
A Novel Pattern Matching Approach for Fingerprint-based Authentication

Moudhi AL-Jamea, Tanver Athar, Costas S. Iliopoulos
Solon P. Pissis, M. Sohel Rahman

Department of Informatics
King’s College London

London, UK
e-mail:{mudhi.aljamea,tanver.athar,costas.iliopoulos,solon.pissis,sohel.rahman}@kcl.ac.uk

Abstract—In Biometrics, fingerprint is still the most reliable and
used technique to identify individuals. This paper proposes a new
fingerprint matching technique, which matches the fingerprint
information by using algorithms for approximate circular string
matching. The minutiae information is transformed into string
information by using a series of circles, which intercepts the
minutiae and that information into a string. This string finger-
print information is then matched against a database by using
approximate string matching techniques.

Keywords–Biometrics, fingerprints, matching, verification, ori-
entation field.

I. INTRODUCTION

Recently, the need for automatic person identification has
increased more and more in our daily activities, in general,
and in the world of business and industry, in particular. To
this end, the use of biometrics has become ubiquitous [1], [2].
Biometrics refers to metrics related to human characteristics
and traits. Since biometric identifiers are unique to individuals,
automatic person identification systems based on biometrics
offer more reliable means of identification than the classical
knowledge-based schemes such as password and personal
identification number (PIN) and token based schemes such
as magnetic card, passport and driving license. Among all
the various forms of biometrics including face, hand and
finger geometry, eye, voice and speech and fingerprint [3], the
fingerprint-based identification is the most reliable and popular
personal identification method.

Fingerprints offer an infallible means of personal identi-
fication and has been used for person authentication since
long. Possibly, the earliest cataloguing of fingerprints dates
back to 1891 when the fingerprints of criminals were collected
in Argentina [4]. Now, it is used not only by police for law
enforcement, but also in commercial applications, such as
access control and financial transactions; and in recent times
in mobile phones and computers.

In terms of applications, there are two kinds of fingerprint
recognition systems, namely, verification and identification. In
the former, the input is a query fingerprint with an identity
(ID) and the system verifies whether the ID is consistent
with the fingerprint and then outputs either a positive or a
negative answer depending on the result. On the contrary, in
identification, the input is only a query fingerprint and the
system computes a list of fingerprints from the database that
resemble the query fingerprint. Therefore, the output is a short
(and possibly empty) list of fingerprints.

The majority of research in recent times has focused only
on the fingerprint authentication, but not on the rotation of
fingerprints. The majority of the state-of-the-art assumes that
the fingerprint is aligned in the same direction as that of
the stored fingerprint images. This is an important aspect of
fingerprint matching, which various techniques have ignored,
and only very few, in the literature [5], have considered. With
the introduction of fingerprint detection in mobile devices, the
rotation aspect of the fingerprint detection is an important area
of research.

A. Our Contribution
In this paper, we revisit the fingerprint recognition problem

that is the basis of any fingerprint based identification system.
Despite a plethora of fingerprint matching algorithms there
is still room for improvement [6]. Interestingly enough, in
spite of similarities between the two domains, there has not
been much work at the intersection of algorithms on strings
and the study of fingerprint recognition. To the best of our
knowledge, here we make a first attempt to employ string
matching techniques to solve fingerprint recognition problem
efficiently and accurately. Converting the fingerprint image into
string results in a small string. Matching this string against
other fingerprint images stored as strings can be done in time
linear with respect to the total length of the strings. In our
approach, we have formulated an algorithm to detect and verify
a fingerprint regardless of its position and rotation in wide
scanning surface area in a simple and efficient way.

B. Road Map
The organization of the rest of this paper is as follows. In

Section II, we present some background related to fingerprints.
Section III presents a very brief literature review. We present
our approach in Section V after discussing some preliminaries
in Section IV. Finally, we briefly conclude in Section VI.

II. BACKGROUND

Fingerprint pattern can be simply defined as the combina-
tion of ridges and grooves on the surface of a fingertip. The
inside surfaces of the fingers contain minute ridges of skin
with furrows between each ridge. The ridges and furrows run
in parallel lines and curves to each other forming complicated
patterns. The basic fingerprint (FP) patterns are whorl, loop,
and arch [7]. However, the most common and widely used
classification method is based on Henry’s classification [8] [9]
which contain 8 classes: Plain Arch, Tented Arch, Left Slant

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

Loop, Right Slant Loop, Plain Whorl, Double-Loop Whorl
Central-Pocket Whorl, and Accidental Whorl (see Figure 1).

