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Abstract-Researchers have observed that multistage clustering 

can accelerate convergence and improve clustering quality. 

Two-stage and two-phase fuzzy C-means (FCM) algorithms 

have been reported. In this paper, we demonstrate that the 

FCM clustering algorithm can be improved by the use of static 

and dynamic single-pass incremental FCM procedures. 
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I. INTRODUCTION 

The FCM algorithm provides a soft (fuzzy) assignment 
of patterns to clusters [1]. The assignment is represented by 
a partition matrix. The algorithm starts with either seeding 
the FCM with an initial partition matrix or through initial 
cluster centers and attempts to improve the partition matrix 
according to a given quality criterion. 

  Traditionally, in each of the FCM iterations, the 
algorithm is applied to the entire data set represented as a 
vector residing in the processor memory and representing a 
multi-dimensional set of measurements. Recently, however, 
the FCM algorithm, as well as numerous other clustering 
and data-mining algorithms, such as K-means, ISODATA, 
Kohonen neural networks (KNN), expectation 
maximization, and simulated annealing [1]-[6], have been 
exposed to a relatively new challenge referred to as “big-
data.” Often, the enormous amount of data available online 
cannot fit processors’ physical memory. In fact, often the 
data does not even fit secondary memory. Given that 
input/output operations are generally the most taxing 
computer operations, working on the entire data set in every 
FCM iteration requires numerous consecutive reads of 
massive amounts of data. A scenario that might challenge 
the traditional approach to FCM clustering occurs when 
portions of the data are generated or become available 
dynamically and it is not practical to wait for the entire data 
set to be available. 

This brings the need for incremental clustering into the 
forefront. Incremental clustering is also referred to as a 
single-pass clustering, whereas the traditional clustering is 
referred to as multi-pass clustering [7]-[11]. The idea is to 
cluster a manageable portion of the data (a data block) and 
maintain results for the next manageable block until 
exhausting the data. Under this approach, each block is 
processed by the algorithm a limited number of times, 
potentially only once. Ideally, a block, along with the 
preliminary number of initial centers selected should be as 
large as possible, occupying as much of the available 
internal processor memory. One might question the validity 

of “visiting” every data element for a limited number of 
iterations in a specific order as opposed to the traditional 
approach which considers every piece of data in each 
iteration. 

A related approach is the multi-resolution or multistage 
clustering. Researchers observed that a multistage-based 
training procedure can accelerate the convergence and 
improve the quality of the training as well as the quality of 
the classification/decision phases of many of the clustering 
algorithms [5][12][13]. For example, our previous research 
reports show that the pyramid K-means clustering 
algorithm, the pyramid FCM, and multi-resolution KNN 
yield two-to-four times convergence speedup [13]. Both the 
multistage clustering and the incremental clustering apply 
an approach of sampling the data. In the multistage 
clustering, data is sampled with replacement, whereas in 
incremental clustering, due to the cost of replacement, the 
data is sampled without replacement. In both cases the 
validity of the sampling has to be addressed. 

This paper describes a new approach for incremental 
FCM clustering. In difference from the pyramid FCM 
approach, the sampling is done without replacement. 
Furthermore, the sampling size is fixed. On the other hand, 
two measures are applied to the data in order to overcome 
the fact that each data block is processed only one time. 
First, the algorithm starts with a relatively large number of 
clusters and scales the number down in the last stage. This is 
referred to as a two-phase procedure. Hence, in the 
intermediate stages (first phase) each block might affect 
different cluster centers. A second and innovative version of 
the algorithm enables a dynamic number of clusters. Again, 
the algorithm starts with a relatively large number of 
clusters; however, each transaction on a block might change 
(increase or decrease) the number of clusters. In both cases 
the algorithms work on “chunks” of data referred to as 
blocks. This paper presents several experiments with multi-
pass and static/dynamic single-pass versions of the FCM 
and empirically evaluates the validity of the static and 
dynamic incremental clustering approach. 

