PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Refinement Patterns for an Incremental Constructionof Class Diagrams

Boulbaba Ben Ammaiand Mohamed Tahar Bhiri
Faculty of Sciences of Sfax, Sfax University, Sfaunisia

"Boulbaba.Benammar@fss.rnu.tn
“Tahar_Bhiri@yahoo.fr

Abstract—Specifying complex systems is a difficult task, wbh

cannot be done in one step. In the framework of fonal

methods, refinement is a key feature to incrementbl develop
more and more detailed models, preserving correctiss in each
step. Our objective is an incremental developmentjsing the
technique of refinement with proof for UML specifications.
Indeed, UML suffers from two major weaknesses, nantg, it is

not based on a simple and rigorous mathematical fowation

and it does not support the concept of refinement ith proof of

correction. To achieve this, we advocate a develommt
framework combining the semi-formal features of UML/OCL

and the formal one from B method. We chose the B fimal

language in order to benefit from existing work dore on
coupling between UML and B. In addition, we proposeand
formalize in B the refinement patterns that promote
incremental development with proof of UML/OCL class
diagrams. We illustrate our purpose by the descrigbn of some
development steps of an access control system.

Keywords-UML ; OCL; refinement pattern; classdiagram

I. INTRODUCTION

Refinement is a process to transform an abstragl,;

specification into a concrete one [17]. It aimsdevelop
systems incrementally, which are correct by coetin
[18]. Refinement is defined in a rigorous way inrieas
formal languages, such as B [18], Event-B
Communicating Sequential Processes (CSP) [8], &
Object-Z [14]. The Unified Modeling Language (UM[19]
is an object-oriented modeling language widely useis a
de-facto standard, allowing graphical visualizatidrmodels
facilitating communication inter-actors. But, it efo not

support the concept of refinement. It has a depsnde

relationship stereotyped «refine» to connect antligor
refined concrete element) to a provider (abstrémmnent).
This relationship is subject to several interpietet [15] and
does not provide methodological assistance relatédw to
refine existing UML models. In addition, UML doe®tn
allow the verification of a refinement relationstiptween
two models. In a formal language, such as B, EBr@SP,
Z and Object-Z, although the refinement relatiopskiwell-
defined and well-supported (generation of proofgailons,
interactive prover, model checker and animator),
experienced designer finds more or less importifitdties
in identifying the different levels of abstracti¢an “optimal”
refinement strategy) for carrying out the procesk
refinement. Solutions based on the concept of ipattéike
the design patterns in Object-Oriented (OO) aptitioa-- to
guide the designer during the refinement procesggnbi
appear covering both the horizontal refinement

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

[17]

application areas as reactive systems [17][26]@7d the
vertical refinement under B. The horizontal refire[17]
consists in introducing new details in an existimgdel.
Each introduction of details to a model leads t@a& model,
which must be coherent with the previous one. iithe
case, we said that the second model refines tke dire.
Horizontal refinement aims at the progressive aitjon, by
successive refinement, of a coherent model fromradis
specifications, leading to the abstract formal gjpation of
future software or system.

The vertical refinement [17onsists in going from an
abstract model to a more concrete one, for exarbgle
reducing the non-determinism. The concrete modeh is
realization of the abstract model. For example, e
Automatic Refinement Tool (BART) [1] tool associgteith
B offers refinement rules that can be used in i@ Btages
of vertical refinement phase of a formal process
development. B and Event-B do not distinguish betwe
horizontal and vertical refinement. In fact, bo#tiimements
use two types of refinement allowed by B, i.e., adat
refinement and algorithms or control refinemen{[18
In the following, we briefly present in Section Bet
sting approach for construction of class diagraifhe
proposed approach is presented in Section 3. lticBet, we
present our catalog of refinement patterns usedarin
incremental specification development process.dctiSn 5,
'we illustrate the use of the proposed approachgusim
aMyccess control case study. Section 6 concludepdpisr and
proposes perspectives.

Il. RELATED WORK

UML is a graphical modeling language reference,
offering an important range of diagrams. Class rdiag
which can express the static aspects of a systenmre of
the most used diagrams. At the "heart” of the dbjec
modeling, it shows the classes and interfacessystem and
the various relationships between them. Approactoes
construction and verification of class diagrams ehdeen
highlighted in several studies [4][7][10][13][20][R

The decomposition unit of object-oriented systesthe
concept of class. A coarse characterization ofsesnakes

distinction between the analysis classes belgngnthe

space of problems (external world in modeling ceund

design classes and implementation belonging tepaee of
Osqutions.

Methodological works supporting the identificatiarf
the useful and relevant classes were completed.ethod
known as “Underline the names in the document ef th

forrequirements" is proposed in [13]. The results bE t
application of this method are very sensitive te tised

50

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

style. This can lead designers to omit useful elasshile
introducing classes, which are not justified.
Class, Responsibility, Collaboration (CRC) card3] [@e

Example and See also. In addition, the proposéaderaent
patterns are formalized into B specifications, gsin
systematic rules of translation of UML into B [114]. This

paper cards on which the designers evoke the paltent helps to identify precisely the conditions of apability, the

classes according to their responsibilities antheaway in
which they communicate. This
interaction within teams but
identification of quality classes is uncertain.

evolution of a UML class diagram and correctnesghef

technique promotegefinement relationship. Such B formalization canrbused
its contribution to eth with advantage when instantiating these patternsthzy

designer. Thus, in a joint development UML/B, thesigner

Meyer [7] provides the general heuristics for adsss selects and applies a refinement pattern on hisraabs
discovery, based on the theory of Abstract Datae$yp specification. Then, he obtains a new specificativhich

(ADT). He defines different uses of inheritancetifysg
their uses.

includes new properties related to the applicatidnthe
refinement pattern. Verification of the correctnaxfsthe

The Business Object Notation (BON) method [21]refinement relation between two specificationsigiested to

introduces useful advices to identify the clas#tegroposes
two structural concepts (cluster and class), twonst
conceptual relations (customer and inheritance)aasitnple
language of assertions expressing the semanticegiep
attached to the modeled elements.

