
Refinement Patterns for an Incremental Construction of Class Diagrams

Boulbaba Ben Ammar* and Mohamed Tahar Bhiri+

Faculty of Sciences of Sfax, Sfax University, Sfax, Tunisia
*Boulbaba.Benammar@fss.rnu.tn

+Tahar_Bhiri@yahoo.fr

Abstract—Specifying complex systems is a difficult task, which
cannot be done in one step. In the framework of formal
methods, refinement is a key feature to incrementally develop
more and more detailed models, preserving correctness in each
step. Our objective is an incremental development, using the
technique of refinement with proof for UML specifications.
Indeed, UML suffers from two major weaknesses, namely, it is
not based on a simple and rigorous mathematical foundation
and it does not support the concept of refinement with proof of
correction. To achieve this, we advocate a development
framework combining the semi-formal features of UML/OCL
and the formal one from B method. We chose the B formal
language in order to benefit from existing work done on
coupling between UML and B. In addition, we propose and
formalize in B the refinement patterns that promote
incremental development with proof of UML/OCL class
diagrams. We illustrate our purpose by the description of some
development steps of an access control system.

Keywords-UML; OCL; refinement pattern; class diagram

I. INTRODUCTION

Refinement is a process to transform an abstract
specification into a concrete one [17]. It aims to develop
systems incrementally, which are correct by construction
[18]. Refinement is defined in a rigorous way in various
formal languages, such as B [18], Event-B [17],
Communicating Sequential Processes (CSP) [8], Z and
Object-Z [14]. The Unified Modeling Language (UML) [19]
is an object-oriented modeling language widely used. It is a
de-facto standard, allowing graphical visualization of models
facilitating communication inter-actors. But, it does not
support the concept of refinement. It has a dependency
relationship stereotyped «refine» to connect a client (or
refined concrete element) to a provider (abstract element).
This relationship is subject to several interpretations [15] and
does not provide methodological assistance related to how to
refine existing UML models. In addition, UML does not
allow the verification of a refinement relationship between
two models. In a formal language, such as B, Event-B, CSP,
Z and Object-Z, although the refinement relationship is well-
defined and well-supported (generation of proof obligations,
interactive prover, model checker and animator), an
experienced designer finds more or less important difficulties
in identifying the different levels of abstraction (an “optimal”
refinement strategy) for carrying out the process of
refinement. Solutions based on the concept of pattern --like
the design patterns in Object-Oriented (OO) applications-- to
guide the designer during the refinement process begin to
appear covering both the horizontal refinement for

application areas as reactive systems [17][26][27] and the
vertical refinement under B. The horizontal refinement [17]
consists in introducing new details in an existing model.
Each introduction of details to a model leads to a new model,
which must be coherent with the previous one. If it is the
case, we said that the second model refines the first one.
Horizontal refinement aims at the progressive acquisition, by
successive refinement, of a coherent model from abstract
specifications, leading to the abstract formal specification of
future software or system.

The vertical refinement [17] consists in going from an
abstract model to a more concrete one, for example by
reducing the non-determinism. The concrete model is a
realization of the abstract model. For example, the B
Automatic Refinement Tool (BART) [1] tool associated with
B offers refinement rules that can be used in the final stages
of vertical refinement phase of a formal process
development. B and Event-B do not distinguish between
horizontal and vertical refinement. In fact, both refinements
use two types of refinement allowed by B, i.e., data
refinement and algorithms or control refinement [18].

In the following, we briefly present in Section 2 the
existing approach for construction of class diagrams. The
proposed approach is presented in Section 3. In Section 4, we
present our catalog of refinement patterns used in an
incremental specification development process. In Section 5,
we illustrate the use of the proposed approach using an
access control case study. Section 6 concludes this paper and
proposes perspectives.

II. RELATED WORK

UML is a graphical modeling language reference,
offering an important range of diagrams. Class diagram,
which can express the static aspects of a system, are one of
the most used diagrams. At the "heart" of the object
modeling, it shows the classes and interfaces of a system and
the various relationships between them. Approaches to
construction and verification of class diagrams have been
highlighted in several studies [4][7][10][13][20][21].

The decomposition unit of object-oriented systems is the
concept of class. A coarse characterization of classes makes
a distinction between the analysis classes belonging to the
space of problems (external world in modeling course) and
design classes and implementation belonging to the space of
solutions.

Methodological works supporting the identification of
the useful and relevant classes were completed. A method
known as “Underline the names in the document of the
requirements” is proposed in [13]. The results of the
application of this method are very sensitive to the used

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

style. This can lead designers to omit useful classes while
introducing classes, which are not justified.

