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Abstract—In the area of spatial analysis, spatial clustering meth-
ods use georeferencing information in order to identify significant
and non-significant spatial clusters of the phenomenon in study
in a specific geographical region. Several methods are available
in the literature, such as scan statistic, Getis-Ord statistics, and
the Besag and Newell method. In practical applications, all those
methods are not able to produce results which can capture the
real event with good accuracy. In this paper, we propose using
the a combining classifier technique in order to provide better
results for spatial clustering methods, using the majority voting
rule for that combination. A study case was presented using
epidemiological data of dengue fever from state of Paraba, Brazil,
in the year of 2011 and the final results allowed to identify the
priority and non-priority areas in the region of interest.

Keywords–Majority vote rule; Spatial clustering methods; Sta-
tistical significance.

I. INTRODUCTION

A classifier is defined as a function, whose domain is
an attribute space in Rn and its co-domain is a set of class
labels Ω with K elements, where Ω = {w1, ..., wK} [16][18].
Classification has been an area for research in the pattern
recognition and machine learning communities [7]. The classi-
fication process can be performed using supervised classifiers
and unsupervised classifiers. The supervised classifiers require
a previous knowledge of the problem, which is translated
by a training database that contains labeled samples. The
unsupervised classifiers are performed using a database of
unlabeled samples, i.e., samples for which their class are
unknown. So, there is no previous knowledge about the real
class labels [13].

In the scientific literature, several cases can be found, in
which combining multiple classifiers provided an improve-
ment of the results with respect to each individual classifier
performance. So, that combination makes them more efficient
[5][9][10][19][21][22].

Combining classifiers can be done using three architec-
tures: in sequential (or linear) way, in parallel or hierarchically
[24]. In order to provide the final decision, an architecture
should be chosen, as well as a combination scheme of clas-
sifiers, which is called combiner [2]. One of these schemes
is the static combiner, which performs combination using a
predefined rule and no training is required over that architec-
ture [24]. The architecture chosen and the combination scheme
(including the combination rule) allow to create a new classifier
[2].

In the past years, the number successfully applications
combining classifiers is increasing in many areas, as, for in-

stance, image classification, writing and character recognition;
among others [5][17]. Several schemes can be found in the
literature to combine classifiers, as voting (and its variations),
sum, mean, median, product, minimum, maximum, adaptive
weighting [2], logistic regression [5], Dempster-Shapher theory
and mixture of experts [22]; among others [24].

In the area of spatial analysis, spatial clustering methods
use georeferencing information in order to identify significant
and non-significant spatial clusters of the phenomenon in
study in a specific geographical region. Several methods are
available in the literature, such as scan statistic [1][15], Getis-
Ord statistics [3] and the Besag and Newell method [4][6].
In practical applications, all those methods are not able to
produce results which can capture the real event with good
accuracy. Each method works with different methodologies and
provides different results with respect to the others. In addition
to these issues, as there is no reference information about the
real clusters, it is not possible to check the similarity between
the results produced by one method and the true result. Thus,
it is possible to use just indirect forms of evaluation, as for
instance, maps of relative risk, in studies in public health [25].
These problems have do not have a good solution yet.

The first problem is quite similar to the classification
problem which is solved by using combining classifiers. So, in
this paper, we propose using the combining classifier technique
in order to provide better results for spatial clustering methods.

This paper is organized as follows: the next section presents
some theoretical aspects of spatial clustering methods and
combining rules. Section 3 brings the new methodology pro-
posed. On Section 4, the results obtained, as well as their
analysis, are presented, followed by some considerations in
Section 5.

II. THEORETICAL ASPECTS

In this section, some theoretical aspects are presented.
Three methodologies of the spatial clustering are shown: Scan
statistic, Getis-Ord statistic, and the Besag and Newell method.
All these methods are used in order to identify significant and
non-significant regions (binary information) in a geographic
area of interest. It means, high values or small ones, which
are statistically different to the others in a sub-region will be
assigned on map with different signal of the others, which are
not significant. The significant regions on the map are named
spatial clusters. The main goal is to identify significant areas,
visualize and describe the spatial patterns [12].

