
Assessing the Suitability of Architectural Patterns for Use in Agile Software

Development

Samira Seifi Jegarkandy, Raman Ramsin

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

e-mail: seifi@ce.sharif.edu, ramsin@sharif.edu

Abstract—The software industry is moving towards agile

software development methods, as they accommodate rapidly

changing requirements, and cope remarkably well with

modern challenges of software development. On the other

hand, it has long been recognized that software architecture

has a major impact on the maintainability, scalability, and

quality assurance of software systems, so much so that it is

virtually impossible to produce high-quality software systems

(which are inherently complex) without architectural design.

Agile methodologies use lightweight architectural practices,

and applying architectural patterns is a common practice in

agile development. However, to this date, there has been no

comprehensive study on the suitability of existing architectural

patterns for agile development. We introduce a set of criteria

for assessing the suitability of architectural patterns for use in

agile approaches, and evaluate a set of prominent architectural

patterns based on these criteria. Agile developers can use the

results of this evaluation to assess the suitability of each

pattern for application in their agile development projects.

Keywords-agile software development; software architecture;

software pattern; architectural pattern; criteria-based evaluation

I. INTRODUCTION

Agile software development methodologies have been
gaining in popularity, among industry practitioners and
researchers alike, since they emphasize rapid and flexible
development [1]. On the other hand, software architecture, as
a discipline, deals with modeling and managing a software
system’s structure, project blueprint, and communications
among stakeholders, which are essential for achieving
quality attributes such as usability and maintainability [2].
Architectural design has always been an important issue in
agile approaches, even though these approaches have strived
to keep their architectural design tasks as lean as possible
[3]. It has been suggested that agile methods’ support for
architectural activities should be enhanced even further [4].

In software engineering, an architectural pattern is a
structured description of a reusable coarse-grained
architectural solution to a commonly occurring problem
within a given context [5]. Architectural patterns mainly
target the non-functional requirements of the product, and
provide an overall structure for the target system in order to
address these requirements [2]. Architectural patterns are
widely used today in all development approaches, including

agile development, for structuring software systems.
Although several approaches have been proposed for
applying architectural patterns in agile development (such as
[6]-[9]), there is currently no comprehensive review of these
patterns to assist developers in selecting agile-friendly
patterns. This paper focuses on evaluating the suitability of
architectural patterns for application in agile development.
To this aim, we propose a criteria-based evaluation approach.
The evaluation criteria used in our approach have been
elicited from the Agile Manifesto and Principles [10] and the
CEFAM evaluation framework [11]. We have used these
criteria to evaluate existing architectural patterns; due to
space limitations, however, only the patterns that are most
prominent and relevant will be focused upon in this paper.

The evaluation results obtained in our research (reported
herein) can be leveraged to identify a set of agile-friendly
architectural patterns. Thus, our proposed set of criteria
provides a valuable framework for assessing the suitability of
architectural patterns for use in agile development, and also
for warning against the use of architectural patterns that are
not particularly suitable for agile development. Another
potential benefit of our proposed criteria is the applicability
of the evaluation results for improving architectural practices
in agile approaches; this has indeed been our ultimate
intention in this research: we intend to combine architectural
patterns and agile methodologies in order to address
architectural issues in agile development without any adverse
effect on agility. Even if an agile method puts sufficient
emphasis on software architecture, misusing the method can
cause architectural problems; the individual criteria and their
respective evaluation results can potentially alleviate this
problem by helping to determine the appropriate time and
situation for applying each pattern in an agile context, thus
enabling the developer to address architectural design issues.

 The rest of this paper is organized as follows: Section II
reviews the architectural patterns used in agile development;
Section III introduces the proposed evaluation criteria, based
on which the evaluation results are presented in Section IV;
and Section V presents the concluding remarks and discusses
possible directions for furthering this research.

II. ARCHITECTURAL PATTERNS AND AGILE

DEVELOPMENT

In this section, we will provide an overview of
architectural patterns and their use in agile development.

39Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

A. Review of Architectural Patterns

Patterns have been defined for many different areas of
software development. However, our focus here is strictly on
patterns for software architecture, which are commonly used
for shaping the high-level structure of a software system. The
terms architectural style and architectural pattern are widely
used for describing these reusable structures [2]. In this
subsection, brief descriptions will be provided for major
architectural patterns; it should be noted that in cases where
there are several variants for a pattern, the variant that is
more widely used has been included, even if it is an older
(earlier) variant. In later sections, we will assess these
patterns as to their applicability in agile development.

We have categorized the architectural patterns according
to their application areas in order to better manage the
complexity of the spectrum of patterns under review. Even
though some of the patterns are usually categorized as design
patterns, we have included them herein as they can also be
used for solving architectural problems, e.g., the Decorator
pattern [12] can be used for creating dynamically configured
chains of subsystems, and can thereby offer a solution at the
architectural level. Some patterns address several application
areas; in such cases, one of these areas has been designated
as the main application area. All such patterns have been
categorized based on their main application areas, e.g., we

have assigned the Architecture with Component-as-a-Service
(CaaS) pattern [13] to the Mobile Software Development
category, even though it belongs to the Distributed Systems
Development category as well. The patterns have been
briefly described in Tables I and II; these tables also show
the main category to which each pattern belongs.

