
Android Permission Usage: a First Step towards Detecting Abusive Applications

Karina Sokolova∗, Marc Lemercier∗

∗University of Technology of Troyes
Troyes, France

email:{karina.sokolova, marc.lemercier}@utt.fr

Charles Perez†

†PSB Paris School of Business
Paris, France

email:cperez@faculty-esgms.fr

Abstract—Thousands of mobile applications are available on
mobile markets and actively used everyday. One of the mobile
market leaders – Android – does not verify the security of
applications published on its market and assumes that users will
carefully judge the applications themselves using the information
available on the marketplace. A common assumption is that the
list of permissions associated with each application provides users
with security and privacy indications, but previous works have
shown that users are barely able to understand and analyse those
permission lists. Very few works propose solutions that could help
users in deciding whether or not to install an application. Despite
Android permissions’ lack of user-friendliness, they are an impor-
tant source of information. In this work, we analyse permissions
used by a large set of applications for different Android market
categories and define the core permission patterns characterising
each one. The patterns obtained are a first step towards building
an indicator for detecting normal and possibly over-privileged
applications on the market.

Keywords–patterns, usage, mobile applications, Android, Google
Play, permissions, Network science, graph analysis, data mining,
category

I. INTRODUCTION

Today the mobile market is constantly growing; an increas-
ing number of mobile applications are made available to users
every day. Application distribution and security methods differ
from one company to another, but the permission system –
an explicative additional privilege for each sensitive service
or piece of data – is often a common factor. Two mobile
market leaders – Android and iOS – use a different approach
to permission systems: iOS proposes a very limited number of
permissions and gives users control over granting or revoking
a single permission; Android proposes very large number of
permissions, and users have to accept all of them at once
before installing an application. iOS applications are checked
for malicious or abusive codes before they are made available
on the market. Android applications are uploaded directly on
the market and it is up to users to judge each application
using data available on the market, such as permission lists,
comments and ratings provided by other users.

Some research has shown that users are often incapable of
judging a mobile application’s legitimacy simply by looking
at the permissions requested by it prior to installation [1][2].
Android permissions are often very specific and contain tech-
nical terms. Some permissions are so widely used that users
do not even pay attention to them when viewing the list. The
result is that users often have not grasped the meaning and
accept the list regardless of its permissions. This leads to

important privacy and security issues that can be exploited by
applications abusively requiring permissions. It is important
to note that mobile applications can be intrusive without
necessarily being malicious; some may want to collect users’
information to ’unfairly’ improve their customer relationship
management (CRM).

In this paper, we aim to identify normal application per-
mission usage patterns by application category. The Android
market groups similar applications with similar ends into cate-
gories. Different functionalities require different data and ser-
vices, which in turn imply different permissions. Our hypoth-
esis is that categories on the market containing applications
with similar functionalities will also require similar groups
of permissions. We identify central and core permissions
for categories and discuss related functionalities. We believe
that such permission patterns can help create a measurement
that allows users to compare easily more and less intrusive
applications.

The remainder of the paper is organized as follows: Section
2 presents background on Android; Section 3 presents related
works; the methodology is presented in Section 4; and Section
5 presents the results. The paper ends with a discussion about
future works and a conclusion.

II. BACKGROUND

Android is an open-source operating system owned by
Google. Since 2010, it has been a leader on the mobile market
and used widely on smartphones, tablets and, more recently,
on smart objects.

Android applications are available to users via the market
store – GooglePlay. Google does not verify Android applica-
tions when they arrive on the market, and users should care-
fully check all available information to judge if an application
is trustworthy and can be installed.

To help users evaluate applications, Android embeds a
permission system security mechanism. Applications have very
limited rights when accessing system services, sensitive data or
sensors; therefore, developers must explicitly add permissions
for each protected interface into a compulsory file called
’AndroidManifest’. By doing so, each application is associated
with a list of permissions.

Android has a predefined list of permissions that developers
can use. According to our analyses, Android 4.4 currently
(November 2014) contains 229 permissions: 30 normal, 48
dangerous, 11 development, 70 signature and 70 signature or

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

system permissions from which third-party applications may
only use 89 Android permissions.