Statistical functions provide measure for the spatial asso-
ciations and evaluate the statistical significance for it. They
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are divided into: global, local, and focused statistics. Global
statistics identify the spatial structure which can be cluster
autocorrelation, but not identifying the location of cluster
or quantify the spatial dependency. Local statistics quantify
spatial autocorrelation and clustering within the small areas
in the geographical region of interest, i. e. they search for
regions which are significantly different from the area where
they are inserted. The focused statistics quantify clustering
on certain specific location, which is named focus. In Spatial
Epidemiology, these kind of tests can relate information about
incidence of a disease and possible sources of contamination in
the same region [12]. According to Knox [23], local statistics
are generic tests and focused statistics are focused tests. In this
paper, we use only generic tests.

A. Scan Statistic
The scan statistic does a survey of the study region, looking

for the most likely significant events. The survey occurs in the
following way: for each sub-region, a centroid ξi is associated,
it contains a random variable X , which denotes the numbers of
individuals that have the disease along with the population size
on that sub-region. This method is based on circles positioned
over each centroid, in which the radius r can be the greatest
measure that involves a new neighboring centroid and within
it a percentage of the population [15]; in other words, multiple
circles are generated with different radius and different geo-
graphical localizations [11]. This process is finalized when all
the centroids have been tested. The hypotheses are:

H0: There is no spatial cluster in the geographical region.
H1: There is at least one spatial cluster in the geographical

region.
The hypotheses are tested by the Monte Carlo simula-

tion [1]. As the circles are increaseding, a likelihood test
is performed, in which we verify if the study region is a
conglomerate. The test is based on the maximum likelihood
method [18], assuming some probabilistic distributions, and
the evaluation is done using the Monte Carlo simulation [1].
The Monte Carlo simulation is used to test if the clusters are
statistically significant. The hypotheses test via Monte Carlo
are generated simultaneously from simulated data multiple
times under the null hypothesis and the p-value is r

(R+1) , in
which the R is the number of occasional data repetition of the
simulated data and r is the classification of the statistical test
[1].

B. Getis-Ord Statistic
The Getis-Ord statistic measures the spatial association

between the spatial dependencies functions. It performs the
distance measurements only with the positive observations and
with data that have a non-normal distribution [3].

The Getis-Ord statistics is estimated by groups of neighbors
of the critical distance d of each area i. The critical distance
is formed by a proximity matrix W , in which the elements
are formed in function of the critical distance wij(d). With
that, two statistical functions were proposed: the Getis-Ord
statistic evaluates the significance of the statistic generated.
It is said to be significant if the p-value is lower than the
adopted significance [3]. The global statistic G(d) is equal to
the traditional measures of spatial agglomeration with just one
value G(d). The global statistic is given by:

G(d) =

∑
i

∑
j wijxixj∑

i

∑
j xixj

(1)

in which xi ∈ X is a value observed in the position i
and wij(d) an element of the proximity matrix. The level
of significance is defined as the probability of rejecting the
null hypothesis (existence of spatial autocorrelation), if it is
true. The p-value confronted with the adopted significance
defining the significance of the Getis-Ord index generated. The
analysis is based on the value of the index and its significance:
the positive and significant value of G(d) indicates spatial
agglomeration of high values, the negative and significant
values of G(d) indicate spatial agglomeration of small values
[3].

The local statistic Gi and G∗i are measures of the spatial
association for each area and they measure the association in
each spatial unit for each observation i, in which Gi and G∗i ,
shows the position which is surrounded by high or low values
for the variable. The Gi(d) equation for each observation i
and distance d is shown in the following way [3]:

Gi(d) =

∑
j,j 6=i wijxj∑

j xj
, (2)

in which all positions j, except those ones where j = i, can be
in the sum. This index is equal to the ratio of the sum of the
values in the neighbouring positions by the sum of the values
in the whole data series. However, in the statistic of G∗i , all
values of j, including those ones where j = i are included in
the sum [3].