Many analysts and designers use only the classaniiesy
Others use development process allowing schedubihg
several types of UML diagrams. Some developmentge®
with UML adopts an approach based on use caseadiegin
order to draw class diagrams [28].

The design classes represent the
abstractions, which facilitate the production oégant and
extensible software structures. Design patternsluding
those of Gang of Four (GoF) [10] promote the idaatiion
of these classes.

architectur

Atelier B tool [30].

In the following, we detail a new approach used for
development of UML class diagrams guided by refiapm
patterns. Such development process allows estalgish
UML class diagrams, which models the key concepthe
application and has properties considered to beereolh
covering the constraints of the application resgltirom its
specifications. The process advocated has fours:step
Rewriting of requirements, Refinement strategy, tPdug
specification, and Refinement steps.

%. Rewriting of requirements

Currently, the specifications are often of poor lijya
Abrial [27] criticize these specifications to bedatited too
towards a solution and to present mechanisms tizagan

Semi-formal graphical notations (such as UML) areto the detriment of the explicitness of the propsrof the

generally intuitive, but do not allow rigorous reasg. On
contrary, formal notations (such as B) provide reathtical
proofs, but are not easy to understand. Severaliestu
coupling between semi-formal and formal notatiomgste
Among these works, we studied profitably those itigk
UML to B [16]. Works of coupling between UML and d®
to the combination of UML and B in a new languagened
UML-B [9].

system to be conceived. We recommend to rewrite the
specifications in order to put forward the propestof the
future system and to facilitate the developmena sliitable
strategy of refinement. For that purpose, we use th
recommendations of Abrial [17][27] for distinguisli the

functional safety and liveness properties.

B. Refinement strategy

described by Ben Ammar et al. [4] allows of a UMICD
class diagram showing all the formal propertietheffuture
system. The obtained class diagram, containingatiaysis
classes, represents a coherent abstract modek diutare
system. Such a model can be concretized (iderttditaf

an adequate strategy of refinement. But, this doest
guarantee obtaining an “optimal” strategy of refivemt.
Work making it possible to compare alternativetetyees of
refinement for a given scope of application, ineca$ the
reactive systems, starts to appear [17][27].

design and implementation classes) by applying the: Abstract specification

technique of refinement.
[Il. APPROACH TO DESIGN A SYSTEM IN A STERVISE
MANNER

Our approach consists on the proposal of a catalofu
refinement patterns (see Section

This stage aims to establish an abstract UML/OCdeho
described by a class diagram based on the refitemen
strategy previously defined. The UML/OCL class déag
product is translated into B in order to formallgrify its
coherence.

IV) for incremlenta

development of UML class diagrams. These pattemes aD. Refinement steps

built to solve recurrent problems in the developtranthe
static part of an OO application, such as: intréidncof an
intermediate class [3], reification of an attributan

enrichment of an association, decomposition ofggregate
and the introduction of a new entity. These pafieane
characterized by a precise framework composedxgbasits
showing the fundamental aspects of a refinemertenpat
These parts are Intention, Motivation, Solutionyifieation,

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

The refinement process involves several steps. Each
refinement step takes as inputs three parameteesclass
diagram of level i, the proposed catalog of refiean
patterns and the properties resulting from theifipations
to be taken into account and produce as outputctass
diagram of level i+1 (see Figure 1).

51

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Class disgram
Refinement level 1 Mow
Pattemns Froperties
Catalog ™y M i .

|' Refinement Step]
v

Class dizgram
lewvel 1+]

Figure 1. Step of refinement

The consideration of the properties, which guide th

relationships. This subsequently facilitates thothuction
of details via intermediate classes to refine thalsstract
relations.

3) Solution
(1) al assocation o

il assoationi o) Helper assodaton? P2
(2

Figure 2. Class_Helper specification

process of refinement, can be realized by applying 4) Seealso

refinement patterns. The formal verification of
correctness of the refinement step is entrustélaet@dtelierB
tool through the translation of two class diagram$wo B
levels. The gluing invariant in B models making iakl
between these two levels (abstract and refined) lman
established by reusing the B formalization of psgzb
refinement patterns. The refinement process temesnahen
all the explicit properties in the specificatiore daken into
account in accordance with the adopted refinenteateg)y.
Thus, ultimate UML/OCL class diagram obtained medeé
key concepts of the system to achieve. In addittagntains
the essential properties deemed formally consistent

IV. REFINEMENTPATTERNS

Unlike architecture patterns [12], analysis patej22]
and design patterns [10] a refinement patternahdgnamic
character. Applied to a model of level i, a refirrmpattern
produces a model of level i+1. Recently, refinenpatterns
begin to appear for formalisms, such as Event-B, [RBOS
[2] and B [1]. In [3], we offer refinement patterts solve
recurring problems in incremental development ef static
part of an OO application using UML/OCL. A refinenie
pattern has two parts: Specification (1) and Refieet (2).
A specification describes the UML/OCL class diagram
level i. A refinement describes the UML/OCL clasagidam

the

Class_Helper [3] the pattern depends on the nafuttee
relationship between two important classes P1 a@d P
generalization, association, aggregation, compmositand
dependency. In addition, the intermediate clasmodioiced
Helper can be connected to P1 and P2 using the kiachef
relationship or two relations of different nature.
Class_Helper the pattern can be applied in reverder of
the concrete to the abstract. This process of adigin - as
opposed to refinement - can be profitably usechimetivity
of reverse engineering.