There are six pattern categories, as explained below:

 Patterns for Mobile Software Development: Various
architectural patterns yielding different levels of
qualities, especially as to performance and energy
consumption, which are used for developing mobile
systems and applications (shown in Table I).

 Patterns for Cloud Systems Development: Patterns
for using cloud-platform services (shown in Table I).

 Security Patterns: Patterns that provide a high level
of security (shown in Table II).

 Patterns for Distributed Systems Development:
Patterns that define how distributed components
collaborate with each other (shown in Table II).

 Patterns for Agent-Oriented Systems Development:
These include patterns for developing systems in
agent-oriented contexts (shown in Table II).

 General-Context Patterns: General patterns that do
not belong to a specific application area or
development context (shown in Table II).

TABLE I. ARCHITECTURAL PATTERNS FOR MOBILE SOFTWARE DEVELOPMENT AND CLOUD SYSTEMS DEVELOPMENT

Pattern Category|Name Brief Description

M
o

b
il

e
 S

o
ft

w
a

re
 D

ev
e
lo

p
m

e
n

t

Architectural Pattern for Mobile

Groupware Platforms [14]
Used for developing groupware platforms, providing separate functionality for three basic concerns:

Collaboration, Communication, and Coordination. It divides systems into three separate layers: the collaboration

layer consists of mobile groupware applications; the communication layer handles messages interchanged among

mobile units; and the coordination layer provides the services required by applications to coordinate their
operations on shared resources.

Balanced MVC Architecture
[15]

Used for supporting service-based mobile applications. This pattern is an extended Model View Controller

(MVC) architecture where client and server systems embody the MVC pattern.

External Customizer [16] Focuses on adapting web content to mobile clients by creating a component that converts data from arbitrary
mobile web information systems to a suitable format for potential clients.

Internal Customizer [16] Removes the need for external customization by providing the client with a response directly suitable for its

manipulation. This pattern uses customization mechanisms in the design of mobile web information systems.

Web Channel Broker [16] Extends the Broker pattern with the capability to interact with the whole web while presenting only a subset of it.

Application with External User

Interface (UI) Elements [17]
Represents interactive applications with physically separated UI components. This pattern is an adaptation and

extension of the MVC approach.

Standalone Mobile Application

[13]
Runs the entire expected functionality on a mobile device without referring to any external services or servers

[13].

Mobile Application with Full

Offloading [13]
Offloads the whole application and its associated database to a server. The mobile device just transmits the

required dataset to the server, and is not involved in any computations.

Mobile Application with Partial

Offloading [13]
Offloads parts of the application and the dataset to an external server.

Architecture with Software-as-a-

Service (SaaS) [13]
In this pattern, the client incorporates a simple web browser or dedicated client program, while all the

functionality required is fulfilled by external services.

Architecture with Component-

as-a-Service (CaaS) [13]
Provides cloud services as finer-grained units of common and reusable functionality.

CaaS-Based Architecture with

Offloading [13]
Divides the required functionality into three parts: one part is fulfilled by the CaaS architecture, one part is

offloaded to a dedicated server, and the remaining part is implemented in the client application.

Extended MVC [18] Extends the common MVC pattern with additional components and adaptations specifically intended for mobile
application development.

C
lo

u
d

 S
y

st
e
m

s

D
e
v

el
o

p
m

e
n

t

Cloud Policy Management Point

[19]
Controls security functions, including authentication, authorization, cryptography, and control of virtual machine

images.

Eventually-Consistent User

Interface [20]
Ensures the eventual consistency of the user interface in cases where it is not possible (or desirable) to ensure the
consistency of the cloud data stores that are used by the user interface.

Loose Coupling [21] Reduces dependencies among distributed applications and their components by using Brokers.

Service Level Agreements

Compliance Checking [22]
Provides a three-layered architecture for distinguishing probe concerns from monitoring data collection concerns

according to the SLAs.

40Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE II. ARCHITECTURAL PATTERNS RELATED TO SECURITY, DISTRIBUTED SYSTEMS DEVELOPMENT, AGENT-ORIENTED SYSTEMS DEVELOPMENT,
AND GENERAL CONTEXT

Pattern Category|Name Brief Description

Security Secure MVC [23]
Shows how several fundamental security patterns must be applied to MVC components in order to provide

secure access/modification of the information residing in the Model component.

Distributed

Systems

Development

Component-Based

Architectural Style [24]

Decomposes the application into reusable components (functional or logical), which are location-transparent

and expose well-defined communication interfaces.

Service-Oriented

Architectural Style [24]
In this style, some of the components provide services to other components.

