PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

A Statistical Approach for Discovering Critical Malicious Patterns in Malware Families

Vida Ghanaei, Costas S. Iliopoulos, and Richard E. Overill

Department of Informatics, King’s College London
Email: {vida.ghanaei, c.iliopoulos, richard.overill}@kcl.ac.uk

Abstract—In this paper, we present carefully selected critical ma-
licious patterns, which are in common among malware variants in
the same malware family, but not other malware families, using
statistical information processing. The analysed critical malicious
patterns can be an effective training dataset, towards classification
of known and unknown malware variants. We present malware
variants as a set of hashes, which represent the constituent
basic blocks of the malware Control Flow Graph, and classify
them into their corresponding malware family. By computing
the Distribution Frequency for each basic block residing in
all the malware families, the importance of being a possible
representative to become a critical malicious pattern for a specific
malware family is measured. This value is carefully computed by
considering the population of each malware family.

Keywords—Malware; Malicious Patterns; Malicious Shared
Code; Classification; Control Flow Graph; Numerical Statistics.

I. INTRODUCTION

Malware is considered a major computer security problem
as it can attach to other computer programs and infect them.
Infection is defined as unwanted modification to other program
to include a possibly evolved, version of itself [1]. Based on
McAfee threats report [2], more than 30 million new malware
variants, and over 250 million in total, are recorded in the first
quarter of year 2014. Malware spread itself by most common
digital methods such as e-mail and instant message applica-
tions, and through social engineering techniques. Other means
of malware spread methods are World Wide Web (WWW),
network-shared file systems, peer to peer file sharing networks,
removable media, Internet Relay Chat (IRC), Blootooth or
wireless local area networks [3].

In malware research, data collection is not an issue any
more. It is easily achievable by setting up configured honeypot
servers in the laboratory environment. But, the flow of mali-
cious software variants reaching our networks and computers
is so enormous that makes it impossible to process them
exclusively. Therefore, it is essential, to identify malicious
patterns which appear in malware variants, and to obtain struc-
tural understanding of malicious patterns, in order to analyse,
classify, and detect malware. However, collection of huge
amount of malware variants, which have embodied different
obfuscation techniques, and have mutated in various polymor-
phic and metamorphic forms, demands automated techniques
to identify, and present the malicious patterns. While malware
variants belonging to the same malware family' share a certain
amount of malicious code, identification of critical shared code
provides knowledge towards classification and detection of
unknown malware variants.

IDefined in Section III.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

In this paper, we present an effective statistical approach to
identify, and to render critical malicious patterns in malware
families, which are essential elements towards automated clas-
sification of known and unknown malware in large amount.
We rely on the shared code among different malware variants,
which potentially occur in one specific malware family, with
considering its possibility of occurring in other malware fam-
ilies, to identify the most critical malicious patterns in every
malware family. In this paper, the shared code is studied at
basic block level of the control flow related code, and we
are able to present the most critical malicious patterns for
every malware family. By critical malicious pattern, we mean
the most frequent basic blocks, which are present at most
in one specific malware family, and comparatively less in
other malware families. Also, the shared code among different
malware families are not interesting for classification purpose,
as certain functions are in-common among all the malicious
software variants, and even can be in-common with non-
malicious software.

We introduce a novel formalisation methodology which
automates the identification of critical malicious patterns for
each malware family. It is defined as a statistical approach,
which computes the Frequency Distribution Ratio, for each
constituent basic block of a malware variant within each
malware family. This value is penalised statistically for oc-
curring in other malware families. To our knowledge, our
approach in compare to related works, is more consistent
as we encounter the distribution frequency of certain basic
blocks in each malware family, as well as in between different
malware families, to identify critical malicious patterns. Not
considering the ratio of the frequency of each basic block in its
associated malware family, results in inaccurate identification
of critical malicious patterns, which is discussed in details, in
Section VIII.

In Section II, the background and related work on different
malicious pattern matching techniques are reviewed. In Sec-
tion III, the notations and definition are given. In Section IV,
details of the dataset used in experiments, are presented.
In Section V, the formalisation of our approach is defined.
In Section VI, an overview on the shared code concept in
malware, and how we bypass the obfuscations applied to
shared code, is explained. In Section VII, the methodology
and implementation process is described. In Section VIII, ex-
perimental results of our approach is discussed and compared
to related works. Finally in Section IX, our methodology, its
results, and the future work are concluded.