B. Pattern 2: Class Attribute

1) Intention

When a class has an attribute modeling a concept
considered interesting and with well-defined operes, this
pattern allows to reify this attribute in a new sdacalled
Class_Attribute. An aggregation relationship isradticed
between the enclosing class --aggregate-- and kass c
reifying the concerned attribute --component--.

2) Motivation

For reasons of simplification, at a high level
abstraction, a concept can be modeled as an atribhen,
according to details from the specifications, thame
concept can be retained as a class. This is potifiy the
identification of well-defined operations applicabbn this

of

of level i+1 produced by applying the correspondingcOncept by analyzing the introduced details. Tipe tgf the

refinement pattern on the model of level i. Theposed
refinement patterns, presented later, are describethe
same framework including six parts: Intention, Mation,
Solution, Verification, Example and See Also.

In the following, we detail the patterns only byeth
Intention, Motivation, Solution and See also.

A. Pattern 1. Class Helper

1) Intention
It allows introducing a class Class_Helper between
classes considered important with respect to tfireraent
step considered. The direct relationship between tito
major classes is refined by a path connecting these
classes through the intermediate class introduced.
2) Motivation
UML class diagram consists of four types of intkass
relationships: generalization (or inheritance), oa&gion,
aggregation and dependence. In an incremental
modeling, it is advantageous to start with abstirstetr-class

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

attribute is rather discrete: integer, enumerated o
alphanumeric.
3) Solution
EnclosingClass
(1) attribute : enum{state1 stateZ, state3}
EnclosingClass ' Attﬂ'butec.rassl
" —
@) | {
[statet] [state2 || [state3]
I | I 1 I |
Figure 3. Class_Attribute specification
4) Seealso

OO The idea of reification of an attribute may be useéth

advantage in an activity of restructuring (or réfgiog) of
an existing OO models. Moreover, in [5], we progbse

52

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

refactoring schema based on the reification of tibate:
introduction of the concept of delegation.

C. Pattern 3: Class_Decomposition

1) Intention
It allows detailing the responsibilities of an anigl class
by introducing new classes. The original class &mel
resulting classes are connected by relations oérgdination
(inheritance). The number of the resulting clagsest least
equal to one. This pattern favors a top-down madelThe
generalization covers mainly the following two a§4:

system in which a class of objects (external) can

Heritage subtype: You are an external modek

3) Solution
1)

)

Figure 5. Class_NewEntity specification
4) Seealso
On the form, the two patterns Class_Helper and
Class_NewEntity produce similar effects. But ontbatent,
hey differ. In fact, they have two different glgimvariants.

bin addition, the pattern Class_NewEntity is orientewards

decomposed into disjoint sub categories. We urge th e horizontal refinement (specification stage)oemaging

the parent, A, be deferred so that it describestao
objects not fully specified. The heir B can be etifee
or delayed.

Restriction inheritance: Inheritance of restriction
applies if the instances of B are among the ins=mud
A, those that satisfy a constraint expressed in th
invariant B and absent from the invariant A. A d@d
should both be deferred or both effective.

2) Motivation

In a top-down modeling approach, it is advantagdous

the construction step-by-step of a business mofleh®
application, while the pattern Class_Helper is red
towards the vertical refinement (design stage) jtorg the
gradual construction of a conceptual model of the
application.

e

E. Pattern 5: Refinement_Operation

1) Intention
This pattern provides a passage from an abstract
specification of operation into a more concrete.oihds

start with a minimum number of classes. Sometimes Wwinspired by formal development practices used medhod.

think that factoring operations can cause problemith
implementation.
3) Solution

)

4

Figure 4. Class_Decomposition specification

)

4) Seealso
The pattern Class_Decomposition introduces the idea
a decomposition of a class via inheritance relatigm Both
UML relationships: aggregation and composition da®
used for the decomposition of an aggregate entigeated
by UML class.

D. Pattern 4: Class_NewEntity

1) Intention
It allows the introduction of UML class, which neld a
separate entity. The introduced class is relatedbther
classes from abstract level through associati@atiogiships.
2) Motivation
In an incremental OO modeling, it is advantageaus t
start with a minimum number of entities called vabstract
entities. This further promotes the introduction dstails
through less abstract or concrete entities, calledy.,
equipment) to go from the abstract world to the ccete
world.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

2) Motivation
B method allows several types of refinement: data
refinement, control refinement and algorithmic mefnent.
In control refinement, the following facts are otveeal:
the operation to be refined retains the same
signature,
its precondition can be strengthened,
the nondeterministic behavior, described by
substitutions, can be reduced.
In UML framework, we can describe the control
refinement using Object Constraint Language (OCL)
notations for presenting both abstract and concrete
specification of operation to be refined.
3) Solution