Event-Based Integration

Style [25]

Removes the need for identities on the connector interfaces in order to reduce the coupling among

components. This style is also known as the Implicit Invocation or Event System style.

Client/Server Architectural

Style [24]

Provides distributed systems consisting of separate clients and servers and a connecting network. There are

variants such as Client-Queue-Client and Peer-to-Peer (P2P).

Distributed

Publish/Subscribe [26]
Decouples the publishers of events from those interested in them.

Enterprise Service BUS

[26]

Integrates a variety of distributed services and related components. Within this architectural pattern, various
components connect to a service bus via their service interfaces.

Broker [5]
Achieves better decoupling of clients and servers through providing indirect, location-transparent access to

distributed services by handling message calls to the appropriate objects.

A-3 Style [27]

Defines a structure for coordinating distributed components. This style adopts the concept of “group” as an
abstraction for organizing an application into semi-independent slices, providing a single and coherent view

of these aggregates, and coordinating them.

AO Systems

Development

Layered Agent [28]
Provides a structure for supporting the behavior of agents. This pattern decomposes agents into layers. All

agents do not have the same layers.

AO-Broker [28]
This pattern is a special kind of Broker specifically customized and extended for use in agent-oriented

systems [28].

Presentation-Abstraction-

Control (PAC) [5]

Provides a structure for interactive systems. This pattern defines the system as a set of cooperating agents,

each of which is responsible for a specific aspect of the system's functionality.

General

Context

Model-View-Controller

(MVC) [5]

Divides an interactive system into three interconnected, highly specialized, and loosely coupled components:

Model, Views and Controllers. The model component encapsulates core data and functionality, view
components display information to the user, and controllers handle user input.

Model-View-Controller-

Context (MVCC) [29]

An extension of the MVC pattern that also incorporates a context component, which is solely responsible for

handling context-awareness concerns.

Zone [30]
Provides flexibility in changing the logical and physical architecture of the processing unit, and the resources

the processing units need to accomplish their tasks.

Microkernel [5]

Provides mechanisms for extending the software system with additional and/or customer-specific

functionality, thus making systems adaptable and extensible. In this pattern, the most important core services
of the system are encapsulated in a microkernel component.

Reflection [5]

Supports extension of applications and their adaptation to evolving technology and changing functional

requirements. This pattern splits the system into two levels: a base level defines the application logic, and a
meta level makes the software self-aware by providing information on its essential features.

Façade [12]
Provides a unified interface to a complex subsystem. This pattern shields the components of a subsystem

from direct access by their clients.

Blackboard [5]
Useful for combining patchy knowledge to arrive at solutions, even if they are sub-optimal or not guaranteed.
This pattern tackles problems that do not have any deterministic solution strategies.

Component-Based

Framework [31]

Used for developing component-based systems. This pattern provides a mixture of fixed and flexible

elements that maximize the scalability and extensibility of systems.

Configured Handler

Method [32]

Performs event handling by using metadata, thus avoiding proliferation of empty methods or reduction in
class cohesion. Also known as Metadata-based API and Metadata-based Invoker,

Layers [5]
Divides the system into distinct layers where each layer is at a particular level of abstraction and handles a

specific concern of the system.

Pipes and Filters [5]
Used for processing date streams. This pattern divides the tasks of a system into several sequential processing
steps (filters) that form a pipeline. Data is passed between adjacent filters through pipes.

Adapter [12]
Used for translating calls between two different interfaces. This pattern converts the interface of a class into

the interface that clients expect.

Decorator [12] Additional responsibilities can be dynamically attached to an object by using this pattern.

Command [12]
Encapsulates a request as an object, thereby letting users parameterize clients with different requests, queue

or log requests, and support undoable operations [12].

Command Processor [5]
Complements the Command pattern [12] by addressing the management and scheduling of Command

objects.

View Handler [5] Manages all the UI views that are provided by the system.

B. Using Architectural Patterns in Agile Development

Architectural concerns have always been addressed in
agile development methodologies; the system “metaphor”
used in XP is a prominent example [1]. However, there is a

growing interest in further extending agile methods with
architectural approaches [3][4]. One way to improve
architectural design in agile software development is to use
architectural patterns. These patterns should make
architectural tasks more agile or add architectural tasks to

41Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

agile activities [7]. Research is ongoing on combining agile
development with architectural patterns in order to improve
agile processes; MASAM [8] and Mobile-D [9] are two such
methods that use architectural patterns in agile approaches in
order to capture architectural knowledge. References [33]-
[35] provide examples of the use of architectural patterns in
agile software development; these patterns have reportedly
improved the quality of the systems produced, and have
provided a holistic view of the system, without which agile
projects could face serious impediments.

III. PROPOSED EVALUATION CRITERIA FOR ASSESSING

SUITABILITY OF ARCHITECTURAL PATTERNS FOR AGILE

DEVELOPMENT

As mentioned before, the suitability assessment proposed
herein is based on suitability criteria. To this aim, we
propose a special set of qualitative criteria based on the agile
traits outlined in the Agile Manifesto and Principles [10], and
the CEFAM Framework for evaluating agile methodologies
[11]. This approach is based on the rather obvious
observation that a pattern that violates these characteristics
and damages agility cannot be used in agile development.