II. BACKGROUND AND RELATED WORK

Different features of malicious software, and pattern match-
ing techniques are studied to classify enormous amount of

21

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

malware variants getting submitted to honeypots. The n-gram,
defined in section IIl., computation as a pattern matching
techniques, and its application in malware analysis, was first
introduced by G. J. Tesauro et al [4], to identify boot sector
viruses automatically by applying artificial neural networks. J.
Z. Kolter et al[5], computed Information Gain (IG) for each
n-gram to select the most relevant n-grams, to heuristically
identify and classify malware. They selected top 500 n-grams,
and applied different machine learning algorithms to detect and
classify malware variants and identified boosted J48 algorithm
produces the best detector. Although they showed good detec-
tion with areas under the ROC curve around 0.9, they did not
consider metamorphic obfuscations and polymorphism.

S. Cesare et al [6], presented a static approach to detect
polymorphic malware based on control flow graph! clas-
sification. They unpacked! the polymorphic malware using
application level emulation, disassembled the unpacked sam-
ples, translated the disassembly into intermediate language,
reconstructed and normalised the control flow graph for each
procedure based on the intermediate language. Subgraphs of
size K, and n-grams extracted from the strings representing
the graphs, are the two features used to pre-filter potential
malware, and used to construct a feature vector. Distance
metrics are used to measure similarity between two feature
vectors. The presented results shows considerable collisions,
and false positives using subgraphs of size K compare to using
n-grams vector features.

BinDiff?, which is an add-on plug-in for IDAPro?, relies on
heuristics to generate matches between two malware variants.
It generates a signature for every function of the malware ex-
ecutable based on its abstract structure, ignoring the assembly
code generated by IDAPro. The signature generated depends
on the structure of the normalised flow graph of the function,
and consists of number of basic blocks, number of edges, and
number of calls to sub-functions. Two functions match, if a
signature occurs in both only once. If a match identified, all
the calls-to relations between the matched functions is checked
for possible matches of all the subset functions, until no
further matches found. BinDiff is a pairwise matching tool and
generates lots of false matches as it relies on further matches
on big portion of the code, rather than the most critical code.

C. Miles et al [7], presented a recent artefact, VirusBattle,
which is a malware analysis web-service. VirusBattle reason
about malware variants in different levels of abstraction in-
cluding the code, the statically analysed shared semantics,
referred as juice [8], among different variants, and sequence
of events a malware takes during execution time to map
the similarities and interrelationships. Juice, transforms code
semantics computed over an x86 disassembly, by generalising
the register names, literal constants, and computing the alge-
braic constrains between the numerical variables. Therefore,
semantically similar code fragments can be identified by com-
paring their hash values. VirusBattle provides automated PE
unpacking web-service as well, which is a generic unpacker?,
and publicly available web-service. In this paper, we use the

2Zynamics and Google, BinDiff. Available:
http://www.zynamics.com/bindiff.html

31. Guilfanov, IDAPro, An Advanced Interactive Multi-processor Disassem-
bler, Data Rescue. Available: http://www.datarescue.com

4V. Notani and A. Lakhotia, VirusBattle SDK-Unpacker. Available:

https://bitbucket.org/srl/virusbattle-sdk/wiki/Home

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

unpacker provided by the VirusBattle SDK to unpack the
malicious samples, as well as the juice which is the generalised
presentation of the semantics to avoid code obfuscations.