Gi(d) =

∑
j wijxj∑

j xj
(3)

TABLE I. INTERPRETATION OF THE LOCAL INDEX SIGNIFICANCE.

Significance Statistic p-value
Negative*** Negative p<0.005
Negative** Negative 0,005<p<0,025
Negative* Negative 0,025<p<0,05
Negative Negative p>0,05
Positive Positive p>0,05
Positive* Positive 0,025<p<0,05
Positive** Positive 0,005<p<0,025
Positive*** Positive p<0,005

The Getis-Ord local index is interpreted as follows: the
positive and significant standardized values (p-value less than
5%) means a spatial agglomeration with high values. The
significant negative standardized statistical values (p-value less
than 5%) indicates a spatial agglomeration with low values.
According to Table 1, the interpretation is given in the follow-
ing way: The smaller p-value implies the higher agglomeration
and it does not matter whether is a positive or negative spatial
agglomeration [3].

C. Besag and Newell Method
The Besag and Newell method [4] produces circular spatial

clusters. The process is: a radius is determined in such a way
that it contains a circle with at least p cases in its interior. The
method starts with the circle radius equal zero. When the circle
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achieves p cases, the process stops; if that does not occur, the
radius is increased, including a new centroid. The procedure is
executed until at least p cases are found or when the number
of centroids is finished.

Let C be the total number of cases in the study region and
Y the total population exposed to the risk in the region. Let
Cj(i) and Mj(i) be the number of cases and the population
of the j areas closer to the centroid. The statistic of the test is
based on the random variable A, defined as the minimum of
areas next to the centroid [6]. So, we have:

A = min
j
{Cj(i)} ≥ p (4)

in each centroid is verified the existence of a spatial cluster.
The cluster is said significant if the p-value is less the adopted
significance. From the value a observed for A, the level of
significance of the test is defined by P (A ≤ a), which tests the
null hypothesis (absence of spatial clusters). The significance,
denoted by pk(i) is calculated by the following equation [6]:

pk(i) = P (Ai ≤ ai) = 1−
k−1∑
j=1

(Mj(i)C/M)j

j!
×

× exp(Mj(i)C/M)

(5)

in which Mj is the population observed in the area j.

D. Classifiers Combining Rule
As previously mentioned, there are several rules for com-

bining multiple classifiers. In this section, two methods are
presented and it is shown that they are equal when applied in
the binary case [26].

The majority voting is the most popular rule for combining
classifiers [8]. The majority voting rule defines the winner class
as that one which obtained more than half of the total number
of votes. If there is no class in this condition, then x ∈ X
did not receive a label (it works as a rejection option). Let
∆ji ∈ 0, 1 be the vote for the class j which was signed by the
classifier i. Let H be a decision function which sign the final
class for x, then:

H(x) =


j, if

∑D
i=1 ∆ji(x) =

=
∑K

j=1

∑D
i=1 ∆ki(x)

rejection, otherwhise.
(6)

where K is the number of classes in Ω and D is the number
of classifiers [8][14].

Another kind of voting rule for combining classifiers is the
plurality voting. In this case, the winner class is that one which
receives the largest number of votes, i. e., it is not necessary
achieve to get more than 50% of classifiers votes. Its equation
is given by:

H(x) = j, if

D∑
i=1

∆ji = max
k

D∑
i=1

∆ki (7)

According to Zhou [26], in the case of binary classification,
the majority voting and the plurality voting produce the same
results.