Class, Responsibility, Collaboration (CRC) cards [20] are
paper cards on which the designers evoke the potential
classes according to their responsibilities and in the way in
which they communicate. This technique promotes
interaction within teams but its contribution to the
identification of quality classes is uncertain.

Meyer [7] provides the general heuristics for classes
discovery, based on the theory of Abstract Data Types
(ADT). He defines different uses of inheritance justifying
their uses.

The Business Object Notation (BON) method [21]
introduces useful advices to identify the classes. It proposes
two structural concepts (cluster and class), two strong
conceptual relations (customer and inheritance) and a simple
language of assertions expressing the semantic properties
attached to the modeled elements.

Many analysts and designers use only the class diagrams.
Others use development process allowing scheduling of
several types of UML diagrams. Some development process
with UML adopts an approach based on use case diagrams in
order to draw class diagrams [28].

The design classes represent the architectural
abstractions, which facilitate the production of elegant and
extensible software structures. Design patterns, including
those of Gang of Four (GoF) [10] promote the identification
of these classes.

Semi-formal graphical notations (such as UML) are
generally intuitive, but do not allow rigorous reasoning. On
contrary, formal notations (such as B) provide mathematical
proofs, but are not easy to understand. Several studies
coupling between semi-formal and formal notations exist.
Among these works, we studied profitably those linking
UML to B [16]. Works of coupling between UML and B go
to the combination of UML and B in a new language named
UML-B [9].

By using the technique of refinement, the approach
described by Ben Ammar et al. [4] allows of a UML/OCL
class diagram showing all the formal properties of the future
system. The obtained class diagram, containing the analysis
classes, represents a coherent abstract model of the future
system. Such a model can be concretized (identification of
design and implementation classes) by applying the
technique of refinement.

III. APPROACH TO DESIGN A SYSTEM IN A STEP-WISE

MANNER

Our approach consists on the proposal of a catalogue of
refinement patterns (see Section IV) for incremental
development of UML class diagrams. These patterns are
built to solve recurrent problems in the development of the
static part of an OO application, such as: introduction of an
intermediate class [3], reification of an attribute, an
enrichment of an association, decomposition of an aggregate
and the introduction of a new entity. These patterns are
characterized by a precise framework composed of six parts
showing the fundamental aspects of a refinement pattern.
These parts are Intention, Motivation, Solution, Verification,

Example and See also. In addition, the proposed refinement
patterns are formalized into B specifications, using
systematic rules of translation of UML into B [11][16]. This
helps to identify precisely the conditions of applicability, the
evolution of a UML class diagram and correctness of the
refinement relationship. Such B formalization can be reused
with advantage when instantiating these patterns by the
designer. Thus, in a joint development UML/B, the designer
selects and applies a refinement pattern on his abstract
specification. Then, he obtains a new specification, which
includes new properties related to the application of the
refinement pattern. Verification of the correctness of the
refinement relation between two specifications is entrusted to
Atelier B tool [30].

In the following, we detail a new approach used for
development of UML class diagrams guided by refinement
patterns. Such development process allows establishing a
UML class diagrams, which models the key concepts of the
application and has properties considered to be coherent
covering the constraints of the application resulting from its
specifications. The process advocated has four steps:
Rewriting of requirements, Refinement strategy, Abstract
specification, and Refinement steps.

A. Rewriting of requirements

Currently, the specifications are often of poor quality.
Abrial [27] criticize these specifications to be directed too
towards a solution and to present mechanisms of realization
to the detriment of the explicitness of the properties of the
system to be conceived. We recommend to rewrite the
specifications in order to put forward the properties of the
future system and to facilitate the development of a suitable
strategy of refinement. For that purpose, we use the
recommendations of Abrial [17][27] for distinguishing the
functional safety and liveness properties.

B. Refinement strategy

Rewriting of requirements facilitates the development of
an adequate strategy of refinement. But, this does not
guarantee obtaining an “optimal” strategy of refinement.
Work making it possible to compare alternative strategies of
refinement for a given scope of application, in case of the
reactive systems, starts to appear [17][27].

C. Abstract specification

This stage aims to establish an abstract UML/OCL model
described by a class diagram based on the refinement
strategy previously defined. The UML/OCL class diagram
product is translated into B in order to formally verify its
coherence.

D. Refinement steps

The refinement process involves several steps. Each
refinement step takes as inputs three parameters: the class
diagram of level i, the proposed catalog of refinement
patterns and the properties resulting from the specifications
to be taken into account and produce as output the class
diagram of level i+1 (see Figure 1).