III. DEFINITIONS AND NOTATIONS

a) Malware Taxonomy: Malware is a general term for
malicious software, which refers to virus, worm, root-kit,
trojan-horse, dialer, spyware, and key-logger. It is defined
based on its mean of distribution, and its dependency on the
host to infect.

b) Malware Family: Malware variants which are the
result of the mutation of each other, and share considerable
amount of critical code with one another, are considered
to belong to the same malware family. The already known
malware variants belonging to the same malware family, can
be classified by signature based anti-virus scanners. Variants in
the same malware family are meant to show similar behaviour,
to target similar files, and to spread the same way. Therefore,
each malware family, denoted f, is a set of malware variants.

c) Packed Malware: Malware which contains encryp-
tion routine, compression, or both, is referred to as packed
malware. Unpacked malware is the malicious code, without
encryption or compression.

d) Control Flow Graph: Control Flow Graph (CFG),
is a directed graph, is denoted G = (V, E), if u,v € V be
the nodes of the graph, a possible flow of control, from u to
v is represented by e € F : u — v. In a CFG, every node
is a representation of a basic block, denoted v, and the edge
is a path between these nodes. A basic block is defined as a
sequence of instructions without any jumps or jump targets in
between the instructions [9].

A basic block always runs before any other instructions in
later positions of the CFG, which means no other instruction
runs between two instructions in the same sequence. The
directed edge between two basic blocks expresses the jump
command in the control flow, which is caused by Control
Transfer Instructions (CTI) such as call, conditional jump, and
unconditional jump instructions [10].

e) N-gram Frequency Distribution: N-gram is a con-
tiguous sequence of n items from a given sequence such
as assembly statement raw bytes, opcodes and etc. N-gram
frequency distribution, is a well-known approach for extracting
features from malicious software to develop training dataset
for classification purpose [5]. In this article, the hash value
computed for every basic block is treated as n-gram sequence.

IV. DATASET

Our dataset consists of 777 distinguished malware variants,
which are spread over 23 different malware families, as shown
in Table I., and it contains total of 1,116,798 basic blocks.
Malware families are structured disjoint, to avoid inaccurate
computation of critical malicious patterns. If the same malware
be a member of different malware families, its constituent
basic blocks will be counted towards all the involved malware
families and cause false matches. Also, in the classification
process of malware variants, a new sample is to be placed in
one malware family based on the similarity measurement of
its shared code with that malware family as oppose to other
malware families. However, each malware family is treated as
a multiset of basic blocks. In other words, each basic block

22

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

can occur multiple times in the same malware family, and in
other malware families as well. Each basic block is indexed
to its associated malware variant to produce more informative
outcome.

Malware samples are collected from the VirusSign® free
on-line service, and the dataset presented in a recent study [11].
All the malware samples existing in the database, are unpacked

by the VirusBattle SDK unpacking service®.

TABLE 1. MALWARE FAMILIES EXISTING IN DATASET

Malware Family | No of Variants | No of Basic Blocks
Agent 17 12316
Agobot 17 101782
ATRAPS 9 16064
Bancos 13 33831
Cosmu 8 1133
Crypt 63 239821
Dldr 12 82929
Downloader 9 5769
Dropper 63 75082
Fareit 146 64819
Gobot 14 28451
IRCbot 17 11405
Klez 22 69721
Kryptik 97 49696
MyDoom 40 67169
Poebot 18 9285
Sality 54 26379
Spy 26 38511
Symmi 18 23600
ULPM 65 94165
Unruy 18 2407
Vanbot 16 1713
Virut 27 15750

V. FORMALISATION

Considering each malware family as a set of malware
variants, and each malware variant be a set of multiple basic
blocks. The malware families are disjoint, in other words each
malware variant can only be a member of one malware family.
However, v;, is the 7th distinct member of a v, which can occur
in any malware family and multiple times.

Let fj be the kth distinct member of f, and 7;,; be the
number of occurrences of v; in fi, and 74, = ; Ti,k- Therefore,
Term Frequency Ratio (I'F'R) for v; occurring in fj, is defined
as shown in Equation 1.

Tisk
Tk

TFR;x = 6]

TFR is computed for all the v;, which exist in every
malware family, individually. TF'R;,;, indicates the ratio of
how frequently v; has occurred in fj. Every v is indexed to
its associated malware variant. The frequency ratio of each

S5VirusSign. Available: https:/www.virustotal.com
0V, Notani and A. Lakhotia, VirusBattle SDK-Unpacker, 2014. Available:
https://bitbucket.org/srl/virusbattle-sdk/wiki/Home

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

v; is considered, rather than the frequency of each v;, as the
number of malware variants in each malware family is varying
and consequently the 7. Therefore, it is essential to encounter
the the population of malware families in compare to each
other, to obtain the correct frequency for each v;.