The main contributions of this paper are: 1) a new 
approach, described in Section III.F, for incremental 
clustering, where the number of clusters is relatively high 
and is followed by clustering the resultant centers, is 
presented — this approach, increases the validity of 
incremental clustering, and 2) a second approach, described 
in Section III.G, where initially the number of clusters is 
relatively high and the number of clusters dynamically 
changes throughout execution, provides better incremental 
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clustering quality/validity, and can be used to resolve the 
issue of identifying the right number of cluster centers.  

A literature review performed shows numerous papers 
on incremental clustering. To the best of our knowledge 
there are no reports on research that applies the operations 
listed in this paper to the FCM algorithm. 

The rest of the paper is organized in the following way. 
Section II reviews related research. Section III provides 
details of several single-pass and multi-pass variants of 
FCM clustering and lists metrics used to assess the quality 
of clustering. Section IV describes a set of experiments 
conducted to assess the performance and validity of the 
incremental clustering algorithms described in Section III, 
and Section V concludes with findings and proposes further 
research.  

II. REVIEW OF RELATED RESEARCH 

Clustering is a widely-used data classification method 
applied in numerous research fields, including image 
segmentation, vector quantization (VQ), data mining, and 
data compression [14]-[20]. K-means is one of the most 
commonly used clustering algorithms; a variant of the K-
means algorithm — the Linde, Buzo, and Gray (LBG) VQ 
algorithm with unknown probability distribution of the 
sources — is utilized in many applications [1][16]. The LBG 
algorithm has been intensively researched. Some of these 
research results relevant to K-means and FCM are reviewed 
next. 

Lloyd proposes an iterative optimization method for 
quantizer design, it assumes that the distribution of the data 
is unknown and attempts to identify the optimal quantizer 
[21]. This approach is equivalent to 1-means (that is, K-
means with    ). While Lloyd’s method yields optimal 
minimum mean square error (MMSE) for the design of one 
dimensional quantizer, its extension to multi-dimensional 
data quantizer (i.e., VQ) with unknown distributions is not 
guaranteed to yield optimal results [21]. Consequently, K-
means with      is not guaranteed to reach a global 
optimum. 

 The LBG method for VQ with unknown underlying 
distribution  generalizes Lloyd’s iterative method and sets a 
VQ design procedure that is based on K-means [16]. The 
LBG VQ procedure is currently the most commonly 
used/researched VQ approach. Garey has shown that the 
LBG VQ converges in a finite number of iterations, yet it is 
NP-complete [22]. Thus, finding the global minimum 
solution or proving that a given solution is optimal is an 
intractable problem. Another problem with K-means is that 
the number of clusters ( ) is fixed and has to be set in 
advance of executing the algorithm. ISODATA is a 
generalization of K-means which allows splitting, merging, 
and eliminating clusters dynamically [23][24]. This might 
lead to better clustering (better local optimum) and 
eliminate the need to set   in advance. ISODATA, however, 
is computationally expensive and is not guaranteed to 
converge [2].  

Several clustering algorithms and combinatorial 
optimization techniques, such as genetic algorithms and 
simulated annealing, have been devised in order to enforce 

the clustering algorithm out of local minima [4][25][27].  
These schemes, however, require long convergence time, 
especially for large clustering problems. FCM and fuzzy 
ISODATA generalize the crisp K-means and ISODATA. 
The FCM clustering algorithm is of special interest since it 
is more likely to converge to a global optimum than many 
other clustering algorithms, including K-means. This is due 
to the fact that the cluster assignment is “soft” [28][29]. On 
the other hand, the FCM attempt to “skip” local optima may 
bear the price of numerous soft iterations and can cause an 
increase in computation time. FCM is used in many 
applications of pattern recognition, clustering, classification, 
compression, and quantization including signal and image 
processing applications such as speech coding, speech 
recognition, edge detection, image segmentation, and color-
map generation [28]-[35]. Thus, improving the convergence 
time of the FCM is of special importance.  