Native Android permissions have a similar prefix based
on a predefined hierarchy: ’android.permissions.*’. For ex-
ample, the permission for Internet access is defined as ’an-
droid.permission.INTERNET’. Only five Android permissions
are prefixed with ’com.android.*’: browser, alarm, launcher
and voicemail-related permissions.

Android allows communication and data/functionalities to
be shared between applications. Developers can define custom
permissions to protect new interfaces in order to share services
or data. Custom permissions can be named freely: Google does
not impose any naming rules.

The Android permission system and permission usage are
a valuable source of information. The next section presents the
works related to permission analyses and their limitations.

III. RELATED WORKS

Very few works propose solutions to help users judge
whether a given application abusively uses permissions and
represents a potential threat.

Some authors propose monitoring the data flow of Android
applications and reporting permission usage to users [3][4][5].
These solutions are not proactive, as the application must
already be installed, and it is not clear that users could easily
adopt this solution.

The authors of [6] proposed searching for a justification
for permission usage in an application description using natural
language processing (NLP) techniques, warning the user if this
is not found. A proof of concept was carried out on three
Android permissions. Further work improved the detection and
number of supported permissions [7].

In [8], the authors created a crowd-sourcing system that
collects and analyses iOS application configurations to provide
users with privacy recommendations. This approach could be
applied to Android applications; however, currently, the revo-
cation of an individual permission is not possible with Android
– users do not have any control over the permission list of an
installed application. Moreover, Android’s permission list is
much longer and more technical than that of iOS, which makes
it very laborious for a user to configure. Furthermore, this
would be an application control solution, not an application
choice or judgment solution.

Several works have been done on Android permission
analyses.

In 2009, the authors of [9] analysed the permissions of
the top 50 free Android applications using a self-organizing
map (SOM). The authors provide some statistics on permission
usage, identifying a series of pairs of correlated permissions
and providing correlations between permissions and categories.

In [10], the authors analysed the permissions of the top
100 Android applications and found that most permissions
were used occasionally, in response to the action made on
the graphical user interface (GUI). The paper highlighted that
only 5% of applications legitimately required some of the
permissions granted permanently.

The authors of [11] analysed the permissions of Android’s
most popular and novel applications from both official and
non-official markets. The authors analysed the interdependency
of the number of permissions and the application popularity,
price, availability of the developer’s website and availability of
privacy policies. They also analysed the number of permissions
for applications with similar names.

None of the previous works have focused on analysing
patterns in permission usage. Moreover, current analysis has
only been performed on a very limited number of applications.

Few tools have analysed Android permissions for security
purposes, one of them being the Kirin tool, which analysed
AndroidManifest files to identify dangerous permission combi-
nations and flag potential malware before installation [12]. The
related paper identified two dangerous permissions and seven
combinations of permissions, which were added to Kirin’s
installation privacy policy. SCAndroid went even further, using
source code analysis to identify if permissions were really used
together by an application [13].

These latter works focused on the technical challenges
related to embedding a permission-pattern-based tool in the
Android system, but they did not discuss permission patterns
directly. It is important to note that dangerous permission
combinations were defined manually by the authors.

In [14], the authors used probabilistic methods to identify
patterns for high- and low-ranked applications. The authors
noted that pattern identifications by category would improve
results.

Recent research [15] used statistical methods to identify the
top 40 risky permissions and performed clustering techniques
to identify patterns and detect malicious applications.

The authors of [16] analysed permission usage over a set of
1,227 clean and 49 malicious application families. The authors
generated a list of permission patterns unique to Android
malware but did not process the patterns of ’clean’ or non-
threatening applications. Due to calculation costs, this research
only obtained patterns with a maximum of 4 permissions.

The authors of [17] used 999 Android applications to
build a graph based on the co-occurrence of permissions
in different application categories. The authors focused on
determining in which cases approaches such as [12] could be
applied to malware detection. The most frequent groups of
permissions for each category were identified by a modularity-
optimizing classification algorithm and were considered to be
a normal request for an application from a given category.
The authors compared these groups with dangerous permission
combinations from [12] and found that some of the presumably
risky combinations in groups in fact are legitimate. The authors
noted that there was a bias in the analysis, namely that very
popular permissions form important clusters in many different
categories.

IV. METHODOLOGY

This section presents the methodology applied to obtain
categories permission patterns.