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Figure 1. Step of refinement

The consideration of the properties, which guide the
process of refinement, can be realized by applying
refinement patterns. The formal verification of the
correctness of the refinement step is entrusted to the AtelierB
tool through the translation of two class diagrams in two B
levels. The gluing invariant in B models making a link
between these two levels (abstract and refined) can be
established by reusing the B formalization of proposed
refinement patterns. The refinement process terminates when
all the explicit properties in the specification are taken into
account in accordance with the adopted refinement strategy.
Thus, ultimate UML/OCL class diagram obtained models the
key concepts of the system to achieve. In addition, it contains
the essential properties deemed formally consistent.

IV. REFINEMENT PATTERNS

Unlike architecture patterns [12], analysis patterns [22]
and design patterns [10] a refinement pattern, has a dynamic
character. Applied to a model of level i, a refinement pattern
produces a model of level i+1. Recently, refinement patterns
begin to appear for formalisms, such as Event-B [26], KAOS
[2] and B [1]. In [3], we offer refinement patterns to solve
recurring problems in incremental development of the static
part of an OO application using UML/OCL. A refinement
pattern has two parts: Specification (1) and Refinement (2).
A specification describes the UML/OCL class diagram of
level i. A refinement describes the UML/OCL class diagram
of level i+1 produced by applying the corresponding
refinement pattern on the model of level i. The proposed
refinement patterns, presented later, are described in the
same framework including six parts: Intention, Motivation,
Solution, Verification, Example and See Also.

In the following, we detail the patterns only by the
Intention, Motivation, Solution and See also.

A. Pattern 1: Class_Helper

1) Intention
It allows introducing a class Class_Helper between two

classes considered important with respect to the refinement
step considered. The direct relationship between the two
major classes is refined by a path connecting these two
classes through the intermediate class introduced.

2) Motivation
UML class diagram consists of four types of inter-class

relationships: generalization (or inheritance), association,
aggregation and dependence. In an incremental OO
modeling, it is advantageous to start with abstract inter-class

relationships. This subsequently facilitates the introduction
of details via intermediate classes to refine these abstract
relations.

3) Solution

(1)

(2)

Figure 2. Class_Helper specification
4) See also
Class_Helper [3] the pattern depends on the nature of the

relationship between two important classes P1 and P2:
generalization, association, aggregation, composition and
dependency. In addition, the intermediate class introduced
Helper can be connected to P1 and P2 using the same kind of
relationship or two relations of different nature.
Class_Helper the pattern can be applied in reverse order of
the concrete to the abstract. This process of abstraction - as
opposed to refinement - can be profitably used in an activity
of reverse engineering.

B. Pattern 2: Class_Attribute

1) Intention
When a class has an attribute modeling a concept

considered interesting and with well-defined operations, this
pattern allows to reify this attribute in a new class called
Class_Attribute. An aggregation relationship is introduced
between the enclosing class --aggregate-- and the class
reifying the concerned attribute --component--.

2) Motivation
For reasons of simplification, at a high level of

abstraction, a concept can be modeled as an attribute. Then,
according to details from the specifications, the same
concept can be retained as a class. This is justified by the
identification of well-defined operations applicable on this
concept by analyzing the introduced details. The type of the
attribute is rather discrete: integer, enumerated or
alphanumeric.

3) Solution

(1)

(2)

Figure 3. Class_Attribute specification

4) See also
The idea of reification of an attribute may be used with

advantage in an activity of restructuring (or refactoring) of
an existing OO models. Moreover, in [5], we proposed a

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

refactoring schema based on the reification of an attribute:
introduction of the concept of delegation.

C. Pattern 3: Class_Decomposition

1) Intention
It allows detailing the responsibilities of an original class

by introducing new classes. The original class and the
resulting classes are connected by relations of generalization
(inheritance). The number of the resulting classes is at least
equal to one. This pattern favors a top-down modeling. The
generalization covers mainly the following two cases [7]:
• Heritage subtype: You are an external model

system in which a class of objects (external) can be
decomposed into disjoint sub categories. We urge that
the parent, A, be deferred so that it describes a set of
objects not fully specified. The heir B can be effective
or delayed.

• Restriction inheritance: Inheritance of restriction
applies if the instances of B are among the instances of
A, those that satisfy a constraint expressed in the
invariant B and absent from the invariant A. A and B
should both be deferred or both effective.

2) Motivation
In a top-down modeling approach, it is advantageous to

start with a minimum number of classes. Sometimes we
think that factoring operations can cause problems with
implementation.