Our proposed set of evaluation criteria will be introduced
throughout the rest of this section. The criteria, listed in
Table III, are divided into two categories according to the
type of evaluation results obtained through applying them:

 Simple form: The evaluation results for these criteria
are of the “Yes/No” type, denoting the satisfaction or
non-satisfaction of the criterion. “Need for
formalism” is the only criterion in this category.

 Scale form (multilevel): The result of applying a
Scale-form criterion is selected from among a
number of predefined discrete levels. The levels are
numbered in descending order of satisfaction; in
other words, level 1 signifies the highest degree of
satisfaction of the criterion. To provide a more
precise evaluation, two of the criteria (“Reusability”
and “Complexity Management) have been further
divided into finer-grained sub-criteria.

In order to show the validity of the proposed criteria for
their ultimate purpose (i.e., assessment of agile-friendliness),
Table III also depicts the Agile Principles [10] that underlie
(are addressed by) each and every criterion. The proposed
criteria have also been assessed based on the validity
metacriteria of [36]; this assessment shows that the proposed
criteria are valid in that they are: 1) General enough to be
used for evaluating all architectural patterns as to their
suitability for application in agile development; 2) Precise
enough to help discern and highlight the similarities and
differences among architectural patterns as to their agile-
friendliness; and 3) Comprehensive enough to cover all
significant features of architectural patterns as pertaining to
their suitability for application in agile development.

IV. SUITABILITY OF ARCHITECTURAL PATTERNS FOR USE

IN AGILE DEVELOPMENT: EVALUATION RESULTS

In this section, we provide the results of assessing the
reviewed architectural patterns based on the proposed

criteria. The evaluation results, as assessed by the authors,
are presented in Table IV.

Assessing the overall suitability of an architectural
pattern for use in agile development can be a matter of
opinion, as many patterns are strong in some of the criteria,
but weak in others. Deciding the overall suitability of a
pattern is therefore subjective, and depends on the priority of
the criteria in the mind of the assessor. The last column of
Table IV shows the overall suitability of each pattern as
judged by the authors: “” denotes “Overall Suitable”, and
“” signifies “Overall Unsuitable”. In our opinion, the
criteria and sub-criteria pertaining to “Reusability”,
“Decomposability”, and “Complexity Management” are
more important than others in assessing the overall agile-
friendliness of the patterns. We have therefore given more
weight to these criteria when giving our final verdicts.

To better understand the nature of the assessments made
in this section, Table V illustrates how the proposed criteria
have been used for assessing the MVC architectural pattern.
Overall, based on the evaluation results, the MVC
architectural pattern has been deemed as a suitable pattern
for use in agile software development.

The selection of the appropriate pattern depends on the
results of applying the whole set of criteria, not just one
criterion; this means that the final evaluation result might be
the same for all the assessors. Yet, even if the assessors do
not concur on the final result, the evaluations are still
valuable in that they help identify the strengths and
weaknesses of the patterns under review; this knowledge can
be used for comparing alternative patterns and improving the
use of the patterns in agile methods. As an example, consider
comparing MVC to Layers. Comparing the evaluation results
shows that MVC fares better than Layers in most of the
criteria; therefore, if these criteria are deemed crucial in a
project, MVC would be preferable to Layers in that
particular project situation.

V. CONCLUSION AND FUTURE WORK

The software industry is becoming increasingly keen on
using agile methodologies to achieve rapid and flexible
development. On the other hand, software architecture has
evolved into a vast, essential discipline in software
engineering; architectural design has become indispensable,
especially when reusable, distributed, and maintainable
software systems are required. Agile methodologies are in
need of improvement as to their support for architectural
design, and architectural patterns seem to be a promising
means for addressing this need. This has been our ultimate
goal in this research: to use architectural patterns for
enhancing architectural design in agile methodologies.

As the first step towards this goal, we have evaluated
existing architectural patterns as to their suitability for use in
agile development. A set of qualitative criteria have been
defined for evaluating existing methodologies. The results of
criteria-based evaluation reveal that not every architectural
pattern is suitable for use in an agile context; therefore, if an
application requires the use of an architectural pattern that
has been deemed as agile-unfriendly, using an agile approach
for its development would be considered risky (at best).

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE III. PROPOSED EVALUATION CRITERIA FOR ASSESSING THE SUITABILITY OF ARCHITECTURAL PATTERNS FOR AGILE DEVELOPMENT

Criterion Description Possible values

Underlying

agile

principles*

R
e
u

sa
b

il
it

y

Encapsulation

and abstraction

How does the pattern promote abstraction

and encapsulation? Abstract modules are

more reusable by nature, and encapsulation
enhances reusability by setting up barriers

among modules and reducing coupling [5].