Figure 1. Classification of fingerprint patterns

Each fingerprint is highly stable and unique. This
uniqueness is determined by global features like valleys and
ridges, and by local features like ridge endings and ridge
bifurcations, which are called minutiae. According to recent
studies, the probability of two individuals having the same
fingerprint is less than one in a billion [10].

Fingerprinting has been used historically to identify in-
dividuals using the so-called ink-technique [11], where the
fingers are dabbed with ink to get an imprint on paper cards
which are then scanned to produce the digital image. In this
off-line fingerprint acquisition technique, the fingerprints are
matched by using the scanned images produced above. This
method is still very important and popular especially in the
forensics field, where fingerprints are captured from crime
scenes. However, this type of off-line methods are not feasible
for biometric systems [12]. The other approach is of-course to
scan and match fingerprints in real time.

III. RELATED WORKS

Fingerprint recognition has been the centre of studies for
a long time and as a result, many algorithms/approaches have
been proposed to improve the accuracy and performance of
fingerprint recognition systems. In the fingerprint recognition
literature, a large body of work has been done based on
the minutiae of fingerprints [13]–[16]. These works consider
various issues including, but not limited to, compensating for
some of the non-linear deformations and real word distortion
in the fingerprint image. As a trade off with accuracy, the issue
of memory and processor intensive computation has also been
discussed in some of these works.

The minutiae-based matching are the most popular ap-
proach due to the popular belief that minutiae are the most dis-
criminating and reliable features [17]. However, this approach
faces some serious challenges related to the large distortions
caused by matching fingerprints with different rotation (see
Figure 2). As a result, researchers have also used other features
for fingerprint matching. For example, the algorithm in [18]
works on a sequence of points in the angle-curvature domain

after transforming the fingerprint images into these points. A
filter-based algorithm using a bank of Gabor filters to capture
both local and global details in a fingerprint as a compact fixed-
length finger code is presented in [19]. The combinations of
different kind of features have also been studied in the litera-
ture [20], [21]. There exist various other works in the literature
proposing different techniques for fingerprint detection based
on different feature sets of fingerprints [22], [23], [15]. Due to
brevity we do not discuss these works in this paper. Interested
readers are referred to a very recent review by Unar et al. [2]
and references therein.

Note that, in addition to a large body of scientific literature,
a number of commercial and propitiatory systems are also in
existence. In the related industry, such systems are popularly
termed as Automatic Fingerprint Identification System (AFIS).
One issue with the AFIS available in the market relates to the
sensor used to capture the fingerprint image. In particular, the
unrealistic assumption of the most biometric systems that the
fingerprint images to be compared are obtained using the same
sensor, restricts their ability to match or compare biometric
data originating from different sensors [24]. Another major
challenge of commercially available AFISs is to increase the
speed of the matching process without substantially compro-
mising accuracy in the application context of identification,
especially, when the database is large [6]. This is why the
quest for even better fingerprint recognition algorithms is still
on particularly in the high-performance computing context [6].

Figure 2. An example of large distortion from FVC2004 DB1 [25]

IV. PRELIMINARIES

In order to provide an overview of our results and algo-
rithms, we begin with a few definitions. We think of a string x
of length n as an array x[0..n−1], where every x[i], 0 ≤ i < n,
is a letter drawn from some fixed alphabet Σ of size σ = |Σ|.
The empty string of length 0 is denoted by ε. A string x is a
factor of a string y if there exist two strings u and v, such that
y = uxv. Let the strings x,y,u, and v, such that y = uxv. If
u = ε, then x is a prefix of y. If v = ε, then x is a suffix of
y. In the string x = aceedf , ac is a prefix, ee is a factor and
df is suffix.

Let x be a non-empty string of length n and y be a string.
We say that there exists an occurrence of x in y, or, more
simply, that x occurs in y, when x is a factor of y. Every
occurrence of x can be characterised by a position in y. Thus,
we say that x occurs at the starting position i in y when y[i..i+
n− 1] = x.