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

Figure 1. Methodology representation.

A. Overview

In this document, we aim to address some of the issues
raised by previous works. Our objective was to analyse the
permission usage of a large set of applications (not explicitly
malicious) available on the official Android market. First, we
identified significant patterns for the official Android market
application categories. In order to do so, we performed a
statistical and graph analysis that allowed patterns to be
identified without limiting the number of items involved in
a pattern. We built a methodology to avoid over-connecting
the most popular permissions, only keeping track of the most
significant patterns for each category. Finally, we assessed the
graph obtained for further avenues of analysis.

A diagram of the methodology is shown in Figure 1.
First, we compiled applications and related data from Google
Play and prepared the data for processing. We evaluated pairs
of permissions that co-occurred in each category. Then, we
performed a statistical analysis and Z − score to determine
the significance of each pair in each category. We filtered
our dataset, keeping only the most significant permission
pairs. Finally, we created a graph of the most significant
permissions by category and used graph analysis to determine
the importance of each individual permission. As an output,
we obtained a scored list of the most significant permissions
by category.

The following sections explained the dataset and the
methodology in detail.

B. Dataset and initial observations

We compiled application data from the Google Play store
using a publicly available non-official application program-
ming interface (API) and a script written in PHP language
published under the GNU General Public License [18]. We
modified the script to match it to our objectives and stored the
harvested data within a MySQL relational database.

We collected multiple types of information about appli-
cations available on Google Play: name, description, package

name, version, users’ note, number of downloads, price, cate-
gory, number of screenshots, author and the list of permissions
as defined in the manifest. For each category, we obtained the
category’s name and related description.

After launching a script to collect data, we obtained a
sample of 9,512 applications related to 35 categories contain-
ing between 190 and 590 applications each. In our sample,
we observed a set of 2,133 unique permissions, with 292
permissions identified as Android native permissions (263
matched the prefix ’android.permissions.*’ and 29 matched the
prefix ’com.android.*’). The other permissions are assumed to
be custom permissions.

We compared the list obtained with a list of per-
missions extracted from Android 4.4 and found 157
permissions that did not match currently available An-
droid permissions. These permissions were instead third-
party application permissions, such as those for mo-
bile device management (e.g., ’android.permission.sec.*’),
old permissions from previous Android versions (e.g.,
’com.android.launcher.permission.READ SETTINGS’), per-
missions for Android in-app payment and licence libraries, and
many misspelled permissions.

To carry out further analysis, we filtered our dataset to only
keep permissions available in the Android 4.4 system.

Table I shows the top 10 permissions and the percentage
of applications requiring these permissions. The INTERNET
permission is the most required, as observed in previous works.

In the next section, we present the methodology we applied
to obtain relevant patterns from our dataset.

C. Analyses

Our proposal was to analyse significant co-occurrences of
permission pairs for each application category. To do so, for
each category C we created a graph denoted GC(NC , EC),
where the set of nodes NC corresponded to the permissions,
and the set of edges EC represented two commonly used

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

permissions in the category. This common usage was identified
if both permissions were observed together in the Android-
Manifest file of at least one application in the category.

It is important to note that although some permission pairs
may have been used jointly in many categories, they were
not necessarily relevant to it [9]. For example, INTERNET
and ACCESS NETWORK STATE were used commonly in
many categories but were not relevant when trying to create
a permission fingerprint for a category. For this reason, the
significance of the usage of a permission pair in a category
had to be moderated by (1) the average use of this pair across
categories and (2) weighted with respect to how regularly it
appeared across multiple categories.

To quantify these observations, which have also been
pointed out in previous works [17], we proposed scoring the
weight between a permission pair A : (permi, permj) in a
category C with the standard score or Z − score defined in
equation 1.

ZC
A =

AC − µA

σA
(1)

Where :

A is a permission pair (permi, permj)

µA and σA are the mean and standard deviation of the
usage of pair A across all categories.

AC is the observed usage of the pair in the category C.

From equation 1, we propose defining the weight between
two permissions eC(permi, permj) for each EC in graph
GC(NC , EC) corresponding to a specific category C as follows:

eC(permi, permj) = ZC
(permi,permj) (2)

We obtained a graph of permissions with weighted relations
for each category. We then filtered the edges of each graph by
weight to highlight only the most significant patterns. We have
removed edges whose Z−score stands below threshold 2. This
threshold, for a normally distributed population, allows only
2,3% of the most relevant edges to be kept track of. Finally, we
filtered the nodes, keeping only nodes with a non-null degree.