Context A1
op2ration|)
pre: praad
post postAd

Al

@)

opération;)
L

Context 413
opération|)

pre: pre_rad
post post_rad

Al

2

opérationy)

Figure 6. Refinement_operation specification
4) Seealso
The pattern Refinement_Operation introduced tha afe
control refinement. In the same way, we can dedipattern
of data refinement. This allows the introductioncohcrete
variables (data). In this case, a gluing invariarttich links
abstract and concrete variables, should be explaiBeth
control and data refinement are not mutually exetjshey
can be operated in the same refinement step. dbvw#ous

53

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

that the pattern Refinement_Operation can be applie 2) Motivation

combining these two types of refinement. Sometimes, an association must own properties. eThes
F. Pattern 6: Class Abstraction prope_rtigs cannot be attached to the extremitieghisf
' - - association.
1) Intention)) 3) Solution
The pattern Class_Abstraction introduced software
qualities, such as efficiency, reusability and abdity in a 1) i association =
software development guided by successive refinenen . .
Thus, it allows factoring common properties - htites, AT
operations and relationships - of some classesirwigh
founding class. @)
2) Motivation H i
In the development process, each entity is modejed 1 - S —

class. But often, classes that are, in fact, tiaria of the
same concept are encountered. Several classesclasa

diagram have common characteristics. It is said these The specification part of Class_Helper pattermiéntical

independent classes can be derived from a com ".....to the pattern Class_Association. However, thdineenent
The idea is to improve the modeling, a better patte —) '
parts are different.

representation, facilitate data storage and thusidang

Figure 8. Class_Association specification

4) Seealso

redundant features. For that, we can factor thesenmon V. EXAMPLE

features between the different classes into a remding L

class. Our objective is to develop a system to controlabeess
3) Solution of person to the various buildings of a workplanspired by

[17]. In [17], this application is modeled in Eve®it In this
work, we provide a joint development in UML / OChdB
of this application by using the proposed refinetpatterns.
Proof tools and animation associated with B ared use
perform automated verification of UML /OCL grapHhica
models. Control is carried out from the authorizasi
assigned to the concerned persons. An authorizatiows a
person, under the control of the system, to emtesdme
buildings and not in others. The authorizations are
permanent, i.e., they cannot be modified duringogheration
of the system. When a person is inside a building,exit
must also be controlled so that it is possiblertovk at any
Figure 7. Class_Abstraction specification moment, who are in a given building. A person caoven
from a building to another only if these two builds are
4) Seealso interconnected. The communication between the ingjtdis
The pattern of change introduced by this pattemtma done through one-way doors. Each door has an origin
used with advantage in the process of refactorindd to building and a destination building. A person manee a
improve the structure (or quality) of an existingDO building by crossing a door if it is unlocked. THdeors
software. A refinement process with evidence rafagors being physically locked, a door unlocked for onlyeo
obtaining a correct by construction software. Thatggn authorized person requiring entering the buildiAggreen
Class_Abstraction advocates for the inclusion ofieot LED associated with each door is lit when the retpok
software qualities, such as efficiency, scalabifitym the access is authorized, prerequisite for unlocking toor.
initial phases of a development process guidedibgessive Similarly, a red LED associated with each dooritisvhen
refinements. Besides, the risk of overlooking tfficiency the requested access is denied to the door. Easbrpkas a
quality in a process of refinement with proof isntiened in magnetic card. Card readers are installed at eamhtd read
[24]. the information on a card. Near each reader, tliera
. turnstile that is normally blocked; no one can sribsvithout
G. Pattern7: Class_Association the control of the system. Each turnstile is egeéppith a
1) Intention clock, which determines in part its behavior.
This pattern can increase the power of an associaty A Rewriti f . X
considering both as an association relationship and "™ ewrtting of requirements
association class. This can be justified by thergemee of Rewriting of requirements of the case study aims to
the specific details of the association relatiopstindeed, highlight the properties of this application. Inder to
such details may be attached to extremities of thé&lassify these requirements, we used the followabels:
association. An association class can only existh# < EQU-Equipment to reference the description of
association relationship exists. equipment used by the application.

1)

Al AlZ
a1 ati
att2 at3 Adl

o[} apif) att2
op2[) op3{] op2() opa()

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8 54

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

FUN-Equipment/Actor to reference an attachede
functionality of a device or an actor.

MODEL-FUN-number to reference an assured by the 1N & wil
application functionality. application of building access

application.

control. Each propes

FUN-MODEL to reference the main function of the

In Table I, we will list the different requirement$ the

described by a relatively short text and a refezenc

TABLE I. REWRITING OF REQUIREMENTS OF AN ACCESS CONTROL SYSVIE

The system is responsible for controlling access mfimber of people to several buildings.

FUN-MOIBEEL

Each person is allowed to enter certain buildiregsl(not others). Buildings not recorded in this
authorization are implicitly prohibited. This igparmanent assignment.

MODELE-FUN-1

Any person in a building is allowed to be there.

MODELE-FUN-2

The geometry of the building is used to define WHiaildings can communicate with each othe
and in what direction.

rMODELE-FUN-3

A building does not communicate with itself.

MODELE-FUN-4

A person cannot move from a building where it istiouilding where he wants to go if these tw|
buildings communicate with each other.

OMODELE-FUN-5

Any person authorized to be in a building shouldlb@ved to go to another building that
communicates with the first.