A circular string of length n can be viewed as a traditional
linear string, which has the left- and right-most symbols
wrapped around and stuck together in some way [26]. Under

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

this notion, the same circular string can be seen as n different
linear strings, which would all be considered equivalent. Given
a string x of length n, we denote by xi = x[i..n−1]x[0..i−1],
0 < i < n, the i-th rotation of x and x0 = x. Consider, for
instance, the string x = x0 = abababbc; this string has the
following rotations: x1 = bababbca, x2 = ababbcab, x3 =
babbcaba, x4 = abbcabab, x5 = bbcababa, x6 = bcababab,
x7 = cabababb. Here we consider the problem of finding
occurrences of a pattern x of length m with circular structure
in a text t of length n with linear structure. This is the problem
of circular string matching.

The problem of exact circular string matching has been
considered in [27], where an O(n)-time algorithm was pre-
sented. The approach presented in [27] consists of preprocess-
ing x by constructing a suffix automaton of the string xx, by
noting that every rotation of x is a factor of xx. Then, by
feeding t into the automaton, the lengths of the longest factors
of xx occurring in t can be found by the links followed in
the automaton in time O(n). In [28], an average-case optimal
algorithm for exact circular string matching was presented
and it was also shown that the average-case lower bound
for single string matching of Ω(n logσm/m) also holds for
circular string matching. Very recently, in [29], the authors
presented two fast average-case algorithms based on word-
level parallelism. The first algorithm requires average-case
time O(n logσm/w), where w is the number of bits in the
computer word. The second one is based on a mixture of word-
level parallelism and q-grams. The authors showed that with
the addition of q-grams, and by setting q = Θ(logσm), an
average-case optimal time of O(n logσm/m) is achieved.

The Approximate Circular String Matching via Filtering
(ACSMF) algorithm [30] is used here in order to identify the
orientation of the fingerprint. The basic principle of algorithm
ACSMF is the partitioning scheme that splits the concatenation
of the circular pattern string into 2d + 4 fragments, where
d is the maximum edit distance allowed. The Aho-Corasick
automaton [31] is then used to search for the fragments against
the text. Once a fragment is identified, the fragment is extended
on both left and right directions to determine a valid match.

Theorem 1 ([30]): Given a pattern x of length m drawn
from alphabet Σ, σ = |Σ|, a text t of length n > m drawn from
Σ, and an integer threshold d = O(m/ logσm), algorithm
ACSMF requires average-case time O(n).

V. OUR APPROACH

In this section we present our main contribution, i.e.,
a novel pattern matching approach to solve the fingerprint
recognition problem. As has been discussed above, two main
difficulties related to the fingerprint recognition problem are
lack of a fixed orientation and the presence of errors in the
scanned image due to various reasons (e.g., the presence of
dust, oil and other impurities on the finger and on the scanning
surface). We therefore employ a two-stage algorithm. We start
with a brief overview of our algorithm below.

A. Algorithmic Overview

Our algorithm consists of two distinct stages, namely,
the Orientation Identification stage and the Matching and
Verification stage.

Figure 3. Left-oriented
fingerprint

Figure 4. Right-oriented
fingerprint

1) Stage 1 – Orientation Identification: When scanning a
fingerprint, the user can place the finger on the scanning device
at different angles. It could be aligned to left (see Figure 3)
or right (see Figure 4). In fact, the position of the finger can
be placed anywhere on the scanning surface. The scanning
surface usually is somewhat larger compared to the fingerprint
surface area. Hence, the first challenge is to exactly pinpoint
the location and area of the fingerprint impression on the
scanning surface.

The second challenge of course is to identify the orientation
of the fingerprint. Without identifying the proper orientation,
we can not properly compare it with the fingerprint(s) in the
database and the recognition will no be possible. The task of
this stage (i.e., Stage 1) is to identify and locate the fingerprint
with its correct orientation.

