content features which can
help in distinguishing the legitimate account from the fake
account. Furthermore, there are tools that work on the net-
work level by tracking the excessive number of different IP
addresses over a network path for a period of time that might
indicate the presence of a spambot network. However, these
techniques do not effectively identify the behavioural change
of the spambot where most of them did not come up with
satisfactory results. At this regard, the spammer is constantly
trying to change the spambot actions behaviour to make it
appear like human actions, either by replacing specific actions
by others or changing the order of actions which ultimately
leads to the primary goal of creating the spambot to evade the
detection. This type of manipulation falls under the umbrella
of creative deception which intentionally causes errors in order
to bypass the existing detection tools. For example, suppose
a spambot designed to promote the selling of products to
the largest number of websites as a sequence of actions:
{User Registration, View Home Page, Start New Topic, Post
a Comment on Products, View Topics, Reply to Posted Topic
"with Buy Link"} can be redesigned by replacing a few actions
with others such that it does not affect the goal of the spambot
as following: {User Registration, View Home Page, Update
a Topic, Post a Comment on Products, Preview Topic, Reply
to Posted Comment "with Buy Link"}. To solve this type of
problems, the solution should take into account the occurrence
of spambot actions with mismatches. For that, our contribution
to solve PROBLEM 1 supposes that the spambot performs the
same sequence of malicious actions multiple times. Thus, we
require a sequence to appear at least f times to attribute
it as a spambot. In addition, we take into account the fact
that spambots perform their actions within a time window.
We consider mismatches, and we assume that the spambots
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dictionary and parameters are specified on domain knowledge
(e.g. from external sources or past experience).

Uncover Deception with errors
Our algorithm for solving (PROBLEM 1) needs to perform

pattern matching with k errors where each sequence Si in Ŝ
should occur in T at least f times within its associated time
window Wi. For that, we employ an advanced data structure
Generalized Enhanced Suffix Array (GESA) with the help of
Kangaroo method [38]. First, our algorithm constructs GESA
for a collection of texts to compute the Longest Common
Sequence LCS between the sequence of actions Ta and the
dictionary Ŝ in linear time and space. The algorithm concate-
nates sequences (Ta and spambots dictionary Ŝ) separated by
a special delimiter at the end of each sequence to build our
GESA, using almost pure Induced-Sorting suffix array [39] as
follows:

GESA(Ta, ŜSi
) = Ta$0S1$1S2$2 . . . Sr$r

such that, S1 . . . Sr are sets of spambot sequences that
belong to dictionary ŜSi , and $0, . . . , $r are special symbols
not in Σ and smaller than any letter in Ta with respect
to the alphabetical order. Then, the algorithm constructs
GESAR, a table which retains all the lexicographical ranks
of the suffixes of GESA. Our algorithm uses the collection
of tables (GESA, GESAR, LCS, T, Ŝ) to detect each
sequence Si = s1 . . . sm in T = (a0, t0), (a1, t1) . . . (an, tn)
that occurs with a maximum number of mismatches k
in the spambot time window Wi. To do that, for each
spambot sequence Si in the spambot dictionary Ŝ, the
algorithm calculates the longest common sequence LCS
between Si and Ta starting at position 0 in sequence Si

and position j in sequence Ta such that the common
substring starting at these positions is maximal as follows:

LCS(Si, Ta) = max(LCP (GESA(i1, i2), GESA(j1, j2)) = l0,

Where l0 is the maximum length of the longest common

prefix matching characters between GESA(i1, i2) and
GESA(j1, j2) until the first mismatch occurs (or
one of the sequences terminates). Next, we find the
length of the longest common subsequence starting
at the previous mismatch position l0 which can be
achieved using the Kangaroo method as follows:

max(LCP (GESA(i1, i2 + l0 + 1), GESA(j1, j2 + l0 + 1)) = l1

The algorithm will continue to use the Kangaroo method to

find the other number of mismatches, until the number of
errors is greater than k or one of the sequences terminates.
Finally, in each occurrence of Si in Ta, the algorithm will
check its time window Wi using the dictionary Ŝ and T such
that it sums up each time ti associated with its action ai in T
starting at the position j2 in GESA(j1, j2) until the length of
the spambot is |Si|, and compares it to its time window Wi.
If the resultant time is less than or equal to Wi, the algorithm
considers that the pattern sequence corresponds to a spambot.

V. DECEPTION WITH DISGUISED ACTIONS AND ERRORS

Spammers might attempt to deceive detection tools by cre-
ating more sophisticated sequences of actions in a creative way
as their attempt to disguise their actions is by varying certain

actions and making some errors. For example, a spambot takes
the actions AFCDBE, then AGCDBE, then AGDDBE
etc. This can be described as A[FG][CD]DBE. They try to
deceive by changing the second and third action. The action
[FG] and [CD] are variations of the same sequence. We will
call the symbols A,D,B,E solid, the symbols [FG] and [CD]
indeterminate or non-solid and the string A[FG][CD]DBE
degenerate string which is denoted by S̃ . At this case, we are
not concerned which actions will be disguised, but we assume
that the number of attempts to disguise is limited by a constant
c and the number of errors is bounded by k.

Uncover Deception with Disguised Actions and Errors

Our algorithm for solving (PROBLEM 2) uses the following
three steps which make the pattern matching with disguised
actions fast and efficient:

Step 1: For each non-solid sj occurring in a degenerate
pattern P̃ = s1 . . . sm, we substitute each sj with ’#’ symbol,
where ’#’ is not in Σ. Let P̂ be the resulting pattern from the
substitution process and will be considered as a solid pattern,
see (Table I).