MODELE-FUN-6

The buildings are connected together by meanstesgahich are one-way. We can therefore
speak of origin and destination buildings for edobr.

EQU-DOOR

A door cannot be taken if it is unlocked. A doon e unlocked for only one person at the sam
time. Conversely, any person involved in the unioglof a door cannot be in one another.

eFUN-DOOR-1

When a door is unlocked for a certain person,iit ihe building behind the door in question. In
addition, this person is allowed to go to the degton building of same door.

FUN-DOOR-2

When a door is unlocked for a certain person,iit ikie building behind the door in question. In
addition, this person is allowed to go to the degton building of same door.

FUN-PERSON

A green LED associated with each door.

EQU-GREENLIGHT

A green LED is lit when the requested access @t (pre requisite for unlocking the door).

FUNERNLIGHT

A red LED associated with each door

EQU-REDLIGHT

The red light of a door whose access has beendienie

FUN-REDLIGHT

The red and green lights of the same door canntitrbed on simultaneously.

FUN-LIGHT

Each person has a magnetic card that containehsigsions for different buildings.

EQU-CARD

Card readers are installed at each door to reasfivenation on a card. EQU-CARDREADER
B. Refinement strategy

Table Il specifies the order of consideration ok th
properties and requirements of our case study:dingil ——
access control. This defines our refinement styatéy T — s
incremental development of this application. Thétidh s anaibimcac PRrT—
modgl i.s limited to the basic apstract propertid¢stie suthorzaton | SumorzzeBulang | Budng
application. Each refinement step includes a smatiber of o) 7
properties from the abstract to the concrete. Hfiagment
process ends when all properties from rewritingiiregnents
were indeed taken into account. Equipment, suckloas, E:r::r‘:;fz:;::‘”;;“j;i'mDa
card or LED that the application uses is introdudedng 2 el SR g ERCiGEaa)
the final stages of the adopted refinement process. pest: set situstedBuiding-= nouses ba)
C. Abstract specification Figure 9. Initial class diagram

We begin by developing a simple and very abstriassc
diagram that takes into account only the properties\-
MODELE, MODELE-FUN-) (see Figure 9).

TABLE II. REFINEMENT STRATEGY
Model Equipment and Function
Initial // First FUN-MODELE, MODELE-FUN-2 // MODEE-FUN-1
Second MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5, MIEL E-FUN-6
Third // Fourth EQU-DOOR, FUN-DOOR-2 // FUN-DOORHAUN-PERSON

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8 55

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Fifth

EQU-GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHTFUN-REDLIGHT

Sixth // Seventh

FUN-LIGHT // EQU-CARD, EQU-CARDRIEXR

association2; Door as Helper and Building as badthaRd

D. Refinement steps
1) Firstrefinement

P2. Finally, the property (FUN-DOOR-2) is that odds a
component of a building. Thus, we introduce a cositum

In this step, we consider only the property (MODELE relationship between Door and Building (see Fidiire

FUN-1). This property indicates that the authoist
provided by the association "authorization" arenparent.
For that, we applied data refinement based on npaté
Refinement_Operation. This refinement consists ba t
addition of a frozen -constraint to the association
"authorization" presented in Figure 9.

2) Second refinement

In this step, we inject into our system the prdpsert
(MODELE-FUN-3, MODELE-FUN-4, MODELE-FUN-5
and MODELE-FUN-6). These properties allow the
introduction of the concept of communication betwee
buildings. A person cannot move from one buildimg t
another only if the two buildings are interconnecte

The association “communication” is introduced ithe
class diagram as a recursive association on thss cla
Building (see Figure 10). Such refinement requies
rewriting of the OCL expressions of the operatigass”.

Thus, we reused the refinement pattern
Refinement_Operation.
Person
Eiuatian
pass{ba : Bulding) J
T i shuatedBuliding
3 ! . authorzaton authonzedBuilding Buiding I
% frozen} 1u* i 4
"-.\ communicaEdBueding | -
*, communicaiion

Context Personpass{ba:Bulldng)
pre: s2if.authonzedBuliding-=-Inciudes(ba)

and ba.communicategbukding-~nciudes) s2if stuatedBulldng)
post: self siuatedBuliding-—Inciudes{oa)

Figure 10.Second refinement

5) Third refinement

The third refinement consists in adding new equipime
(EQU-DOOR and FUN-DOOR-2). A door can make the
connection between two buildings. This leads uslgfine
the concept of door: each door has original bugdamd a
destination building. Indeed, the communicationeein the
buildings is through a door. Thus, we must remave t
association "communication”, introduced in the [wes
refinement, and replace it with two associationswben
origin Building and Door and between Door and dedion
Building. This change can be obtained by applyihg t
refinement pattern Class_Helper with: communicatam
association; origin as associationl; destination

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

Parssn
suation
passiba - Buding)
T 1| stuatedSulding
\
Y authorzegBuliding | Buiding
Apihorzation Z
. . {frozen} 1 -
b}
N destnafionBulidng | 1 1 | oAgnBulidng
Y destination oigin
"\
5
b peetnationDoor | ' 1 | onginDoos
' =

Context Person: pass(ba-Bulding)
pra: seif.authorizedEwiding--nciudes|ba)

and ba.orginDoor destinationBullding--ncludes{ sl stuatetSulding)

post sef siuatedEulding-~ncluses(ba)