2) Stage 2 – Verification and Matching: Like all other
fingerprint recognition systems a database is maintained with
fingerprint information against which the input fingerprint will
be matched. In the database, we will store a black and white
image. Once the orientation of the input fingerprint has been
identified, we can easily reorient the fingerprint impression
(according to the standard format stored in the database)
and then the matching algorithm runs. Since finger print can
contain dust, fudges, etc., the scanned information may contain
errors which means that an exact match with the existing data
is highly unlikely. So, in this stage (i.e., Stage 2) we perform
an error tolerant matching in an effort to recognize the input
fingerprint against the database of the system.

B. Details of Stage 1: Orientation Identification
In this stage we employ a novel approach based on circular

templates as follows. Let us use fi to denote the image of the
input fingerprint. Let us assume that we know the appropriate
center point, p of fi. We then can convert fi to a representation
consisting of multiple circular bit streams by extracting circular
segments of the image. This is achieved by constructing k
concentric circles Cj of radius rj , 1 ≤ j ≤ k, with center
at point p. For each circle we obtain minutiae features of the
image by storing 1 wherever the edge of a circle intersects with
a ridge and a 0 if it intersects with a furrow [see Figure 5].
So, in this way, for fi, we get k concentric circles, which can
be transformed into k circular binary strings [see Figure 6].
Clearly, this procedure can be easily applied on a fingerprint
data stored on the database. In what follows, we will use
Yj , 1 ≤ j ≤ k to denote the k circular strings obtained after
applying the above procedure on a fingerprint data stored in the
database. In what follows, we may slightly abuse the notation
and say the Yj corresponds to the circle of radius rj .

Now to identify the location and orientation of the input
fingerprint we generalize the above approach to extract the
minutiae feature and apply the approximate circular string
matching algorithm of [30] as described below (please refer

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

Figure 5. Fingerprint with scan circles

Figure 6. Intersection of a circle with the fingerprint

to Figure 7). What we do is as follows. For the input fin-
gerprint, we cannot assume a particular center point to draw
the concentric circle which is actually the main reason for
difficulty in the process. So, instead, we take reference points
at regular intervals across rows and columns of the entire frame
of the image (i.e., the input scanning area) and at each point
p`, concentric circles Cj` of radius rj are constructed. Like
before, k is the number of circles at each reference point p`.
So, from the above procedure, for each point p` we get k
circular strings Xj`, 1 ≤ j ≤ k.

At this point the problem comes down to identifying the
best match across the set of same radius circles. To do this we
make use of the Approximate Circular String Matching via Fil-
tering (ACSMF) algorithm, presented in [30], which is accurate
and extremely fast in practice. To do this we take a particular
Xj`, construct Xj`.Xj` (to ensure that all conjugates of Xj`

are considered) and apply algorithm ACSMF on Xj`.Xj` and
Yj . In other words, we try to match the circular string Yj
(corresponding to the circle of radius rj) to all circular strings

Figure 7. Identifying the orientation and surface area of the fingerprint
impression

Xj` (corresponding to the circle of radius rj) generated at
each point p`. Thus we can identify the best matched circular
string, i.e., the best matched circles and thereby locate and
identify the fingerprint impression with the correct orientation.
Once the orientation has been identified, we can apply standard
techniques to reorient the image to match with the image from
the database in the next stage.

C. Details of Stage 2: Verification and Matching
Once Stage 1 of the algorithm is complete, we can assume

that we have two images of the same size and orientation which
we need to match and verify. We call this a verification process
because in Stage 1 as well we have done a sort of matching
already. However, we need to be certain and hence we proceed
with the current stage as follows. Each image can now be seen
as a two dimensional matrix of zero/one values, which can be
easily converted to a (one dimensional) binary string. Now it
simply comes down to pattern matching between two strings
of the same length. However, note that, here as well we need
to consider possibilities of errors. So, we simply compute the
edit distance between the two binary strings and if the distance
is within the tolerance level, we consider the fingerprint to be
recognized. Otherwise, the authentication fails.

D. Accuracy and Speed
We have two parameters that determine the accuracy of our

approach. In Stage 1, the accuracy depends on the number of
concentric circles, k. The larger the value of k, the higher the
accuracy of pinpointing the location with the correct orienta-
tion. However, as k increases the computational requirement
and time also increases. In Stage 2, we have another parameter
d which is the tolerance level, i.e., the (edit) distance allowed
between the two strings.