1: At the level of components/classes;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed, but not adversely affecting reusability;

5: Reusability reduced due to violation of encapsulation or lack of

abstraction.

CR; CS; FD;

FWS; GD; S

Separation of

concerns and

high cohesion

How does the pattern support separation of

concerns and promote high cohesion in

modules? Separation of concerns and high
cohesion go hand in hand, and enhance

reusability by encouraging non-complex,

specialized modules.

1: At the level of components/classes;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed, but not adversely affecting reusability;

5: Reusability reduced due to clustering of functionality and execution of

non-related work at the level of layers/components.

CP; CR; FD;

GD; R; TP

Decomposability How is the structure decomposed by the
pattern so that each individual piece is small

enough to be developed in an agile manner?

1: Explicitly addressed for the entire system;
2: Explicitly addressed for part of the system;

3: Addressed implicitly;

4: Not addressed, but not adversely affecting decomposability;
5: Decomposability is adversely affected by the pattern.

CP; CR; CS;
CW; FD;

FWS; R

C
o

m
p

le
x
it

y
 M

a
n

a
g

em
e
n

t Coupling and

change

propagation

How does the pattern promote low coupling

and prevent the propagation of change?

1: At the level of components/classes;

2: Only at the level of subsystems/layers;
3: Addressed implicitly;

4: Not addressed;

5: Coupling and change propagation is adversely affected by the pattern.

CP; CR; CS;

FD; GD

Modularity How does the pattern provide a meaningful

decomposition of the software system into

subsystems and components? How does the
pattern indicate how to physically package

the entities that form the logical structure of

the system?

1: At the level of components;

2: Only at the level of subsystems/layers;

3: Addressed implicitly;
4: Not addressed.

CR; R; S; TP

Hiding of

implementation

details

Does the pattern hide implementation

details?

1: Only provides the overall system architecture;

2: Shows class structure;

3: Shows the classes and interfaces needed to create the elements;

4: Implicitly implies implementation details;
5: Explicitly states implementation details.

FTFC; SOT;

TP

Removal of

extra/duplicated

work

Does the pattern pay special attention to

removing extra/duplicated parts, thereby
enhancing the simplicity of the design and

avoiding unnecessary development work?

1: Addressed;

2: Addressed, but needs extra effort when applying the pattern;
3: Addressed implicitly;

4: Not addressed, but not adversely affecting simplicity;

5: Extra/duplicated work is introduced by the pattern itself.

CS; FD;

FWS; GD; S

Application costs Are the time, cost, and effort required for
applying the pattern justifiable?

Application costs are:
1: Lower than the “before” state;

2: Reasonable;

3: Acceptable, because the pattern solves important problems;
4: High, because the problems solved are not important.

CS

Explicit definition

Does the pattern define the architectural

solution (structure of the system and the
relationships among its constituent

elements) in a detailed and explicit fashion?

1: Explicit definitions of structure and relationships are provided;

2: Explicit definition of structure and implicit definition of relationships
are provided;

3: Implicit definition of structure and explicit definition of relationships

are provided;
4: Implicit definitions of structure and relationships are provided;

5: Not addressed.

CW; R

Need for modeling Does applying the pattern require modeling
(analysis/design)?

1: The modeling required can be supported by all agile methodologies
(e.g., in a “metaphor” document);

2: The modeling required can be supported by some (but not all) agile

methodologies;
3: The modeling required cannot be supported by agile methodologies,

as it can have an adverse impact on agility.

CS; FTFC;
FWS

Need for

Formalism

Does applying the pattern require

formalism? If yes, the pattern is not
recommended for use in agile development.

“Y”: Yes;

“N”: NO.

CR; FTFC;

FWS

Legend:

* CP: Consistent Pace; CR: Changing Requirements; CS: Customer Satisfaction; CW: Collaborative Work; FD: Frequent Delivery; FTFC: Face-to-Face

Conversation; FWS: Focus on Working Software; GD: Good Design; R: Reflection; S: Simplicity; SOT: Self-Organizing Teams; TP: Trust in People.