Figure 11.Third refinement

4) Fourth refinement

The fourth step of refinement consists on the d@édim of

Context Person:pass(do:000r)

e SEIf.aCCeptadDoar--Inciudes{do)

post: S8if shu3tedBulENg=d0. 0estinatansulidIng
and s=if.acceptedioor--exciides|{do)

¥
i
i

Person

sifusation
1 | passido : Doany
1|, stustedBuaing
autharizedB ufdin .
g [Budng |
awthartzation z L
{fozen} 1-
destnaticnBuliang | 1 1) ongnBuliding
aesma‘.m‘f \ angin
{
destinationDogr .l'I 1 T\ onginboor
Doar
acceptanca accepiedDoor

oA

fockipe : Person)
urniock(pe - Person)

Conbext Doar-iock{pe;Parson)
pre: pe.accepied Door-~excldes(sei)
and sef.originSulding = pe.situatesSuliding

post: pe acceptedDoar-=nclugas/seif)
Context Door-uniock{pe:Pemsan)
el pe.EeCepted Do 0r-~EECi e s 58T
and notjself.originBuliding = pe.siuatedBuliding)

and pe awhonzetEwding-=incudes|do.destinalionSulding)

and pe. awhorzetBuding-~Insudes) do. destinatlonSulding)

Figure 12.Fourth refinement

the functionality of the class Door introducedfie fprevious
step (FUN-DOOR-1).

Such a transformation requires the revision of the

a8emantics of the operation "pass". Indeed, prop@rtyN-

56

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

PERSON) is that a person must appear before a woor
move from one building to another. This requireg th
introduction of an association "acceptance” betwerson
and Door. Thus, the operation "pass" should noé tak
instance of the class Building as formal paramietgrather
an instance of the class Door. For this, we apply t
refinement pattern Refinement_Operation to genetiage
class diagram presented in Figure 12.

5) Fifth refinement

In this step, we consider
GREENLIGHT, FUN-GREENLIGHT, EQU-REDLIGHT

and FUN-REDLIGHT). These properties define two new

classes with their characteristics as componentheotlass
Door. The application of refinement pattern
Class_Decomposition with composition as a relatigms
between Door and RedLight and GreenLight as commene
generates the class diagram shown in Figure 13.

Context Person ::piS-S[UOZDD'E-',

pee: sef acceptedDoor-=inciudes)do)

post seif sfiuatedBuliEng=do.destinatonSuliding
and E".JCE&DEEJ‘!’D[—:—EI&UMS:GD:

¥
7

Persan situation
y | passide : Doany
1|, siuatedBuiding
autharizedButding | Buligng [,
autharization strozen] 1.7 b
destnationBaligng 1 Pk
destination x origin
/
|
anDoar (" 1 ! | onginDoar
Dot
acceplance ot i lackipe : Berson)
01 unioekipe - Parson)
Camenlight RedLight
siate : ool state - boal
anreen onFed{}
amGreeni) omRed()

Figure 13.Fifth refinement

6) Sixth refinement

In this step, we note the similarity between the tw
classes RedLight and GreenLight (FUN-LIGHT). Thug
decided to factor the common properties betweesettwo
classes. The application of refinement pattern
Class_Abstraction generates the class diagram shown
Figure 14. The pattern Class_Abstraction allowsoohiicing
a new class named Light, which groups common ptigser
between GreenLight and RedLight.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

the properties (EQU-

Context Person::pass(doDoo)

pre: self acceptedDoor-+ncludss{do)

post sail skuatedBullsing=do. destinationSulding
and seif. accepteoDoor-~exciunas| o)

J

I
i

Persmn
gituation
1 |Pass{do: Doorj
1|, sMuatedBuiging
aunarzesSuwiding [Bulisng
authorization
! ffrozen] 1. i
destinationBullding l’“ 1} orgnBullgng
destination | \ onigin
Y
destinatanDoar ."I' 1 \\ onginDoar
Dioar
acceptance accepiedDoos

fackipe * Persan)
uriack(pe - Person)

Context Light-on() T

pre; sef state=Faise Ligot

post =i state=Tue = stats - paol

Context Light=-ofT) it

pee: seff state=Trus n::|

post: seff state=False -
[sresnLignt [Reasgnt
I L

Figure 14.Sixth refinement
7) Seventh refinement
The last properties (EQU-CARD and EQU-

CARDREADER) will be taken into account in this fina
stage of refinement.

Conbext Person:pass{do:Doar
pre: seif.ownar. accepledCaniReader. 0oor--Incites(s|
post: self siuatedBulldng=-do destinationBuliding
and self owner.acceptedCandReader door-~excludes(do)

,

*

Persan
haolder Etuation
1 | pass{do: Daoor)
i sttuatedBullding
authonzedBusding BuliEng s
1|, owner hd
aumnorzaton
{frozen) 1.7
Card 4 !
destinationBulkEng originBullEng
updatsi| destination | ongin
1
destinationDoar /"‘ 1 III. originDioor
= Door
acceplecCarifeaner voniniinnd o
= n Inck(pe : Persan
actepkance o.1 [|=heckics . Cand) 1 o !
i uniock{pe : Person|

t

Lignt
stale : bool
on()

]

—

[ereenugn Jj |
[1t [1|

Figure 15.Seventh refinement

Two intermediate classes can be introduced:
the class Card associated with each person,

57

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

building.

These classes are related as follows: Card is cteuhéo
Person, Card is connected to CardReader and CatdRisa
connected to Door.