At this point a brief discussion on the response time of our
algorithm is in order. Note that, the bulk of the computational
processing in our approach is required in Stage 1, where we
apply algorithm ACSMF to identify the best matched circles.
As has been shown in [30], on average, ACSMF works in linear
time in the size of the input and is practically extremely fast.
The size of the circles and hence the corresponding circular
strings are very small and can be assumed to be constant for
all practical purposes. As a result the running time of Stage 1
would be extremely fast. Again, since the size of the fingerprint
image is very small, any efficient approximate string matching
algorithm in Stage 2 would give us a very quick result. Overall,
this promises us an excellent turn-around time.

E. Two Modes of Fingerprint Recognition System
As has been mentioned before, in terms of applications,

there are two kinds of fingerprint recognition systems. So

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

far we have only considered the mode where the input is
a query fingerprint with an identity (ID) and the system
verifies whether the ID is consistent with the fingerprint (i.e.,
verification mode). Here, the output is an answer of Yes or
No and we need only match against one fingerprint from
the database (i.e., the finger print coupled with the ID). To
handle the other mode (identification mode), we need to
match the query fingerprint against a list of fingerprints in the
database. This can be done using an extension of algorithm
ACSMF, namely Approximate Circular Dictionary Matching
via Filtering algorithm (ACDMF) [32]. We omit the details
here due to space constraints. Both ACSMF and ACDMF
implementations are available at [33].

VI. CONCLUSION

This paper has proposed a new pattern matching based
approach for quick and accurate recognition of fingerprints.
One overlooked feature in fingerprint matching is that the
rotation of the fingerprint is assumed to be in sync with the
stored image; in this paper we have tackled this issue. The
novel element of this paper is the process of using a series of
circles to transform minutiae information into string informa-
tion consisting of 0s and 1s, and then using the approximate
circular string matching algorithm to identify the orientation.
This technique is expected to improve the performance and the
accuracy of the fingerprint verification system. The proposed
approach is currently under implementation on different smart
phone platforms.

ACKNOWLEDGEMENT

M. Sohel Rahman is supported by a Commonwealth
Academic Fellowship funded by the UK government and is
currently on a sabbatical leave from Bangladesh University of
Engineering and Technology (BUET).

REFERENCES
[1] S. Sebastian, “Literature survey on automated person identification

techniques,” International Journal of Computer Science and Mobile
Computing, vol. 2, no. 5, May 2013, pp. 232–237.

[2] J. Unar, W. C. Seng, and A. Abbasi, “A review of biometric technology
along with trends and prospects,” Pattern Recognition, vol. 47, no. 8,
2014, pp. 2673 – 2688.

[3] P. Szor, The art of computer virus research and defense. Addison-
Wesley Professional, 2005.

[4] National Criminal Justice Reference Service, The Fingerprint Source-
book, A. McRoberts, Ed. CreateSpace Independent Publishing Plat-
form, 2014.

[5] A. Agarwal, A. K. Sharma, and S. Khandelwal, “Study of rotation
oriented fingerprint authentication,” International Journal of Emerging
Engineering Research and Technology, vol. 2, no. 7, October 2014, pp.
211–214.

[6] P. Gutierrez, M. Lastra, F. Herrera, and J. Benitez, “A high performance
fingerprint matching system for large databases based on gpu,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 1, 2014,
pp. 62–71.

[7] K. H. Q. Zhang and H. Yan, “Fingerprint classification based on
extraction and analysis of singularities and pseudoridges,” in Fingerprint
Classification Based on Extraction and Analysis of Singularities and
Pseudoridges, ser. VIP 2001. Sydney, Australia: VIP, 2001.

[8] E. R. Henry, Classification and Uses of Finger Prints. Routledge, 1900.
[9] H. C. Lee, R. Ramotowski, and R. E. Gaensslen, Eds., Advances in

Fingerprint Technology, Second Edition. CRC Press, 2002.
[10] S. Sebastian, “Literature survey on automated person identification

techniques,” International Journal of Computer Science and Mobile
Computing, vol. 2, no. 5, 2013, pp. 232–237.

[11] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
Fingerprint Recognition. Springer-Verlag, 2009.