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE IV. EVALUATION RESULTS

Pattern

E
n

ca
p

su
la

ti
o

n
 a

n
d

A
b

st
r
a

c
tn

e
ss

S
e
p

a
ra

ti
o

n
 o

f

C
o

n
c
er

n
s,

 a
n

d
 H

ig
h

C
o

h
e
si

o
n

D
e
c
o
m

p
o

sa
b

il
it

y

C
o

u
p

li
n

g
,
a

n
d

C
h

a
n

g
e

P
r
o

p
a
g

a
ti

o
n

M
o

d
u

la
ri

ty

H
id

in
g

 o
f

im
p

le
m

e
n

ta
ti

o
n

D
e
ta

il
s

R
e
m

o
v
a

l
o

f

E
x

tr
a
/D

u
p

li
c
a

te
d

W
o

r
k

A
p

p
li

ca
ti

o
n

 C
o

st
s

E
x

p
li

ci
t

D
e
fi

n
it

io
n

N
e
e
d

 f
o
r
 M

o
d

el
in

g

N
e
e
d

 f
o
r
 F

o
rm

a
li

sm

O
v

er
a
ll

 S
u

it
a

b
il

it
y

Mobile

Software

Architectural Pattern for Mobile Groupware Platforms [14] 2 2 3 2 2 2 2 2 1 3 N

Balanced MVC Architecture [15] 1 1 2 2 1 1 1 2 1 1 N

External Customizer [16] 1 2 3 1 2 2 2 3 2 2 N

Internal Customizer [16] 5 4 4 4 3 1 4 3 2 2 N

Web Channel Broker [16] 1 1 3 2 2 1 3 2 1 2 N

Application with External User Interface Elements[17] 2 1 2 2 1 1 2 2 1 2 N

Standalone Mobile Applications [13] 4 4 4 4 4 1 4 2 3 1 N

Mobile Application with Full Offloading [13] 2 2 4 4 2 1 1 2 3 1 N

Mobile Application with Partial Offloading [13] 2 2 2 2 2 1 2 2 3 1 N

SaaS [13] 1 1 2 2 2 1 1 1 3 1 N

CaaS [13] 2 2 2 2 2 1 1 1 3 1 N

CaaS-Based Architecture with Offloading [13] 2 2 2 3 2 1 1 3 3 3 N

Extended MVC [18] 1 1 2 2 1 2 2 2 1 1 N

Cloud

Systems

Cloud Policy Management Point [19] 1 1 1 2 2 2 3 3 2 3 N

Eventually-Consistent User Interface [20] 3 3 4 4 4 4 3 2 4 1 N

Loose Coupling [21] 1 1 2 1 2 1 3 3 1 1 N

SLA Compliance Checking [22] 2 2 3 2 3 1 2 2 3 2 N

Security Secure MVC [23] 1 1 2 2 1 2 2 3 1 2 N

Distributed

Systems

Component-Based Architectural Style [24] 1 1 1 1 1 1 2 2 1 1 N

Service-Oriented Architectural Style [24] 1 1 1 1 2 1 1 1 1 1 N

Event-Based Integration [25] 1 2 1 1 1 1 2 3 1 2 N

Client/Server Architectural Style [24] 2 2 2 2 2 1 2 2 1 1 N

Distributed Publish/Subscribe [26] 2 2 2 2 2 1 2 2 1 1 N

Enterprise Service Bus [26] 2 1 1 1 2 1 2 2 1 1 N

Broker [5] 2 1 2 1 2 1 1 1 1 1 N

A-3 style [25] 2 2 2 2 1 2 3 2 1 2 N

AO

Systems

Layered Agent [28] 1 1 1 2 1 1 2 2 1 1 N

AO-Broker [28] 1 1 2 1 1 1 1 1 1 1 N

PAC [5] 1 1 1 1 1 1 2 2 1 2 N

General

Context

MVC [5] 1 1 2 2 1 1 2 2 1 1 N

MVCC [29] 1 1 2 2 1 1 2 2 1 1 N

Zone [30] 1 2 2 2 2 1 2 2 1 3 N

Microkernel [5] 1 2 1 1 1 1 1 2 1 1 N

Reflection [5] 3 2 3 2 3 1 3 3 4 3 N

Façade [12] 2 1 3 1 2 1 2 1 1 1 N

Blackboard [5] 3 2 5 3 2 1 3 4 2 2 N

Component-Based Framework [31] 1 1 2 1 2 1 1 2 1 2 N

Configured Handler Method [32] 2 2 2 2 3 2 3 2 1 2 N

Layers [5] 2 2 3 2 2 1 2 1 3 1 N

Pipes and Filters [5] 2 1 1 1 1 1 2 2 1 2 N

Adapter [12] 2 2 3 2 3 2 2 2 1 1 N

Decorator [12] 2 2 2 2 2 2 1 2 1 1 N

Command [12] 1 1 2 1 1 3 2 3 1 1 N

Command Processor [5] 1 1 2 2 1 3 2 3 1 1 N

View Handler [5] 1 1 2 2 1 2 2 2 1 2 N

We have based our proposed evaluation approach on the

Agile Manifesto and Agile Principles in order to ensure that
agility requirements are properly and comprehensively
addressed by the proposed criteria. The proposed criteria
have also been validated through the application of
assessment metacriteria.

Future research can focus on using the patterns that have
been deemed as agile-friendly to improve specific agile
software development methodologies. Architectural patterns
can also be empirically evaluated by application to real-
world development projects, the results of which can be used
for enriching the results of criteria-based evaluation.

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

TABLE V. DETAILED EXPLANATIONS FOR THE EVALUATION

RESULTS OF THE MVC PATTERN

Criterion Description Value

Encapsulation

and abstraction

The Model, View and Controller components

defined in MVC are encapsulated and abstract.