TABLE I
TOP 10 OF PERMISSIONS USAGE. EACH PERMISSION IS PREFIXED

ORIGINALLY WITH ’ANDROID.PERMISSION”.

Permission Applications (%)
INTERNET 91,88

ACCESS NETWORK STATE 83,31
WRITE EXTERNAL STORAGE 60,39
READ EXTERNAL STORAGE 60,29

READ PHONE STATE 49,92
WAKE LOCK 33,01

ACCESS WIFI STATE 31,47
VIBRATE 30,07

ACCESS COARSE LOCATION 27,73
ACCESS FINE LOCATION 27,42

Afterwards, we computed several graph metrics and al-
gorithms in order to highlight the patterns for each category
graph.

The first step was to compute a weighted modularity-
based clustering algorithm to highlight potential functionalities
represented by a common permission usage [19][20]. The
modularity regrouped the graph’s elements into communities.
This score increased as the number of edges within com-
munities increased and the number of edges between these
communities decreased. The clustering algorithm used greedy
optimisation to build communities in a way that maximized
the modularity score.

Secondly, the betweenness centrality was computed on
the permission graph in order to detect the most crucial
permissions for an application in a category. In the domain of
social network analysis, the betweenness centrality of a node
v is measured as the ratio of the number of shortest paths
between any node pairs (s, t) that pass throughout v by the
number of shortest paths between these pairs. Mathematically,
it is defined as stated in equation 3 below [21].

g(v) =
∑

s6=v 6=t

σst(v)

σst
(3)

Where :

σst is the number of shortest path between two nodes s
and t

σst(v) is the number of shortest paths between two nodes
s and t that pass through v.

The betweenness centrality measured the capacity of a
permission to belong to many of the shortest paths. A high
betweenness centrality indicated that this permission was re-
quired to perform multiple tasks or for the main functionality
of applications in the category. More social network analysis
measures (degree, closeness centrality, PageRank, etc.) were
tested, but they are not discussed in this paper.

In the next section, we present the results and patterns
obtained from this analysis.

V. RESULTS

We present below a set of results obtained from the analysis
of permissions by categories using our dataset.

A. Number of relevant pairs by category

Relevant patterns formed by relevant pairs exist for each
application category. Table II displays the number of permis-
sions pairs (permi, permj) named as relevant pairs that were
statistically significant (w.r.t. Z−score > 2) for each category.

We could observe that six categories covered a very large
set of relevant pairs (up to 1,000). This showed that these
categories were very broad and covered many different types
of functionalities. An abusive application belonging to these
categories could be harder to detect using the permission list
than abusive applications belonging to a category that exhibited
a more reasonable set of relevant pairs. We noted that two

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

Figure 2. Permissions’ graphs obtained for the categories Photography, Wallpaper, Finance and Weather.

categories possessed less than 20 significant pairs; these were
very specific.

B. Significant patterns and centrality results for a category
samples

Due to page number restrictions, we present the results
related to only four of the categories – Photography, Wallpaper,
Finance and Weather. We have chosen categories with an
average number of relevant pairs. Corresponding patterns are
highlighted in Figure 2. On each graph, the colour of the nodes
is defined by the result of the modularity-based clustering
algorithm. The weight of the link corresponds to the Z−score,
and the size of the nodes is proportional to the betweenness
centrality. Graphs and data for all categories are available on
[22].

Photography: As one would assume, ’CAMERA’ is
a central permission within the photography category.
It is used with the ’READ EXTERNAL STORAGE’
and ’WRITE EXTERNAL STORAGE’ permissions,
which allow photos taken to be saved and modified. The
’ACCESS NETWORK STATE’, ’ACCESS WIFI STATE’
and ’INTERNET’ permissions enable photo sharing.

’SET WALLPAPER’ is the second most important per-
mission, which allows the photo to be added as wall-
paper on the main screen. We can distinguish a pat-
tern grouping together wallpaper management permissions:
’SET WALLPAPER HINTS’ and ’BING WALLPAPER’.