3) Solution
(1)

(2)

Figure 4. Class_Decomposition specification

4) See also
The pattern Class_Decomposition introduces the idea of

a decomposition of a class via inheritance relationship. Both
UML relationships: aggregation and composition can be
used for the decomposition of an aggregate entity modeled
by UML class.

D. Pattern 4: Class_NewEntity

1) Intention
It allows the introduction of UML class, which models a

separate entity. The introduced class is related to other
classes from abstract level through association relationships.

2) Motivation
In an incremental OO modeling, it is advantageous to

start with a minimum number of entities called very abstract
entities. This further promotes the introduction of details
through less abstract or concrete entities, called (e.g.,
equipment) to go from the abstract world to the concrete
world.

3) Solution
(1)

(2)

Figure 5. Class_NewEntity specification
4) See also
On the form, the two patterns Class_Helper and

Class_NewEntity produce similar effects. But onthe content,
they differ. In fact, they have two different gluing invariants.
In addition, the pattern Class_NewEntity is oriented towards
the horizontal refinement (specification stage) encouraging
the construction step-by-step of a business model of the
application, while the pattern Class_Helper is oriented
towards the vertical refinement (design stage) promoting the
gradual construction of a conceptual model of the
application.

E. Pattern 5: Refinement_Operation

1) Intention
This pattern provides a passage from an abstract

specification of operation into a more concrete one. It is
inspired by formal development practices used in B method.

2) Motivation
B method allows several types of refinement: data

refinement, control refinement and algorithmic refinement.
In control refinement, the following facts are observed:
• the operation to be refined retains the same

signature,
• its precondition can be strengthened,
• the nondeterministic behavior, described by

substitutions, can be reduced.
In UML framework, we can describe the control

refinement using Object Constraint Language (OCL)
notations for presenting both abstract and concrete
specification of operation to be refined.

3) Solution

(1)

(2)

Figure 6. Refinement_operation specification

4) See also
The pattern Refinement_Operation introduced the idea of

 control refinement. In the same way, we can define a pattern
of data refinement. This allows the introduction of concrete
variables (data). In this case, a gluing invariant, which links
abstract and concrete variables, should be explained. Both
control and data refinement are not mutually exclusive; they
can be operated in the same refinement step. It is obvious

1 1

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

that the pattern Refinement_Operation can be applied
combining these two types of refinement.

F. Pattern 6: Class_Abstraction

1) Intention
The pattern Class_Abstraction introduced software

qualities, such as efficiency, reusability and scalability in a
software development guided by successive refinements.
Thus, it allows factoring common properties - attributes,
operations and relationships - of some classes within a
founding class.

2) Motivation
In the development process, each entity is modeled by a

class. But often, classes that are, in fact, variations of the
same concept are encountered. Several classes of a class
diagram have common characteristics. It is said that these
independent classes can be derived from a common ancestor.

The idea is to improve the modeling, a better
representation, facilitate data storage and thus avoiding
redundant features. For that, we can factor these common
features between the different classes into a new founding
class.

3) Solution
(1)

(2)

Figure 7. Class_Abstraction specification

4) See also
The pattern of change introduced by this pattern can be

used with advantage in the process of refactoring to do to
improve the structure (or quality) of an existing OO
software. A refinement process with evidence rather favors
obtaining a correct by construction software. The pattern
Class_Abstraction advocates for the inclusion of other
software qualities, such as efficiency, scalability from the
initial phases of a development process guided by successive
refinements. Besides, the risk of overlooking the efficiency
quality in a process of refinement with proof is mentioned in
[24].

G. Pattern 7: Class_Association

1) Intention
This pattern can increase the power of an association by

considering both as an association relationship and an
association class. This can be justified by the emergence of
the specific details of the association relationship. Indeed,
such details may be attached to extremities of the
association. An association class can only exist if the
association relationship exists.

2) Motivation
Sometimes, an association must own properties. These

properties cannot be attached to the extremities of this
association.

3) Solution

(1)

(2)

Figure 8. Class_Association specification

4) See also
The specification part of Class_Helper pattern is identical

to the pattern Class_Association. However, their refinement
parts are different.