1

Separation of

concerns, and

high cohesion

MVC separates the business logic from the

presentation logic, so it supports separation of

concerns. Constituent components are highly
specialized and cohesive.

1

Decomposability Model, View, and Controller components can

be developed in different releases; but MVC is

silent as to further decomposition of these
components, especially the Model component.

2

Coupling and

change

propagation

MVC decouples the Model from Views and

Controllers, so changes in the UI do not
propagate to the system’s core functionality

(implemented in the Model). However, Views

and Controllers are tightly coupled.

2

Modularity MVC provides modularity by decomposing the
system into Model, View and Controller

components.

1

Hiding of

implementation

details

MVC is silent as to implementation, and just
defines the overall architecture of the system.

1

Removal of

extra/duplicated

work

The system structure defined by MVC

implicitly removes duplications and extra parts,
and thereby precludes extra/duplicated

development work.

2

Application

costs

The large number of updates and runtime
components increases the cost; however, this is

controllable, and the cost of applying the

pattern can be considered as reasonable.

2

Explicit

definition

MVC provides explicit and detailed definitions

for the system’s main components and the

relationships among them.

1

Need for

modeling

MVC can be modeled in a “metaphor”. 1

Need for

Formalism

No Formalism is required. N

Another strand of research can focus on defining detailed

quantitative criteria for assessing the suitability of
architectural patterns for use in agile development. This
would enable developers to obtain a more rigorous
assessment of architectural patterns.

REFERENCES

[1] R. Ramsin and R. F. Paige, “Process-centered review of object
oriented software development methodologies,” ACM Computing
Surveys, vol. 40, no. 1, February 2008, pp. 1–89,
doi:10.1145/1322432.1322435.

[2] L. Bass, P. Clements, and R. Kazman, Software Architecture in
Practice, 2nd ed. Addison-Wesley, 2003.

[3] S. Ramakrishnan, "On integrating architecture design into
engineering agile software systems," Proc. Informing Science and IT
Education Conference, June 2010, pp. 9–25.

[4] H.P. Breivold, D. Sundmark, P. Wallin, and S. Larsson, “What does
research say about agile and architecture?” Proc. 15th International
Conference on Software Engineering Advances, August 2010, pp.
32–37, doi:10.1109/ICSEA.2010.12.

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,
Pattern-Oriented Software Architecture: A System of Patterns, vol. 1.
Wiley, 1996.

[6] N. Harrison and P. Avgeriou, “Pattern-based architecture reviews,”
IEEE Software, vol. 28, no. 6, November 2011, pp. 66–71,
doi:10.1109/MS.2010.156 .

[7] C. G. Álvarez, Overcoming the Limitations of Agile Software
Development and Software Architecture. Master’s Thesis, Blekinge
Institute of Technology, September 2013.

[8] Y. Jeong, J. Lee, and G. Shin, “Development process of mobile
application SW based on agile methodology,” Proc. 10th International
Conference on Advanced Communication Technology, February
2008, pp. 362–366, doi:10.1109/ICACT.2008.4493779.

[9] P. Abrahamsson, et al., “Mobile-D: An agile approach for mobile
application development,” Proc. 19th Conference on Object-Oriented
Programming Systems, Languages, and Applications, October 2004,
pp. 174–175, doi:10.1145/1028664.1028736.

[10] K. Beck, et al., “Manifesto for agile software development,”
Available online at http://www.agilemanifesto.org [retrieved:
January, 2016].

[11] M. Taromirad and R. Ramsin, “CEFAM: Comprehensive evaluation
framework for agile methodologies,” Proc. 32nd Software
Engineering Workshop, October 2008, pp. 195–204,
doi:10.1109/SEW.2008.19.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[13] J. Kim, “Architectural patterns for service-based mobile
applications,” Proc. International Conference on Service-Oriented
Computing and Applications, December 2010, pp. 1–4,
doi:10.1109/SOCA.2010.5707181.

[14] A. Neyem, S. F. Ochoa, J. A. Pino, and D. Franco, “An architectural
pattern for mobile groupware platforms,” Proc. On the Move to
Meaningful Internet Systems Workshops, November 2009, pp. 401–
410, doi:10.1007/978-3-642-05290-3_52.

[15] H. J. La and S. D. Kim, “Balanced MVC architecture for developing
service-based mobile applications,” Proc. 7th International
Conference on E-Business Engineering, November 2010, pp. 292–
299, doi:10.1109/ICEBE.2010.70.

[16] W. A. Risi and G. Rossi, “An architectural pattern catalogue for
mobile web information systems,” International Journal of Mobile
Communications, vol. 2, no. 3, September 2004, pp. 235–247,
doi:10.1504/IJMC.2004.005162.

[17] A. Lorenz, “Architectural patterns for applications with external user
interface elements,” Pervasive and Mobile Computing, vol. 9, no. 2,
April 2013, pp. 269–280, doi:10.1016/j.pmcj.2012.09.006.