Here, we compute the importance of each v;, as a possible
representative for the critical malicious pattern of each mal-
ware family. In order to do so, its TFR value is penalised by
subtracting a quantity ;. 4,5 is the sum of TF'R;,; of all
the occurrences of v; in all the malware families, f;, where
j # k; except fi. It is computed for every malware family in
relation to its population. Therefore «;,; is defined as shown
in Equation 2.

aik =Y TFR;, 2)

ik
Therefore, Term Frequency Distribution (T'F' D) for v;, com-
putes the frequency ratio of v; in malware family f%, in relation

to its distribution in the other malware families, which is «;,,
and it is defined as shown in Equation 3.

TEDik=TFRix —visk 3

TFD;,; indicates how critical v; is as a malicious pattern
for fi, as v; is penalised for every time it occurs in f;. The
penalising as described, is computed by subtracting the sum
of all the corresponding T'F'R;,;, of v; occurrences in f;.
This sum, «;,;, indicates how common v; is in other malware
families, f;, rather than fj. Accordingly, T'F'D;,; shows how
specific v;, is to malware family fy, rather than other malware
families, f;.

VI. SHARED BASIC BLOCKS

Malware variants belonging to the same malware family,
share certain amount of code which relates them. The syntax
of the shared code in every variant varies every time malware
mutates, which is due to applied obfuscation techniques to
avoid detection by anti-virus scanners. Different syntax pre-
sentation for the same semantics, causes many mismatches.
To overcome incorrect matches that result from these syntax
changes, we use the VirusBattle SDK on-line platform to
generate the same syntax for blocks of code, which carry the
same semantics. Therefore, malware samples are unpacked
using VirusBattle SDK unpacker, and the juice, which is
the generalised presentation of the semantics, is generated
for every sample using the on-line service provided by the
same platform. Here, semantics refers to the semantics of
instructions in the basic block, and is developed based on
the original disassembled code after unpacking. We use this
service as it has shown good results and serves our needs well.

VII. METHODOLOGY AND IMPLEMENTATION

According to previous studies by C. Miles et al. [7], and
Zynamicsz, the CFG has shown the best results for malware
similarity measurement purposes. Therefore, we chose to iden-
tify shared code among different malware variants by looking
into their CFG, and at the basic block level. Basic blocks are
preferred to instructions, as instructions become meaningless
without contextually relating to other instructions, semantic-
wise, and functions can contain many basic blocks and produce
incorrect matches, such as the work presented in Zynamics.
For every malware sample, the juice corresponding to each

23

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

of its basic blocks is hashed and stored in a text file. Thus,
each malware is presented as a multiset of hash values, which
resembles its constituent basic blocks. Hashing is applied to
accelerate the matching process.

Malware samples are initially scanned, and labeled by
Avira’ anti-virus scanner, and through the Open Malware?
on-line service, to be pre-classified into their related malware
families, and stored accordingly. Each malware sample can be
a member of one malware family only, and a warning mes-
sage is flagged if duplications found. Duplication of malware
variants is avoided by computing their hash value. Therefore,
each malware family consists of set of malware variants in
which, each malware variant is a multiset of v;. Duplicate
malware variants are restricted, as the aim of this paper is
to identify critical malicious patterns, which can be used as
the training dataset for malware classification purpose, and
allowing multiple copies of the same malware variant, results
in wrong frequency ratio of the shared basic blocks.