The application of refinement pattern Class_Helper
the association “acceptance” generates the claggamn of
Figure 15.

E. Verification of the obtained system
Formal verification of such refinements can be eitpt

the class CardReader associated with each door ofraachinery, allowing the proof of the correctness tioé

refined specification relative to the abstract onde
proposed to use B for this purpose, using systemati
derivation rules from UML into B. Such a translatiof
UML into B uses profitably the B formalization ohet
proposed refinement [6]. Indeed, the propertiesritesd in
the form of B invariant --including gluing invarign are
retrieved and instantiated when translating UMloiBt As

an illustration, Figure 16 and 17 shows the B fdiration

of pattern Class_Helper introduced in Section 4.

if the language is equipped with formal refinement
MACHINE p1, p2, association
B_Class_Helper_a INVARIANT
SETS plSP1&p2CSP2A

OBJECTS = {p11, p12, p13,
p21, p22,p23, h1, h2, h3}
ABSTRACT_CONSTANTS
P1, P2
PROPERTIES
P1 € OBJECTS & P2 S OBJECTS A
P1NP2=@ AP1={pll,pl2 pl3}A

association € p1 ©&p2
INITIALISATION
pl:={p11,p12,p13}||
p2:={p21, p22,p23}||
association := {p11-p21, pl1-p22,
pl1-p23,pl2-p21, pl2-p22,
pl2-p23, pl13+-p21, pl3-p22,

P2 ={p21, p22, p23} p13-p23}
VARIABLES END
Figure 16.B formalization of pattern Class_Helper
REFINEMENT ran(association1) = dom(association2) A
B_Class_Helper_r /*Gluing Invariantx/
REFINES dom(association) = dom(association1) N\

B_Class_Helper_a
ABSTRACT_CONSTANTS

HELPER

PROPERTIES

HELPER < OBJECTS A HELPER N P1 = @A
HELPER N P2 = @A HELPER = {h1, h2, h3}
ABSTRACT_VARIABLES

p1, p2, helper,

association1, association2

INVARIANT

helper € HELPER A

associationl € pl<helper A

association2 € helperop2 A

ran(association) = ran(association2) N\
ran(association1) = dom(association2) N\
association = (association1;association2)
INITIALISATION
pl:={p11,p12,p13} k p2:={p21,p22,p23} ||
helper :={h1, h2, h3} ||
association1:={p117+~h1,p117-h2,p117~h3,
pl27-h1, p127~h2, p127-h3,
p137+-h1, p137-h2, p137-h3} ||
association2:={h17+-p21,h17-p22,h17-p23,
h27w-p21, h27-p22,h27+-p23,
h37+-p21, h37-p22,h37+-p23}

END

Figure 17.B formalization

of pattern Class_Helper

The abstract machine B_Class_Helper_a formalizes th

abstract level of Class_Helper pattern using gfstesnatic

translation rules of UML to B [11], while B_Classelder_r

machine formalizes the refined level of the santeepa The

link between these two levels is described by tBE&IRES

clause. Gluing invariant introduced in B_Class_ldelp
machine guarantees the correction of the refinemadation

between the two levels of Class_Helper pattern.miabr
verifications on the B models corresponding to URICL

class diagram are related to the coherence of rhiali

TABLE IIl. TABLE OF THE STATE OFB SPECIFICATIONS
nPd | nPRF | nPR4 | uUr’® | %Pr
Initial model 9 1 8 0 100
Second refinement 4 0 4 0 100
Third refinement 7 0 7 0 100
Fourth refinement 12 3 9 0 100
Fifth refinement 12 2 10 0 100
Seventh refinement 26 0 26 0 100

abstract model and the correction of each refineérstap.
They call the generator of proof obligations (caohjees to
prove) and provers in B platform. The correctiminB
models, respecting requirements, is forward toRtwB tool
[29], allowing animation and model checking.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

" Number of Proof Obligations

2 Number of Proof Obligations proved Interactively
¥ Number of Proof Obligations proved Automatically
* Number of Proof Obligations Unproved

58

PATTERNS 2014 : The Sixth International Conferences on Pervasive Patterns and Applications

Table Ill summarizes the proof obligations assedat
with our case study. The seven proposed refineprentote
essentially the development of class diagrams coiiog
construction. However, the designer could improbe t
structure, without changing the semantic aspecthetlass
diagram obtained by refinement using wisely thacgfring
technique [23][25].

VI. CONCLUSIONAND FUTUREWORK

[9] C. Snook and M. Butler. 2006, “UML-B: Formal nelthg and
design aided by UML,” ACM Trans. Softw. Eng. Methadml. 15,
no. 1, January, 2006, pp. 92-122.

[10] E. Gamma, R. Helm, R. Johnson, and J. Vlissidessign
Patterns, Addison-Wesley, 1995.

[11] E. Meyer and J. Souquiéres, “A Systematic Apphoao
Transform OMT Diagrams to a B Specification,” Procegdiof the
World Congress on Formal Methods in the Development
Computing Systems, Toulouse, France, September, pp98,75-895.
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Somawgerand M.

The main idea of this work is to propose intuitive Stal, Pattern-Oriented Software Architecture: a systénpatterns,

refinements as patterns,
supporting the refinement-driven modeling procéssthis

paper, we have presented our catalogue of refineme

patterns. Formal verification of such refinements de
exploited if the language is equipped with formefimement
machinery, allowing the proof of the correctness tioé
refined specification relative to the abstract onwe

providing a basis for stool

John Wiley and Sons, 1996.