[18] F. E. Shahbudin and F. F. Chua, “Design patterns for developing high
efficiency mobile application,” Journal of Information Technology &
Software Engineering, vol. 3, no. 3, 2013, pp. 1–9, doi:10.4172/2165-
7866.1000122.

[19] E. B. Fernandez, R. Monge, and K. Hashizume, “Two patterns for
cloud computing: Secure virtual machine image repository and cloud
policy management point,” Proc. 20th Conference on Pattern
Languages of Programs, October 2013, pp. 1–11.

[20] C. Fehling, et al., “Capturing cloud computing knowledge and
experience in patterns,” Proc. 5th International Conference on Cloud
Computing, June 2012, pp. 726–733, doi:10.1109/CLOUD.2012.124.

[21] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter,
Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer, 2014.

[22] A. Chazalet, “Service level agreements compliance checking in the
cloud computing: Architectural pattern, prototype, and validation,”
Proc. 5th International Conference on Software Engineering
Advances, August 2010, pp. 184–189, doi:10.1109/ICSEA.2010.35.

[23] N. Delessy-Gassant and E. B. Fernandez, “The secure MVC pattern,”
Proc. 1st International Symposium on Software Architecture and
Patterns, July 2012, pp. 1–6.

[24] J. D. Meier, et al., Microsoft Application Architecture Guide, 2nd ed.
Microsoft Corporation, 2009. Available online at
https://msdn.microsoft.com/en-us/ee658086 [retrieved: January,
2016].

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

http://dx.doi.org/10.1145/1322432.1322435
http://dx.doi.org/10.1109/MS.2010.156
http://dx.doi.org/10.1109/ICACT.2008.4493779
http://dx.doi.org/10.1145/1028664.1028736

[25] R. T. Fielding, Architectural Styles and the Design of Network-Based
Software Architectures. PhD Thesis, University of California at
Irvine, 2000.

[26] E. Fernandez and N. Yoshioka, “Two patterns for distributed systems:
Enterprise service bus (ESB) and distributed publish/subscribe,” Proc.
18th Conference on Pattern Languages of Programs, October 2011,
pp. 1–10, doi:10.1145/2578903.2579146.

[27] L. Baresi and S. Guinea, “A-3: An architectural style for coordinating
distributed components,” Proc. 9th Conference on Software
Architecture, June 2011, pp. 161–170, doi:10.1109/WICSA.2011.29.

[28] E. A. Kendall, P. V. M. Krishna, C. V. Pathak, and C. B. Suresh,
“Patterns of intelligent and mobile agents,” Proc. 2nd International
Conference on Autonomous Agents, May 1998, pp. 92–99,
doi:10.1145/280765.280781.

[29] H. Shams and K. Zamanifar, “MVCC: An architectural pattern for
developing context-aware frameworks,” Proc. 11th International
Conference on Mobile Systems and Pervasive Computing, July 2014,
pp. 344–351, doi:10.1016/j.procs.2014.07.035.

[30] K. J. Rothenhaus, J. B. Michael, and M. Shing, “Architectural
patterns and auto-fusion process for automated multisensor fusion in
SOA system-of-systems,” IEEE Systems Journal, vol. 3, no. 3,
September 2009, pp. 304–316, doi:10.1109/JSYST.2009.2022572.

[31] D. Parsons, A. Rashid, A. Telea, and A. Speck, “An architectural
pattern for designing component-based application frameworks,”
Software: Practice and Experience, vol. 36, no. 2, February 2006, pp.
157–190, doi:10.1002/spe.694.

[32] E. Guerra, C. Fernandes, and F. F. Silveira, “Architectural patterns
for metadata-based frameworks usage,” Proc. 17th Conference on
Pattern Languages of Programs, October 2010, pp. 1–25,
doi:10.1145/2493288.2493292.

[33] S. Prakash, A. Kumar, and R. B. Mishra, “MVC architecture driven
design and agile implementation of a web-based software system,”
International Journal of Software Engineering & Applications, vol. 4,
no. 6, November 2013, pp. 13–26, doi:10.5121/ijsea.2013.46021.

[34] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does
refactoring improve reusability?” Proc. International Conference on
Software Reuse, June 2006, pp. 287–297, doi:10.1007/11763864_21.

[35] R. Mordinyi, “Towards an Architectural Framework for Agile
Software Development,” Proc. 17th International Conference and
Workshops on Engineering of Computer Based Systems, March
2010, pp. 276–280, doi:10.1109/ECBS.2010.38.

[36] G. M. Karam and R. S. Casselman, “A cataloging framework for
software development methods,” IEEE Computer, vol. 26, no. 2,
February 1993, pp. 34–44, doi:10.1109/2.191987.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-465-7

PATTERNS 2016 : The Eighth International Conferences on Pervasive Patterns and Applications

http://dx.doi.org/10.1016/j.procs.2014.07.035
http://dx.doi.org/10.1145/2493288.2493292
http://dx.doi.org/10.1109/2.191987