V. EXAMPLE

Our objective is to develop a system to control the access
of person to the various buildings of a workplace, inspired by
[17]. In [17], this application is modeled in Event-B. In this
work, we provide a joint development in UML / OCL and B
of this application by using the proposed refinement patterns.
Proof tools and animation associated with B are used to
perform automated verification of UML /OCL graphical
models. Control is carried out from the authorizations
assigned to the concerned persons. An authorization allows a
person, under the control of the system, to enter in some
buildings and not in others. The authorizations are
permanent, i.e., they cannot be modified during the operation
of the system. When a person is inside a building, his exit
must also be controlled so that it is possible to know, at any
moment, who are in a given building. A person can move
from a building to another only if these two buildings are
interconnected. The communication between the buildings is
done through one-way doors. Each door has an origin
building and a destination building. A person may enter a
building by crossing a door if it is unlocked. The doors
being physically locked, a door unlocked for only one
authorized person requiring entering the building. A green
LED associated with each door is lit when the requested
access is authorized, prerequisite for unlocking the door.
Similarly, a red LED associated with each door is lit when
the requested access is denied to the door. Each person has a
magnetic card. Card readers are installed at each door to read
the information on a card. Near each reader, there is a
turnstile that is normally blocked; no one can cross it without
the control of the system. Each turnstile is equipped with a
clock, which determines in part its behavior.

A. Rewriting of requirements

Rewriting of requirements of the case study aims to
highlight the properties of this application. In order to
classify these requirements, we used the following labels:
• EQU-Equipment to reference the description of

equipment used by the application.

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

• FUN-Equipment/Actor to reference an attached
functionality of a device or an actor.

• MODEL-FUN-number to reference an assured by the
application functionality.

• FUN-MODEL to reference the main function of the
application.

In Table I, we will list the different requirements of the
application of building access control. Each property is
described by a relatively short text and a reference.

TABLE I. REWRITING OF REQUIREMENTS OF AN ACCESS CONTROL SYSTEM.

The system is responsible for controlling access of a number of people to several buildings. FUN-MODELE
Each person is allowed to enter certain buildings (and not others). Buildings not recorded in this
authorization are implicitly prohibited. This is a permanent assignment.

MODELE-FUN-1

Any person in a building is allowed to be there. MODELE-FUN-2
The geometry of the building is used to define which buildings can communicate with each other
and in what direction.

MODELE-FUN-3

A building does not communicate with itself. MODELE-FUN-4
A person cannot move from a building where it is to a building where he wants to go if these two
buildings communicate with each other.

MODELE-FUN-5

Any person authorized to be in a building should be allowed to go to another building that
communicates with the first.

MODELE-FUN-6

The buildings are connected together by means of gates, which are one-way. We can therefore
speak of origin and destination buildings for each door.

EQU-DOOR

A door cannot be taken if it is unlocked. A door can be unlocked for only one person at the same
time. Conversely, any person involved in the unlocking of a door cannot be in one another.

FUN-DOOR-1

When a door is unlocked for a certain person, it is in the building behind the door in question. In
addition, this person is allowed to go to the destination building of same door.

FUN-DOOR-2

When a door is unlocked for a certain person, it is in the building behind the door in question. In
addition, this person is allowed to go to the destination building of same door.

FUN-PERSON

A green LED associated with each door. EQU-GREENLIGHT
A green LED is lit when the requested access is allowed (pre requisite for unlocking the door). FUN-GREENLIGHT
A red LED associated with each door EQU-REDLIGHT
The red light of a door whose access has been denied. FUN-REDLIGHT
The red and green lights of the same door cannot be turned on simultaneously. FUN-LIGHT
Each person has a magnetic card that contains his permissions for different buildings. EQU-CARD
Card readers are installed at each door to read the information on a card. EQU-CARDREADER

B. Refinement strategy

Table II specifies the order of consideration of the
properties and requirements of our case study: building
access control. This defines our refinement strategy for
incremental development of this application. The initial
model is limited to the basic abstract properties of the
application. Each refinement step includes a small number of
properties from the abstract to the concrete. The refinement
process ends when all properties from rewriting requirements
were indeed taken into account. Equipment, such as door,
card or LED that the application uses is introduced during
the final stages of the adopted refinement process.

C. Abstract specification

We begin by developing a simple and very abstract class
diagram that takes into account only the properties (FUN-
MODELE, MODELE-FUN-2) (see Figure 9).

Figure 9. Initial class diagram

TABLE II. REFINEMENT STRATEGY

Model Equipment and Function
Initial // First FUN-MODELE, MODELE-FUN-2 // MODELE-FUN-1

Second MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5, MODELE-FUN-6
Third // Fourth EQU-DOOR, FUN-DOOR-2 // FUN-DOOR-1, FUN-PERSON

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Fifth EQU-GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHT, FUN-REDLIGHT
Sixth // Seventh FUN-LIGHT // EQU-CARD, EQU-CARDREADER

D. Refinement steps

1) First refinement
In this step, we consider only the property (MODELE-

FUN-1). This property indicates that the authorizations
provided by the association "authorization" are permanent.
For that, we applied data refinement based on pattern of
Refinement_Operation. This refinement consists on the
addition of a frozen constraint to the association
"authorization" presented in Figure 9.