’WAKE LOCK’ prevents the screen from locking when
the application is in use. This functionality seems relevant in
camera-related applications.

Many applications in this category allow screenshots to
be taken as well as photos. Shortcut management permissions
allowing the creation of shortcuts can be used to take photos
as well as for screenshots.

The presence of location-related permissions indicates that
this information will be attached to the picture taken. The
’GET ACCOUNTS’ permission corresponds to a server-based
user-specific service which probably backs up the photos taken
on the server or shares photos with different services, such as
social networks.

We noted an increased presence of system permissions that
are not available for third-party applications. This indicates that
many photography applications are built-in.

Wallpaper: The results for the Wallpaper category
(APP WALLPAPER) give a high number of significant per-
missions due to the diversity of animated wallpapers and the
functionalities accessed and provided by animated wallpapers.

’SET WALLPAPER’is the most central permission; we
also find the wallpaper-related permissions in the pattern.
File system and package management permissions can be
observed, due to the different personalisation options proposed
by a single wallpaper application, as well as shortcut and
widget management permissions. We find many functionality-
related permissions due to the different built-in functionalities:
phone calls, SMS, calendar, settings, application list, contacts,
bookmarks, cache – those functionalities are often included as
a widget or fast access to wallpaper. External storage permis-
sions allow personalisation images to be stored locally, and
network-related permissions allow additional information such
as weather to be obtained or new images downloaded. We also

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

TABLE II
NUMBER OF RELEVANT COUPLES OF PERMISSIONS (Z − score > 2) FOR EACH CATEGORY OF APPLICATION

Category # of relevant couples Category # of relevant couples
COMMUNICATION 3,620 WEATHER 124

TOOLS 2,826 PHOTOGRAPHY 116
APP WIDGETS 2,318 ARCADE 106

PRODUCTIVITY 2,306 MEDIA AND VIDEO 92
BUSINESS 1,028 CASUAL 84

PERSONALIZATION 1,024 RACING 84
LIFESTYLE 738 SPORTS GAMES 80

SOCIAL 738 SPORTS 78
APP WALLPAPER 548 TRANSPORTATION 74

TRAVEL AND LOCAL 322 SHOPPING 66
ENTERTAINMENT 242 COMICS 64

MEDICAL 160 BOOKS AND REFERENCE 60
HEALTH AND FITNESS 158 CARDS 48
LIBRARIES AND DEMO 152 GAME WIDGETS 46

MUSIC AND AUDIO 144 NEWS AND MAGAZINES 20
FINANCE 126 GAME WALLPAPER 18

identify the ’WAKE LOCK’, ’ACCESS FINE LOCATION’
and ’VIBRATE’ permissions in this category.

Finance: The most central permissions for the Finance
category are ’CALL PHONE’ and ’INTERNET’. Permissions
used for calls, including Voice over IP (VoIP) calls and SMS,
available to contact a bank or service manager. The ’INTER-
NET’ permission would appear to be necessary in order to
access up-to-date banking information. We can distinguish
many account- and authentication-linked permissions due to
the sensitivity of the financial information and the need for
secure usage. Localisation permissions also appear in the
pattern, probably to apply different location-dependent billing
criteria or to identify the nearest offline office. The camera
is often used for QR codes and making deposits in finance
applications.

Weather: The central weather permissions is
’ACCESS FINE LOCATION’, which gives the longitude
and latitude so that the weather in the user’s location can
be obtained. All location- and network-related permissions
are included in the pattern. ’ACCESS MOCK LOCATION’
could indicate developer testing or be for locations given
by the user. One can also see background process, shortcut
and wallpaper permissions, which indicate that the weather
application can be wallpaper-embedded. Permissions related
to external storage are needed for heavy image storage.
Weather applications are often system applications, and some
system permissions are observed in the pattern.

VI. DISCUSSION AND FUTURE WORK

The state of the art’s most commonly used permission
indicator is the simple occurrence of permissions. To under-
line how our methodology has improved this, we proposed
comparing our results to the top 5 most frequent permissions
obtained for the same category.