III. METHODOLOGY

As mentioned before, spatial clustering methods use geo-
referencing information in order to identify significant and
non-significant spatial clusters of a phenomenon in study in
a geographical region of interest. All methods available in the
literature are not able to produce results which can capture
the real event with good accuracy and it is possible to use just
indirect forms of evaluation of their results. In the applications
using public health data, maps of relative risk can be used for
this purpose. The measure of relative risk is defined as the
probability of an individual to have a disease in a determined
time divided by the cumulative incidence of the area of the
interest [20].

The final result provided by a spatial clustering method is
a georeferencing list of significant centroids, i.e., a database
which contains the pair (centroid, label). The methodology
consists of applying an impair number of spatial clustering
methods on the same area and data. From those applications,
we obtained a number of georeferencing lists. Finally, over
them is applied a voting rule in order to obtain the final class
for each centroid in the region of interest.

In this paper, we applied that methodology using the three
spatial clustering methods presented above, on the same area
and data. From those applications, we obtained three georefer-
encing lists and we applied the majority voting on them. It is
worth noting that the problem is a binary classification, then
majority voting and plurality voting produce the same results.

IV. RESULTS

The methodology designed and presented in the previous
section was applied on epidemiological data of dengue fever
from state of Paraba, Brazil, in the year of 2011. As dengue
fever is a tropical disease, it is recurrent health problem in
all country. Due to financial restrictions, it is important for
the health authorities to know the areas in which the relative
number of cases is significant larger than others, as well as
areas where the relative number of cases is significantly lower
than others. The first areas can be called priority areas and the
second areas can be named protection areas.

Applications results for the three spatial clustering methods
(Scan statistic, Getis-Ord statistic, and the Besag and Newell
method) are presented in Figures 1-3. The relative risk map is
presented in Figure 4 and the final decision map, obtained by
the combination of those three spatial clustering methods using
majority voting is presented in Figure 5. In the results below,
we show the comparison of the decision map (result of the
combination of spatial clustering methods from the majority
vote rule) with all spatial clustering methods.

In the comparison of the final decision map (Figure 5) with
the Scan statistic map (Figure 1), all the 16 cities on the final
decision map (Figure 5) are in the scan statistic map. The
Scan statistic map identified 53 cities with significant values
and from those, 16 are present in the final decision map.

In the comparison of the final decision map (Figure 5)
with the Getis and Ord map (Figure 2), of the 16 cities on the
decision map, 10 are on the Getis-Ord map. According to the
Getis-Ord map, 10 cities are in spatial clusterings of negative
values and the rest of them are not significant.
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Figure 1. Scan satistic map of dengue fever for the state of Paraba in 2011.

Figure 2. Getis and Ord map of dengue fever for the state of Paraba in 2011.

Comparing the final decision map (Figure 5) with the Besag
and Newell map (Figure 3), it was observed that only 7 of
them are on the Besag and Newell map. On the other hand,
all significant cities on the Besag and Newell map are present
on the final decision map.

Comparing the dengue final decision map (Figure 5) with
the dengue risk map (Figure 4), it was verified that the cities
on the final decision map present risk above 1.25, but not all
cites with risk above 1.25 in the relative risk map are present
on the final decision map. Finally, the result allows us to state
that the methodology identified the cities with high relative
risk of dengue fever in the state of Paraba in the year of 2011.

Figure 3. Besag e Newell map of dengue fever for the state of Paraba in
2011.

Figure 4. Map of the relative risk of dengue fever for the state of Paraba in
2011.

V. CONCLUSIONS

In this paper, we presented a new methodology for the
combination of spatial clustering methods. We also presented a
rule for building that combination based on majority voting. A
study case was presented using epidemiological data of dengue
fever from state of Paraba, Brazil, in the year of 2011.

Based on the results achieved, it is possible to affirm that
the combination of spatial clustering methods using the ma-
jority voting rule presented coherent results and those results
were better than each individual classifier. At the end, the
methodology identified the priority and non-priority regions
for dengue fever in the state of Paraba, Brazil.
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