The critical malicious patterns for each malware family is
described as a list of basic blocks, which occur in malware
family f; the most, and are least likely to occur in other
malware families, and computed by TFD for each v; € fi. In
other words, the importance of basic block v; is lowered by its
occurrence in different malware families, as it is not implicit to
a specific malware family, therefore not the best candidate for
being categorised as the critical malicious pattern. However,
due to the fact that the amount of shared code between different
malware families is considerably high, not many distinct
basic blocks to one malware family, are ranked as its critical
malicious pattern. Nonetheless, our formalisation is defined by
considering these fundamentals, by studying the distribution
frequency of each basic block in each malware family, as well
as in between all the malware families. Hence, the inclusion
of basic blocks, which carry less specific functionality to a
malware family, as its critical malicious pattern, is avoided.
Therefore, the main fundamentals in defining the formalisation
encountered are expressed as, each malware family consists
of different number of malware variants, as well as each
malware variant consists of different number of basic blocks
depending on the amount of code involved in its CFG. Also,
basic block v; may occur in different malware families. Thus,
without considering the ratio of the frequency of each basic
block, rather than its frequency in each malware family, and
its distribution frequency in between other malware families,
it is impossible to identify the correct critical malicious pat-
terns for each malware family. According to our testing and
experiments, these criteria are necessary to be encountered to
define an effective formalisation in order to identify Critical
malicious patterns for each malware family.

VIIL

The developed command line interface provides the ability
to add or delete a malware family, to list already existing
malware families, and to compute and update the TFD value
for every basic block stored in the database. Also, by making
different queries, it is possible to obtain the TFD for each
basic block in its associated malware, in its malware family,
and in compare to other malware families. It is possible to

EXPERIMENTAL RESULTS AND DISCUSSION

7A.0.G. and Co., Avira Antivirus. Available: http://www.avira.com
8G.T.LS. Center, Open Malware, Offensive Computing.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

query a single basic block, and observe in which of the
malware families it has occurred, and obtain its TFD value
corresponding to each of the malware families. As shown in
Listing 1., query for one basic block is made, which shows it
is occurred in three malware families, Fareit family, Dropper
Family, and the Klez Family. It also displays the number of
times it has occurred in each of the malware families, and the
total number of malware variants, which is 22. However, in
Listing 1. we only show the first two malware variants, due to
limited space.

The same way, we can query for one specific malware,
and list all of its basic blocks. For each basic block, it
shows list of the malware families in which the basic block
occurs, the count of times it occurs in each malware family,
and the count of malware variants which contain that basic
block in one malware family. These queries are developed to
understand the distribution of each basic block in its associated
malware family, as well as the whole database. Observing these
information provides an effective understanding on the shared
code among different malware families, which is essential for
the classification purpose.

The most critical malicious pattern for each malware
family, is supposed to be the constituent basic blocks of that
malware family with the highest TFD values. As shown in
Listing 2., the top 10 patterns for the Sality family is queried.
Sality family is chosen randomly as a sample, and all of
the malware families, as shown in Table I., are included in
the database, and can be queried. The result displays, the
basic blocks based on their TFD value in descending order.
Therefore, the result of this query presents a sorted list, in
which for each basic block, total number of its occurrences,
its TFR value, and its TFD value are retrieved. Furthermore,
another query lists the occurrences of v;, in the asked malware
family, as well as all the other malware families, f;. This query
provides a good understanding on the shared basic blocks
between fj;, and the other malware families, f;. These shared
basic blocks are considered to be strong candidates for the
critical malicious pattern of the malware family, as they carry
high TFD value. Both of the queries can be made to display
any number of the basic blocks, in descending order based on
the TFD value, as long as the value is equal or less than), v;.

The details of the occurrences of v;, in other malware
families, f;, as shown in Listing 3. for the first 5 basic blocks
of the Sality family, with the highest TFD value, is given.
As listed, the 3rd basic block has occurred in other malware
families as well, which reveal the importance of the same basic
block in other malware families. This basic block has occurred
344 times in Sality family, and 186 times in 11 other malware
families, f;. However, as explained before the frequency
distribution ratio of a basic block, has the main impact on
how critical it can be for a malware family, in terms of critical
pattern identification. Further more, the hash value of the basic
blocks, can be traced back into its juice, and the actual code for
further analysis, as shown in Table II. In this paper, retrieving
the actual code associated to each of the hash values, is traced
manually as our aim is to identify the malicious patterns.
However, it is a straight forward task to automate this process,
as the name of the malware families, malware names, and the
basic blocks identifier are the computed hash value, for each.