2) Second refinement
In this step, we inject into our system the properties

(MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5
and MODELE-FUN-6). These properties allow the
introduction of the concept of communication between
buildings. A person cannot move from one building to
another only if the two buildings are interconnected.

The association “communication” is introduced into the
class diagram as a recursive association on the class
Building (see Figure 10). Such refinement requires a
rewriting of the OCL expressions of the operation “pass”.
Thus, we reused the refinement pattern
Refinement_Operation.

Figure 10. Second refinement

5) Third refinement

The third refinement consists in adding new equipment
(EQU-DOOR and FUN-DOOR-2). A door can make the
connection between two buildings. This leads us to define
the concept of door: each door has original building and a
destination building. Indeed, the communication between the
buildings is through a door. Thus, we must remove the
association "communication", introduced in the previous
refinement, and replace it with two associations between
origin Building and Door and between Door and destination
Building. This change can be obtained by applying the
refinement pattern Class_Helper with: communication as
association; origin as association1; destination as

association2; Door as Helper and Building as both P1 and
P2. Finally, the property (FUN-DOOR-2) is that a door is a
component of a building. Thus, we introduce a composition
relationship between Door and Building (see Figure 11).

Figure 11. Third refinement

4) Fourth refinement
The fourth step of refinement consists on the definition of

the functionality of the class Door introduced in the previous
step (FUN-DOOR-1).

Figure 12. Fourth refinement

Such a transformation requires the revision of the
semantics of the operation "pass". Indeed, property (FUN-

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

PERSON) is that a person must appear before a door to
move from one building to another. This requires the
introduction of an association "acceptance" between Person
and Door. Thus, the operation "pass" should not take an
instance of the class Building as formal parameter but rather
an instance of the class Door. For this, we apply the
refinement pattern Refinement_Operation to generate the
class diagram presented in Figure 12.

5) Fifth refinement
In this step, we consider the properties (EQU-

GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHT
and FUN-REDLIGHT). These properties define two new
classes with their characteristics as components of the class
Door. The application of refinement pattern
Class_Decomposition with composition as a relationship
between Door and RedLight and GreenLight as components
generates the class diagram shown in Figure 13.

Figure 13. Fifth refinement

6) Sixth refinement
In this step, we note the similarity between the two

classes RedLight and GreenLight (FUN-LIGHT). Thus, we
decided to factor the common properties between these two
classes. The application of refinement pattern
Class_Abstraction generates the class diagram shown in
Figure 14. The pattern Class_Abstraction allows introducing
a new class named Light, which groups common properties
between GreenLight and RedLight.

Figure 14. Sixth refinement

7) Seventh refinement
The last properties (EQU-CARD and EQU-

CARDREADER) will be taken into account in this final
stage of refinement.

Figure 15. Seventh refinement

Two intermediate classes can be introduced:
• the class Card associated with each person,

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

• the class CardReader associated with each door of a
building.

These classes are related as follows: Card is connected to
Person, Card is connected to CardReader and CardReader is
connected to Door.

The application of refinement pattern Class_Helper on
the association “acceptance” generates the class diagram of
Figure 15.

E. Verification of the obtained system

Formal verification of such refinements can be exploited
if the language is equipped with formal refinement

machinery, allowing the proof of the correctness of the
refined specification relative to the abstract one. We
proposed to use B for this purpose, using systematic
derivation rules from UML into B. Such a translation of
UML into B uses profitably the B formalization of the
proposed refinement [6]. Indeed, the properties described in
the form of B invariant --including gluing invariant-- are
retrieved and instantiated when translating UML into B. As
an illustration, Figure 16 and 17 shows the B formalization
of pattern Class_Helper introduced in Section 4.

MACHINE

 B_Class_Helper_a
SETS

 OBJECTS = {p11, p12, p13,
 p21, p22, p23, h1, h2, h3}
ABSTRACT_CONSTANTS

 P1, P2
PROPERTIES

P1 ⊆ OBJECTS & P2 ⊆ OBJECTS ∧
 P1 ∩ P2 = Ø ∧ P1 = {p11, p12, p13} ∧
 P2 = {p21, p22, p23}
VARIABLES

p1, p2, association
INVARIANT

p1 ⊆ P1 & p2 ⊆ P2 ∧
 association ∈ p1 ↔p2
INITIALISATION

p1 := {p11,p12, p13} ||
p2 := {p21, p22, p23} ||
association := {p11↦p21, p11↦p22,
 p11↦p23, p12↦p21, p12↦p22,
 p12↦p23, p13↦p21, p13↦p22,
 p13↦p23}
END