TABLE I. CONVERTING P̃ TO P̂

P̃ A [FG] [CD] D B E

P̂ A #1 #2 D B E

Step 2: This step is similar to the algorithm being used
in PROBLEM 1, which constructs GESA to concatenate a
collection of texts (Ta and set of action sequences SŜi

)
separated by a special delimiter at the end of each sequence
as follows:

GESA(Ta, SŜi
) = Ta!0Ŝ1!1Ŝ2!2 . . . Ŝr!r

Such that, Ŝ1 . . . Ŝr are set of spambots sequences that belong
to dictionary SŜi

, and !0, . . . , !r are special symbols not in
Σ and smaller than any alphabetical letter in Ta and smaller
than ’#’ with respect to the alphabetical order. The algorithm
works similarly to the algorithm described in the previous
section with the help of the Kangaroo method in addition to
hashMatchTable (Table II) to do bit masking. At any time, the
algorithm encounters ’#’ at the matching pattern, it will get
into the Verification process.

Step 3 (Verification process): At this step, the algorithm
considers each ’#’ as an allowed mismatch and does bit
masking operation using hashMatchTable, to find whether the
current comparing action ai in Ta has a match with one of the
actions in ’#l’. The columns of hashMatchTable are indexed
by the (ascii code) of each alphabets in Σ by either using the
capital letters or small letters to make the pattern matching
testing fast and efficient.
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TABLE II. HASHMATCHTABLE OF THE PATTERN
P̃1 = A[FG][CD]DBE WHERE ITS CONVERSION IS

P̂1 = A#1#2DBE

asscii(ai) 65 66 67 68 69 70 71 . . . 88 89 90
ai A B C D E F G . . . X Y Z

P̂1#1 0 0 0 0 0 1 1 0 . . . 0 0

P̂1#2 0 0 1 1 0 0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P̂r#l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

VI. DECEPTION WITH DON’T CARES ACTIONS

This type of creative deception can be used when we do
not care about the type of some actions, which appear between
important actions in a sequence of actions. This is important
when we want to examine a sequence of actions where some
of the actions should be included in the same order to be
carried out regardless of the type of other actions in between.
For example, travel booking websites which are specialized in
selling products and services such as booking flights, hotels,
and rental cars through the company itself or through an
online travel agency are the most vulnerable businesses to
spambots. More accurately, spambots are commonly used at
those traveling portals to transfer customers from a specific
traveling portal to a competitive one in seconds. This can be
done by using an automated script called price scraping, which
helps steal real-time pricing data automatically from a targeted
traveling website to the competitor one. This can help in the
decision making of the competitor’s products prices, which
will be adjusted to a lower price to attract more customers.
The competitors also can use web scrapping which helps steal
the content of the entire traveling website or some parts, with
the intent to have the same offers with some modifications that
will give them a competitive advantage. For that, we should
employ the AI approach using clever algorithms, to detect the
most threatened actions in a sequence of actions. For example,
suppose a bot script designed to steal some parts of the targeted
website (such as pages, posts, etc.), and make a click fraud
on selected advertisements as follows: (Login website:A, Web
admin section:B, Select pages:C, Export:D, Save to file:E, Get
element:F, Get "ad1":G, Click():H). Note that, we give an
index key for each action, for it to be easy to create a sequence
of actions, like that: ABCDEFGH . As we see, there are
some actions that can be replaced with others such as action
(Select pages:C) which can be any other select (posts, images,
etc.), and the same thing for the actions (EFG). Those type
of actions are the ones we "don’t care" about, and thus, we
can formulate the bot as follows: AB ∗D ∗ ∗ ∗H .

Uncover Deception with Don’t Cares Actions
Our algorithm for solving (PROBLEM 3) uses a fast and

efficient algorithm which can locate all sequences of actions
P with "don’t cares" of length m in text of actions S of length
n in linear time, using suffix tree of S and Kangaroo method.
Suppose we have this sequence (P = AB ∗D ∗∗∗H), and we
want to locate all occurrences of pattern P in log of actions
S. Our algorithm will solve it using the following steps:

• Build the suffix tree of S
• Divide P into sub-patterns Pk:
P1P2P3 = (AB∗)(D ∗ ∗∗)(H)

• Using the suffix tree of S and the Kangaroo method which
can be applied to selected suffixes of the suffix tree of

S by the use of a predefined computational method to
answer subsequent queries in O(k) time. This will find
all occurrences of pattern P with "don’t cares" in text
S such that each query tests the explicit actions of each
sub-pattern without caring of "don’t cares" actions which
are represented by ’*’.

VII. CONCLUSION AND FUTURE WORK

We have presented our proposed algorithms that can detect
a series of malicious actions which occur with variable time
delays, repeated multiple times, and interleave legitimate and
malicious actions in a creative way. Our proposed solutions
tackled different types of creative deception that spammers
might use to defeat existing spam detection techniques such
as using errors, disguised, and "don’t cares" actions. Our
algorithms took into account the temporal information because
they considered time annotated sequences and required a match
to occur within a time window. The algorithms solved the
problems exactly in linear time and space, and they employed
advanced data structures to deal with problems efficiently. We
are planning to extend this work by designing new methods
for different variations of uncertain sequences, e.g., introduc-
ing probabilities (calculating whether it is false positive or
false negative), statistics (frequency of symbols), and weights
(penalty matrices for the errors).
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