We present the ’Finance’ category as an example. Table
III presents the top 5 permissions according to occurrence,
and Table IV presents the top 5 permissions according to
betweenness centrality. One can see that the top 5 ’Finance’

TABLE III
TOP 5 FREQUENT PERMISSIONS FOR FINANCE CATEGORY

Occurrence (%) Betweenness
INTERNET 91.19 (Rank 1) 361 (Rank 2)
ACCESS NETWORK

STATE 75.15 (Rank 2) 202 (Rank 6)

WRITE EXTERNAL
STORAGE 49.32 (Rank 3) 98 (Rank 16)

READ EXTERNAL
STORAGE 49.12 (Rank 4) 98 (Rank 17)

READ PHONE
STATE 32.88 (Rank 5) 69 (Rank 19)

TABLE IV
TOP 5 PERMISSIONS ACCORDING TO BETWEENNESS CENTRALITY FOR

FINANCE CATEGORY

Occurrence (%) Betweenness
CALL PHONE 11.74 (Rank 12) 470 (Rank 1)
INTERNET 91.19 (Rank 1) 361 (Rank 2)
CAMERA 10.96 (Rank 14) 360 (Rank 3)
USE CREDENTIALS 3.52 (Rank 21) 257 (Rank 4)
ACCESS COARSE

LOCATION 19.18 (Rank 8) 231 (Rank 5)

permissions of Table III correspond to the top 5 permissions
for all categories presented in the Table I. This shows that even
if those permissions are highly used in the ’Finance’ category,
they are not specific to it.

We noted that our pattern contains these permissions,
but not as highly ranked; the top five permissions from our
results (Table IV) show that ’Finance’ permissions are often
online (Internet) services and need secure authentication (use
credentials). Banking applications tend to include direct bank-
application contact (call phone), deposits (camera) and lists of
office or cash withdrawal locations (access coarse location).

Our pattern is more accurate than simple frequency analysis

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

in defining a particular category and allows category-related
functionalities to be detected. The use of the Z − score is
particularly well-adapted to this purpose, since it allows how
relevant a permission pair is to a category to be measured with
respect to overall usage in units of standard deviation.

We observed many wrong, misspelled or old permissions
in the applications. We feel that the system would benefit
from automatic permission validity verification based on the
list of valid Android permissions; rules for defining custom
permissions could simplify the verification. Documentation
for the Android permission system is incomplete, as many
Android 4.4 extracted permissions were not found on the
official website.

When we observed permission patterns by category, they
often represented a particular functionality. This could permit
the purpose of permission usage and the functionalities of an
application to be determined automatically.

Some categories obtained a very large number of significant
permissions, which means they may have been too broad. The
division of these categories into subcategories would provide
a more precise view of the applications.

Our patterns could permit an automatic classification of
applications into categories and could also be used to measure
how an application rates with regard to normal permission
usage in a particular category. Applications using non-core or
rare permissions can be penalised. Such indicators could be
included in mobile markets to label abusive or non-threatening
applications, comparing them to expected patterns.

VII. CONCLUSION

We analysed Android permission usage for each application
category belonging to the Google Play store. We proposed a
graph-based solution to characterise each category using pat-
terns of the most significant permissions, taking into account
the category and the overall usage of each permission com-
bination. We scored permissions using betweenness centrality
in order to obtain the most- and least- central permissions for
each category. The identified patterns and permission scores
could be used in the mobile market to detect abusive or non-
threatening applications.

REFERENCES

[1] P. Kelley et al., “A conundrum of permissions: Installing applications on
an android smartphone,” in Financial Cryptography and Data Security,
ser. Lecture Notes in Computer Science, J. Blyth, S. Dietrich, and
L. Camp, Eds. Springer Berlin Heidelberg, 2012, vol. 7398, pp. 68–79.

[2] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proceedings of the Eighth Symposium on Usable Privacy and Security,
ser. SOUPS ’12. New York, NY, USA: ACM, 2012, pp. 3:1–3:14.

[3] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel,
and A. N. Sheth, “Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,” in Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementa-
tion, ser. OSDI’10. Berkeley, CA, USA: USENIX Association, 2010,
pp. 1–6.

[4] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall, “These
aren’t the droids you’re looking for: retrofitting android to protect data
from imperious applications,” in CCS ’11: Proceedings of the 18th ACM
conference on Computer and communications security. ACM Request
Permissions, Oct. 2011.