As mentioned in Section VII., different fundamentals re-
garding the shared code impacts the formalisation of malicious

24

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

DTF> query bb 57@87clcfR@47765BddO00RATe510b170c426a3308;
Query basic block 57@7clcfR477658dd9090R0e510b1709c426a3308
3 families:

Fareit: DTF:9.20@57@275505, TFR:9.P0R694240886, Count:45
Dropper: DTF:-2.200685818552, TFR:Q.@0QREE593857, Count:5
Klez: DTF:-B.QRB7R346322, TFR:D.0@RB57371524, Count:4

22 malwares:

calilleces7deb340c@7 ffOdbd2E5193. txt (Klez)
3396TT4b55e6d1eTel33a6d TR27d55bbh. tut (Fareit)

Listing 1. QUERY FOR ONE SPECIFIC BASIC BLOCK IN ALL THE DATABASE

DTF= query top 18 Sality;

1. BasicBlock{Hash=d996@5bb279fd2e455e2cBall64321074094e929, count: 990, TFR: @.B375298532092, TFD: ©.037529853292}
2. BasicBlock{Hash=BB8629f540b9724221a6c@b43a7029276decb2f0c, count: 232, TFR: 0.BOB794874711, TFD: 0.0BB794B74711}
3. BasicBlock{Hash=3b4Bfel21b3cd7d3e3ec56B778ae35a55df5aB7e, count: 344, TFR: 0.013048676296, TFD: ©9.0BB393762452}
4, BasicBlock{Hash=ebd4cBc2640adBB791d44edla7fB1Be1c@B313ab, count: 218, TFR: @.0@B2641489513, TFD: 9.08B264145513}
5. BasicBlock{Hash=517929ec5e4B3f5e6B6556BdaRd13bl@aa5aB8fb, count: 212, TFR: 0.D@BR36695857, TFD: ©.0BBRA36695857}
6. BasicBlock{Hash=eBelZaf9@c2B952960017e132c4P0B43b586105¢c, count: 175, TFR: @.B06634@64976, TFD: 0.0BE634B64976}
7. BasicBlock{Hash=e7B57a3b9d@e5364b70bc144cfb39dd900bBARY1, count: 133, TFR: @.005041BB93B2, TFD: 0.0B5041BB93B2}
8. BasicBlock{Hash=222c5f3cBb5TR52b50BRb2BGBT35a92e446e50c3, count: 69, TFR: @.@02615717048, TFD: 0.80261571784B8}
9. BasicBlock{Hash=d6@al@5290a0108fTa52fded22d76c261811432982, count: 77, TFR: @.@Q291B9BB589, TFD: 0.B@2379954337}
18. BasicBlock{Hash=ebl59e43755dbB66112381d9d7ce45132608ba23d, count: 58, TFR: @.00219871B678, TFD: ©.@B219B71B678}

Listing 2. SALITY FAMILY, 10 BASIC BLOCKS WITH THE HIGHEST TFD VALUE

DTF= query top 5 Sality more;

1. BasicBlock{Hash=d996@5bb279fd2e455e2cBal0643210740942929, count: 9908, TFR: ©.@37529853292, TFD: ©.037529853292}
2. BasicBlock{Hash=BB86297540b9724221a6c@b43a7029276decb2f0c, count: 232, TFR: ©.008794874711, TFD: @.008794874711}
3. BasicBlock{Hash=3b4B8fel121b3cd7d3e3ec568778ac35a55df5aB7e, count: 344, TFR: ©.013040676296, TFD: B.P0B393762452}

1. Family{name:
Family{name:
Family{name:
Family{name:
Family{name:
Family{mame:
Family{name:
Family{name:
Family{name:

[= B = T R P ¥]