[12] Griaule Biometrics. Online and offline acquisition. [Online]. Available:
http://www.griaulebiometrics.com/en-us/book/ [retrieved: Nov., 2014]

[13] X. Tan and B. Bhanu, “Fingerprint matching by genetic algorithms,”
Pattern Recognition, vol. 39, no. 3, 2006, pp. 465–477.

[14] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An identity-
authentication system using fingerprints,” Proceedings of the IEEE,
vol. 85, no. 9, 1997, pp. 1365–1388.

[15] Z. M. Kovacs-Vajna, “A fingerprint verification system based on tri-
angular matching and dynamic time warping,” Pattern Analysis and
Machine Intelligence, IEEE Transactions on, vol. 22, no. 11, 2000, pp.
1266–1276.

[16] X. Tan and B. Bhanu, “Robust fingerprint identification,” in Interna-
tional Conference on Image Processing 2002, vol. 1. IEEE, 2002, pp.
I–277.

[17] C. Kai, Y. Xin, C. Xinjian, Z. Yali, L. Jimin, and T. Jie, “A novel ant
colony optimization algorithm for large-distorted fingerprint matching,”
Pattern Recognition, vol. 45, no. 1, 2012, pp. 151–161.

[18] A. A. Saleh and R. R. Adhami, “Curvature-based matching approach
for automatic fingerprint identification,” in System Theory, 2001. Pro-
ceedings of the 33rd Southeastern Symposium on. IEEE, 2001, pp.
171–175.

[19] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based
fingerprint matching,” Image Processing, IEEE Transactions on, vol. 9,
no. 5, 2000, pp. 846–859.

[20] A. Jain, A. Ross, and S. Prabhakar, “Fingerprint matching using
minutiae and texture features,” in Image Processing, 2001. Proceedings.
2001 International Conference on, vol. 3. IEEE, 2001, pp. 282–285.

[21] A. V. Ceguerra and I. Koprinska, “Integrating local and global features
in automatic fingerprint verification,” in Pattern Recognition, 2002.
Proceedings. 16th International Conference on, vol. 3. IEEE, 2002,
pp. 347–350.

[22] A. K. Jain, S. Prabhakar, and L. Hong, “A multichannel approach to
fingerprint classification,” IEEE Transactions on Pattern Analysis and
Machine Intelligence , vol. 21, no. 4, 1999, pp. 348–359.

[23] M. R. Girgis, A. A. Sewisy, and R. F. Mansour, “A robust method
for partial deformed fingerprints verification using genetic algorithm,”
Expert Systems with Applications, vol. 36, no. 2, 2009, pp. 2008–2016.

[24] A. Ross and A. Jain, “Biometric sensor interoperability: A case study
in fingerprints,” in Biometric Authentication. Springer, 2004, pp. 134–
145.

[25] C. Xinjian, T. Jie, Y. Xin, and Z. Yangyang, “An algorithm for distorted
fingerprint matching based on local triangle feature set,” Information
Forensics and Security, IEEE Transactions on, vol. 1, no. 2, 2006, pp.
169–177.

[26] B. Smyth, Computing Patterns in Strings. Pearson Addison-Wesley,
2003.

[27] M. Lothaire, Applied Combinatorics on Words. Cambridge University
Press, 2005.

[28] K. Fredriksson and S. Grabowski, “Average-optimal string matching,”
Journal of Discrete Algorithms, vol. 7, no. 4, 2009, pp. 579–594.

[29] K.-H. Chen, G.-S. Huang, and R. C.-T. Lee, “Bit-Parallel Algorithms
for Exact Circular String Matching,” Computer Journal, 2013.

[30] C. Barton, C. S. Iliopoulos, and S. P. Pissis, “Fast algorithms for ap-
proximate circular string matching,” Algorithms for Molecular Biology,
vol. 9, no. 9, 2014.

[31] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to
bibliographic search,” Communication ACM, vol. 18, 1975, pp. 333–
340.

[32] C. Barton, C. S. Iliopoulos, S. P. Pissis, and F. Vayani, “Accurate and
efficient methods to improve multiple circular sequence alignment,”
submitted.

[33] S. P. Pissis. ACSMF and ACDMF implementation. [Online]. Available:
http://github.com/solonas13/bear/ [retrieved: Nov., 2014]

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