[13] G. Booch, “Object-Oriented Development,” IEEE fisaSoftware
Eng., vol. 12, no. 2, 1986, pp. 211-221.

ﬁ4] G. Smith, The Object-Z Specification Languageluwer
Academic Publishers, 2000.

[15] H. Habrias and C. Stoquer, “A formal semantics &ML
refining,” Xll Collogue National de la Recherche en [WONRIUT'06,
Brest, France, Jun, 2006.

proposed to use B for this purpose, using systemati[16] H. Ledang, “Automatic Translation from UML Spications to

derivation rules from UML into B. The proposed nefinent
patterns promote the identification of analysisssts that
model the key concepts, resulting from requirements
Currently, we are exploring the following two track
proposal of refinement patterns oriented designelryeving
and adapting ideas from GoF patterns [10]; propasal
refinement patterns oriented implementation, usihg
object-oriented modeling universal data structuesfel)
[7]. The next step of this work consists of autanmat
detecting and application of patterns in an appab@r

framework. In addition, we proposed a new approac

allowing finding a refinement strategy for the dieyenent
of UML class diagrams guided by the refinement grat.
An interesting idea is to preserve the history attgrn
application in development case studies in ordehaee a
traceability of the development process, allowingback-
track on previous decisions.

REFERENCES

[1] A. Requet, “BART: A Tool for Automatic RefinemehtABZ,
London, UK, September, 2008, pp. 345-345.

[2] A. van Lamsweerde, Requirements Engineering - Frgstet
Goals to UML Models to Software Specifications, Wijl2009.

[3] B. Ben Ammar, M.T. Bhiri, and A. Benhamadou, “Refment
Pattern: Introduction of intermediate class Clasdpéteé’ Conférence
en IngénieriE du Logiciel, CIEL, Rennes, France, J0d22pp. 1-6.
[4] B. Ben Ammar, M.T. Bhiri, and J. Souquiéres, “Everodeling for
construction of class diagrams,” RSTI - ISI, vol. 18, 8, 2008, pp.
131-155.

[5] B. Ben Ammar, M.T. Bhiri, and J. Souquieres, “Rettaing pattern
of class diagrams based on the notion of delegatf@me atelier sur
I'Evolution, Réutilisation et Tracabilité des Systs d’Information,
ERTSI, couplé avec le XXVI éme congrées INFORSID, Foetfaleau,
France, May, 2008, pp. 1-12.

[6] B. Ben Ammar, Contribution to the Systems Engimeg:
Refinement and Refactoring of UML specifications, itibds
universitaires europeennes, 2012.

[7] B. Meyer, Object-oriented software construction, fice Hall,
1997.

[8]C. A. R. Hoare, “Communicating sequential procegse
Communications of the ACM, vol. 21, no. 8, 1978666-677.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-343-8

B,” Proceedings of the 16th IEEE international coefee on
Automated software engineering, San Diego, USA, Nde&m2004,
pp. 436-440.

[17] J. R. Abrial, Modeling in Event-B - System andfi®/are
Engineering, Cambridge University Press, 2010.

[18] J. R. Abrial, The B Book - Assigning ProgramsN®anings,
Cambridge University Press, 1996.

[19] J. Rumbaugh, I. Jacobson, and G. Booch, Theié¢hi¥lodeling
Language Reference Manual. 2 Boston, MA: Addison-#je<1005.
[20] K. Beck and W. Cunningham, “A laboratory for ¢eiang object-
oriented thinking,” ACM SIGPLAN Not., vol. 24, no011989, pp. 1-

h[21] K. Walden and J. M. Nerson, Seamless object-@tesbftware

architecture: analysis and design of reliable systePnentice-Hall,
Inc., 1995.

[22] M. Fowler, Analysis Patterns: Reusable Objecd®ls, Addison-
Wesley Professional, 1996.

[23] M. Fowler, Refactoring: Improving the Design of ifting

Code.Boston, MA, USA: Addison-Wesley, 1999.

[24] M. Guyomard, “Specification and refinement using ®vo

pedagogical examples,” ZB2002 4th International Bnf€rence,
Education Session Proceedings, Grenoble, Franceadar2002.

[25] R. Straeten, V. Jonckers, and T. Mens, “A formapraach to
model refactoring and model refinement,” Software aBybktem
Modeling (2), 2007, pp. 139-162.

[26] T. S. Hoang, A. Furst, and J. R. Abrial, “EvéhtPatterns and
Their Tool Support,” Software Engineering and Fornvthods,
International Conference on, Hanoi, Vietham, Novemi26Q9, pp.
210-219.

[27] W. Su, J. R. Abrial, R. Huang, and H. Zhu, “Fré&aquirements
to Development: Methodology and Example,” The 1Bifernational
Conference on Formal Engineering Methods, ICFEMham, United
Kingdom, October, 2011, pp. 437-455.

[28] X. Castellani,“Cards stages of study of UML deags, Payment
orders of these studies,” Technique et Science Irdtques, vol. 21,
no. 8, 2002, pp. 1051-1072.

[29] The ProB Animator and Model Checker, User Manual,
http://lwww.stups.uni-duesseldorf.de/ProB/index.phpgeiU Manual,

2013.

[30] Clearsy System Engineering, Atelier B, User Mdn¥&rsion
4.0, http://www.tools.clearsy.com/resources/Usempdfk2010.

59