9

IRCbot} BasicBlock{Hash=3b48fel21b3cd7d3e3ec568778ae35a55df5a87e, count: 3, TFR: 0.0@@263042525, TFD: -@.8171615085@89}
Agent} BasicBlock{Hash=3b48fel21b3cd7d3e3ec56E877Bae35a55df5ak7e, count: 1, TFR: B.8@8@E1155153, TFD: -©.817525155752}
Dropper} BasicBlock{Hash=3b4Bfel2lb3cd7d3e3ec56B77Bae35a55df5aB7e, count: 18, TFR: @.@@R133187715, TFD: -B.817421214709}
Virut} BasicBlock{Hash=3b48fel21b3cd7d3e3ec56877Bae35a55df5a87e, count: B, TFR: 0.0@8507936508, TFD: -©.@16671717123}
ATRAPS} BasicBlock{Hash=3b4Bfel2lb3cd7d3e3ec568778ae35a55df5ak7e, count: 6, TFR: @.@@@357824427, TFD: -0.016971941284}
ULPM} BasicBlock{Hash=3b48fel21b3cd7d3e3ec568778ae35a55df5a87e, count: 54, TFR: @.@0B573461477, TFD: -9.01654B667185}
Unruy} BasicBlock{Hash=3b4Bfel21lb3cd7d3e3ec56B77Bae35a55df5aB7e, count: 1, TFR: B.@@RR1@E57174, TFD: -9.017665B75751}
Fareit} BasicBlock{Hash=3b4Bfel2lb3cd7d3e3ec568778ae35a55df5a87e, count: 19, TFR: @.88829312393, TFD: -8.81718134228}
. Gobot} BasicBlock{Hash=3b4Bfel2lb3cd7d3e3ec56B778ae35a55df5a67e, count: 58, TFR: 0.P@2038592668, TFD: -0.813610404803}
10. Family{name: Crypt} BasicBlock{Hash=3b4Bfel2lb3cd7d3e3ec568778ae35a55df5a87e, count: 15, TFR: 0.0@Q062546649, TFD: -0.081756240684}

11. Family{name: Bancos} BasicBlock{Hash=3b48fel21b3cd7d3e3ec56877Bae35a55df5aB7e, count: 11, TFR: 8.@8@325145577, TFD: -B.B17@37258986}
4. BasicBlock{Hash=ebd4cBc264PadBA791d44edla7 fE1BelcBB313ab, count: 218, TFR: ©.@BE264145513, TFD: @.00B264149513}
5. BasicBlock{Hash=51792%ec5e483f5e6865568dafd1l3blPaa5aBefb, count: 212, TFR: @.PBE@36695857, TFD: @.@RBR36695857}

Listing 3. SALITY FAMILY, DETAILS ON THE OCCURRENCES IN THE OTHER MALWARE FAMILIES, OF THE HIGHEST 5 TFD VALUES

TABLE II. SALITY FAMILY,
v:3b48fel121b3cd7d3e3ec568778ae35a55df5a87¢ SEMANTIC

EQUIVALENT
Code nop
mov(eax, none(eax — 4))
nop
Semantics ear = none(ear — 4)
Juice A = none(A — B)
Hash value of Juice | 3b48fe121b3cd7d3e3ec568778ae35a55df5a87¢e

pattern identification. As part of our experiments, we have
implemented the IG algorithm, as applied by I. Santos et
al.[12], to learn about the shared code, and the main flaw
of this algorithm in the context of shared code which we
observed, is not considering the significant of the frequency
ratio in between the malware families. However, this flaw may
have not affected the work presented by I. Santos et al.[12], as
they studied the opcode sequences, and not the basic blocks.
In this paper, we aim to identify the critical malicious patterns
as basic blocks, as CFG of every malware variant carries
information regarding its functionality. Therefore, it provide
us with informative pieces of critical malicious codes for each
malware family.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

The main drawback of our approach is the size of the
database. Obviously, more number of malware variants, and
malware families, will provide more accurate information
regarding the critical malicious patterns. Nonetheless, in this
paper we are proofing our proposed concept. However, mali-
cious software includes more information than the shared code,
such as strings, the information contained in the import-export
tables of the malware, the file type, etc. We contend that our
proposed approach is simple, and yet accurate, and effective.
The presented approach can be applied to other features of
the malicious software, by extracting the feature of interest,
computing its hash value, and applying the TFD to obtain the
pattern for each malware family. Thus, our presented method-
ology can be used to retrieve critical information about each
malware family, which is essential to understand malicious
software. Also, generating an effective general pattern for the
numerous variants of each malware family.