[5] P. Berthomé and J.-F. Lalande, “Comment ajouter de la privacy after
design pour les applications Android? (How to add privacy after design
to Android applications?),” Jun. 2012.

[6] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “Whyper: Towards
automating risk assessment of mobile applications,” in Presented as
part of the 22nd USENIX Security Symposium (USENIX Security 13).
Washington, D.C.: USENIX, 2013, pp. 527–542.

[7] Z. Qu, V. Rastogi, X. Zhang, Y. Chen, T. Zhu, and Z. Chen, “Autocog:
Measuring the description-to-permission fidelity in android applica-
tions,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, ser. CCS ’14. New York,
NY, USA: ACM, 2014, pp. 1354–1365.

[8] Y. Agarwal and M. Hall, “Protectmyprivacy: Detecting and mitigating
privacy leaks on ios devices using crowdsourcing,” in Proceeding of the
11th Annual International Conference on Mobile Systems, Applications,
and Services, ser. MobiSys ’13. New York, NY, USA: ACM, 2013,
pp. 97–110.

[9] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji,
“A methodology for empirical analysis of permission-based security
models and its application to android,” in Proceedings of the 17th ACM
Conference on Computer and Communications Security, ser. CCS ’10.
New York, NY, USA: ACM, 2010, pp. 73–84.

[10] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and
C. Cowan, “User-Driven Access Control: Rethinking Permission Grant-
ing in Modern Operating Systems,” Security and Privacy (SP), 2012
IEEE Symposium on, 2012, pp. 224–238.

[11] P. H. Chia, Y. Yamamoto, and N. Asokan, “Is this app safe?: A large
scale study on application permissions and risk signals,” in Proceedings
of the 21st International Conference on World Wide Web, ser. WWW
’12. New York, NY, USA: ACM, 2012, pp. 311–320.

[12] W. Enck, M. Ongtang, and P. McDaniel, “On lightweight mobile phone
application certification,” in Proceedings of the 16th ACM Conference
on Computer and Communications Security, ser. CCS ’09. New York,
NY, USA: ACM, 2009, pp. 235–245.

[13] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “SCanDroid: Automated
Security Certification of Android Applications,” Department of Com-
puter Science, University of Maryland, College Park, Tech. Rep. CS-
TR-4991, November 2009.

[14] M. Frank, B. Dong, A. P. Felt, and D. Song, “Mining Permission
Request Patterns from Android and Facebook Applications,” in Data
Mining (ICDM), 2012 IEEE 12th International Conference on, 2012,
pp. 870–875.

[15] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang, “Exploring
Permission-Induced Risk in Android Applications for Malicious Appli-
cation Detection,” Information Forensics and Security, IEEE Transac-
tions on, vol. 9, no. 11, 2014, pp. 1869–1882.

[16] V. Moonsamy, J. Rong, S. Liu, G. Li, and L. Batten, “Contrasting Per-
mission Patterns between Clean and Malicious Android Applications,”
in Future Generation Computer Systems. Cham: Springer International
Publishing, 2013, pp. 69–85.

[17] I. Rassameeroj and Y. Tanahashi, “Various approaches in analyzing
Android applications with its permission-based security models,” in
Electro/Information Technology (EIT), 2011 IEEE International Con-
ference on, 2011, pp. 1–6.

[18] O. V. Koc, “android-market-api-php.” [Online]. Available: https:
//github.com/splitfeed/android-market-api-php[accessed:13-01-2015]

[19] H. Shiokawa, Y. Fujiwara, and M. Onizuka, “Fast algorithm for
modularity-based graph clustering.” in AAAI, M. desJardins and M. L.
Littman, Eds. AAAI Press, 2013.

[20] M. E. J. Newman, “Fast algorithm for detecting community structure
in networks,” Physical Review E, vol. 69, no. 6, 2004, pp. 066 133–
066 133.

[21] L. C. Freeman, “Centrality in social networks conceptual clarification,”
Social Networks, vol. 1, no. 3, 1978, pp. 215–239.

[22] C. Perez and K. Sokolova, “Android permissions us-
age data.” [Online]. Available: https://sites.google.com/site/
androidpermissionsanalysis/[accessed:14-01-2015]

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-393-3

PATTERNS 2015 : The Seventh International Conferences on Pervasive Patterns and Applications