Figure 16. B formalization of pattern Class_Helper

Figure 17. B formalization of pattern Class_Helper

The abstract machine B_Class_Helper_a formalizes the
abstract level of Class_Helper pattern using the systematic
translation rules of UML to B [11], while B_Class_Helper_r
machine formalizes the refined level of the same pattern. The
link between these two levels is described by the REFINES
clause. Gluing invariant introduced in B_Class_Helper_r
machine guarantees the correction of the refinement relation
between the two levels of Class_Helper pattern. Formal
verifications on the B models corresponding to UML/OCL
class diagram are related to the coherence of the initial
abstract model and the correction of each refinement step.
They call the generator of proof obligations (conjectures to
prove) and provers in B platform. The correction of B
models, respecting requirements, is forward to the ProB tool
[29], allowing animation and model checking.

TABLE III. TABLE OF THE STATE OF B SPECIFICATIONS

 nPO1 nPRi2 nPRa3 uUn4 %Pr
Initial model 9 1 8 0 100
Second refinement 4 0 4 0 100
Third refinement 7 0 7 0 100
Fourth refinement 12 3 9 0 100
Fifth refinement 12 2 10 0 100
Seventh refinement 26 0 26 0 100
1 Number of Proof Obligations
2 Number of Proof Obligations proved Interactively
3 Number of Proof Obligations proved Automatically
4 Number of Proof Obligations Unproved

REFINEMENT

B_Class_Helper_r
REFINES

B_Class_Helper_a
ABSTRACT_CONSTANTS

HELPER
PROPERTIES

HELPER ⊆ OBJECTS ∧ HELPER ∩ P1 = Ø∧
HELPER ∩ P2 = Ø∧ HELPER = {h1, h2, h3}
ABSTRACT_VARIABLES

p1, p2, helper,
association1, association2
INVARIANT

helper ⊆ HELPER ∧
association1 ∈ p1↔helper ∧
association2 ∈ helper↔p2 ∧

ran(association1) = dom(association2) ∧

/∗Gluing Invariant∗/

dom(association) = dom(association1) ∧

ran(association) = ran(association2) ∧

ran(association1) = dom(association2) ∧

association = (association1;association2)

INITIALISATION

p1:={p11,p12,p13} k p2:={p21,p22,p23} ||
helper := {h1, h2, h3} ||
association1:={p117↦h1,p117↦h2,p117↦h3,
 p127↦h1, p127↦h2, p127↦h3,
 p137↦h1, p137↦h2, p137↦h3} ||
association2:={h17↦p21,h17↦p22,h17↦p23,
 h27↦p21, h27↦p22, h27↦p23,
 h37↦p21, h37↦p22, h37↦p23}
END

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Table III summarizes the proof obligations associated
with our case study. The seven proposed refinement promote
essentially the development of class diagrams correct by
construction. However, the designer could improve the
structure, without changing the semantic aspects of the class
diagram obtained by refinement using wisely the refactoring
technique [23][25].

VI. CONCLUSION AND FUTURE WORK

The main idea of this work is to propose intuitive
refinements as patterns, providing a basis for tools
supporting the refinement-driven modeling process. In this
paper, we have presented our catalogue of refinement
patterns. Formal verification of such refinements can be
exploited if the language is equipped with formal refinement
machinery, allowing the proof of the correctness of the
refined specification relative to the abstract one. We
proposed to use B for this purpose, using systematic
derivation rules from UML into B. The proposed refinement
patterns promote the identification of analysis classes that
model the key concepts, resulting from requirements.

Currently, we are exploring the following two tracks:
proposal of refinement patterns oriented design by retrieving
and adapting ideas from GoF patterns [10]; proposal of
refinement patterns oriented implementation, using the
object-oriented modeling universal data structures (Eiffel)
[7]. The next step of this work consists of automating
detecting and application of patterns in an appropriate
framework. In addition, we proposed a new approach,
allowing finding a refinement strategy for the development
of UML class diagrams guided by the refinement patterns.
An interesting idea is to preserve the history of pattern
application in development case studies in order to have a
traceability of the development process, allowing to back-
track on previous decisions.