The evaluation of our approach is simple, as the for-
malisation is based on the statistics. The counts and the
implementation outcomes are checked manually, and they are
accurate. The choices of the presented malware family, and the
basic block are in principle arbitrary. Due to the automation
the flowchart of the experimental process, is essentially trivial.

25

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented a statistical approach to gen-
erate, and discover critical malicious patterns in malware
families. We presented the critical malicious pattern for each
malware family, as a list of basic blocks, which represent the
most frequent shared code among each malware family by
considering its occurrences in other malware families. Here,
we present the impact of occurrence of a basic block in
different malware families, on its potential to be a candidate
of critical malicious pattern. Our developed framework to
extract the most frequent shared code, can be applied to any
other feature of malware for further analysis. The generated
critical malicious patterns, are the initiative for our future
work, towards the classification, and detection of known and
unknown malware. Also, in the future work, we consider to
extend the size of the database.

ACKNOWLEDGMENT

The authors would like to thank Golnaz Badkoubeh for
her insightful comments on the formalisation method, to thank
Ehsun Behravesh, Aristide Fattori, Danut Niculae, and Michal
Sroka for their generous help in the implementation of the
framework, and to thank Arun Lakhotia and Vivek Notani
for their support and willing to provide the VirusBattle SDK
platform. Also, to thank the anonymous reviewers for the
helpful suggestions.

REFERENCES

[1] FE Cohen, “Computer Viruses: Theory and Experiments,” Computers &
Security 6, 1987, pp. 22-35.

[2] C. Beek et al., “McAfee Labs Threats Report,” McAfee Labs Threats
Report, Tech. Rep., Aug. 2014.

[3] O. f. E. Co-operation and Development, Computer Viruses and Other
Malicious Software: A Threat to the Internet Economy. OECD, Mar.
20009.

[4] G. J. Tesauro, J. O. Kephart, and G. B. Sorkin, “Neural networks for
computer virus recognition,” IEEE Expert, vol. 11, no. 4, Aug. 1996,
pp. 5-6.

[5] J. Z. Kolter and M. A. Maloof, “Learning to Detect and Classify
Malicious Executables in the Wild,” J. Mach. Learn. Res., vol. 7, Dec.
2006, pp. 2721-2744.

[6] S. Cesare and Y. Xiang, “Malware Variant Detection Using Similarity
Search over Sets of Control Flow Graphs,” in Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011 IEEE
10th International Conference on, Nov. 2011, pp. 181-189.

[71 C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani,
“VirusBattle: State-of-the-art malware analysis for better cyber threat
intelligence,” in Resilient Control Systems (ISRCS), 2014 7th Interna-
tional Symposium on. IEEE, 2014, pp. 1-6.

[8] A. Lakhotia, M. D. Preda, and R. Giacobazzi, “Fast location of similar
code fragments using semantic ’juice’,” in Proceedings of the 2nd ACM
SIGPLAN Program Protection and Reverse Engineering Workshop.
ACM, 2013, p. 5.

[91 A. Moser, C. Kruegel, and E. Kirda, “Limits of Static Analysis for
Malware Detection,” in Computer Security Applications Conference,
2007. ACSAC, Twenty-Third Annual, Dec. 2007, pp. 421-430.

[10] G. Vigna, “Static Disassembly and Code Analysis,” in Malware Detec-
tion, ser. Advances in Information Security, M. Christodorescu, S. Jha,
D. Maughan, D. Song, and C. Wang, Eds. Springer US, 2007, vol. 27,
pp. 19-41.

[117 S.L.Blond, A. Uritesc, C. Gilbert, Z. L. Chua, P. Saxena, and E. Kirda,
“A Look at Targeted Attacks Through the Lense of an NGO,” in 23rd
USENIX Security Symposium (USENIX Security 14). San Diego,
CA: USENIX Association, 2014, pp. 543-558.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

[12]

I. Santos et al., “Idea: Opcode-Sequence-Based Malware Detection,”
in Engineering Secure Software and Systems, ser. Lecture Notes in
Computer Science, F. Massacci, D. Wallach, and N. Zannone, Eds.
Springer Berlin / Heidelberg, 2010, vol. 5965, pp. 35-43.

26