REFERENCES

[1] A. Requet, “BART: A Tool for Automatic Refinement,” ABZ,
London, UK, September, 2008, pp. 345-345.
[2] A. van Lamsweerde, Requirements Engineering - From System
Goals to UML Models to Software Specifications, Wiley, 2009.
[3] B. Ben Ammar, M.T. Bhiri, and A. Benhamadou, “Refinement
Pattern: Introduction of intermediate class Class_Helper,” Conférence
en IngénieriE du Logiciel, CIEL, Rennes, France, Jun, 2012, pp. 1-6.
[4] B. Ben Ammar, M.T. Bhiri, and J. Souquières, “Event modeling for
construction of class diagrams,” RSTI - ISI, vol. 13, no. 3, 2008, pp.
131–155.
[5] B. Ben Ammar, M.T. Bhiri, and J. Souquières, “Refactoring pattern
of class diagrams based on the notion of delegation,” 7éme atelier sur
l'Evolution, Réutilisation et Traçabilité des Systèmes d’Information,
ERTSI, couplé avec le XXVI éme congrès INFORSID, Fontainebleau,
France, May, 2008, pp. 1-12.
[6] B. Ben Ammar, Contribution to the Systems Engineering:
Refinement and Refactoring of UML specifications, Editions
universitaires europeennes, 2012.
[7] B. Meyer, Object-oriented software construction, Prentice Hall,
1997.
[8] C. A. R. Hoare, “Communicating sequential processes,”
Communications of the ACM, vol. 21, no. 8, 1978, p. 666-677.

[9] C. Snook and M. Butler. 2006, “UML-B: Formal modeling and
design aided by UML,” ACM Trans. Softw. Eng. Methodol. vol. 15,
no. 1, January, 2006, pp. 92-122.
[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns, Addison-Wesley, 1995.
[11] E. Meyer and J. Souquières, “A Systematic Approach to
Transform OMT Diagrams to a B Specification,” Proceedings of the
World Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, September,1999, pp. 875-895.
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M.
Stal, Pattern-Oriented Software Architecture: a system of patterns,
John Wiley and Sons, 1996.
[13] G. Booch, “Object-Oriented Development,” IEEE Trans. Software
Eng., vol. 12, no. 2, 1986, pp. 211–221.
[14] G. Smith, The Object-Z Specification Language. Kluwer
Academic Publishers, 2000.
[15] H. Habrias and C. Stoquer, “A formal semantics for UML
refining,” XII Colloque National de la Recherche en IUT, CNRIUT'06,
Brest, France, Jun, 2006.
[16] H. Ledang, “Automatic Translation from UML Specifications to
B,” Proceedings of the 16th IEEE international conference on
Automated software engineering, San Diego, USA, November, 2004,
pp. 436-440.
[17] J. R. Abrial, Modeling in Event-B - System and Software
Engineering, Cambridge University Press, 2010.
[18] J. R. Abrial, The B Book - Assigning Programs to Meanings,
Cambridge University Press, 1996.
[19] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modeling
Language Reference Manual. 2 Boston, MA: Addison-Wesley, 2005.
[20] K. Beck and W. Cunningham, “A laboratory for teaching object-
oriented thinking,” ACM SIGPLAN Not., vol. 24, no. 10, 1989, pp. 1–
6.
[21] K. Waldèn and J. M. Nerson, Seamless object-oriented software
architecture: analysis and design of reliable systems, Prentice-Hall,
Inc., 1995.
[22] M. Fowler, Analysis Patterns: Reusable Object Models, Addison-
Wesley Professional, 1996.
[23] M. Fowler, Refactoring: Improving the Design of Existing
Code.Boston, MA, USA: Addison-Wesley, 1999.
[24] M. Guyomard, “Specification and refinement using B: two
pedagogical examples,” ZB2002 4th International B Conference,
Education Session Proceedings, Grenoble, France, January, 2002.
[25] R. Straeten, V. Jonckers, and T. Mens, “A formal approach to
model refactoring and model refinement,” Software and System
Modeling (2), 2007, pp. 139-162.
[26] T. S. Hoang, A. Furst, and J. R. Abrial, “Event-B Patterns and
Their Tool Support,” Software Engineering and Formal Methods,
International Conference on, Hanoi, Vietnam, November, 2009, pp.
210-219.
[27] W. Su, J. R. Abrial, R. Huang, and H. Zhu, “From Requirements
to Development: Methodology and Example,” The 13th International
Conference on Formal Engineering Methods, ICFEM, Durham, United
Kingdom, October, 2011, pp. 437-455.
[28] X. Castellani,“Cards stages of study of UML diagrams, Payment
orders of these studies,” Technique et Science Informatiques, vol. 21,
no. 8, 2002, pp. 1051–1072.
[29] The ProB Animator and Model Checker, User Manual,
http://www.stups.uni-duesseldorf.de/ProB/index.php5/User_Manual,
2013.
[30] Clearsy System Engineering, Atelier B, User Manual, Version
4.0, http://www.tools.clearsy.com/resources/User_uk.pdf, 2010.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