Multistage processing is a well-known procedure used 
for reducing the computational time of several applications, 
specifically, image processing procedures. This method uses 
a sequence of reduced resolution versions of the data to 
execute an image processing task. Results of execution at a 
low resolution stage are used to initialize the next, higher 
resolution stage. For example, Coleman proposes an 
algorithm for image segmentation using K-means clustering 
[14]. Hsiao has applied Coleman’s technique for texture 

segmentation [36]. He used a 
 

  
-sample of the image to 

identify   . Huang and Zhu have applied the Coleman 
algorithm to DCT based segmentation and color separation 

respectively [37][38]. Like Hsiao, they used 
 

  
-of the 

image-pixels to set up the parameters of the final clustering 
algorithm, where the final clustering is performed on the 
entire image. They found that the final cluster-centers 
obtained in the training-stage are very close to the final 
cluster centers obtained from clustering the entire image. 
This lends itself to a two-stage K-means procedure that uses 
one low resolution sample to initiate the parameters of the 
actual clustering. Pyramid processing is a generalization of 
the two-stage approach where the resolution of samples is 
growing exponentially and each execution stage doubles the 
number of samples. 

Additional applications of multistage architectures are 
reported in the literature [27][31][39]. Rosenfeld surveys the 
area and proposes methods for producing the multistage 
snapshots of an image [40]. Kasif shows that multistage 
linking is a special case of ISODATA [41] and Tilton uses 
multistage for clustering remote sensing data [42].  Tamir 
introduces a pyramid multistage method to non-supervised 
training in the context of K-means and neural networks. He 
has shown that the pyramid approach significantly 
accelerates the convergence of these procedures [12][13].  

Several papers deal with accelerating the convergence of 
FCM [39][45][46]. Altman has implemented a two-stage 
FCM algorithm [47]. The first stage operates on a random 
sample of the data and the second stage uses the cluster 
centers obtained in the first stage to cluster the entire set.   

Cheng improves the method proposed by Altman and 
has investigated a two-phase approach [31]. The first phase 
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implements a linear multistage algorithm which operates on 
small random slices of the data. Each slice contains    of 
the data. The algorithm finds the cluster centers of the first 
slice (say   ), then uses these centers as initial centers for 
clustering a sample that contains the first slice and an 
additional slice (  ) obtained through random sampling. 
After running the multistage phase for   stages, the final 
centers for the combination of slices {           which 
contain     of the entire data are obtained. Next, in the 
second phase, these centers are used to cluster the entire 
data.  

Other approaches for improving the convergence rate of 
clustering include data reduction techniques and data 
sampling using hypothesis testing [48][49]. 

A related research effort deals with clustering of very 
large data sets that are too big to fit into the available 
memory. One approach to this problem is to use incremental 
algorithms [10][11][27]. Several of these algorithms load a 
slice of the data, where the size of a slice is constrained by 
the available memory, and cluster this slice [7][9]. Results 
of clustering current slices (e.g., centers, partition matrices, 
dispersion, etc.) are used in the process of clustering 
upcoming slices.  Hore has proposed a slice based single-
pass FCM algorithm for large data sets [39]. The proposed 
method lumps data that has been clustered in previous slices 
into a set of weighted points and uses the weighted points 
along with fresh slices to commence with the clustering of 
the entire set in one path [39]. Another approach for 
clustering large data sets is to sample, rather than slice, the 
data [49]. 

Instead, in this report, the incremental approach we use 
has two phases. In the first phase, a very large set of clusters 
is used. Practically, we are trying to fit as many elements in 
a block and as many clusters per block as possible in the 
memory. In the second phase, after processing all the 
blocks, a process of clustering the centers obtained from the 
last block is applied.  

It is interesting to note that K-means, FCM, Neural 
Networks (e.g., KNN), and many other iterative 
optimization algorithms have two main modes of operation, 
the batch mode and the parallel-update mode. For example, 
in the batch mode execution of FCM, each iteration 
considers every pattern individually and the centers are 
updated with respect to every pattern considered. The 
parallel-update mode, which is less computationally 
expensive and is the predominantly used mode in most 
current applications, assigns all the patterns to the relevant 
clusters and then updates the centers. In this context, the 
slice approach which is used for large data sets can be 
considered as a hybrid of batch and parallel update.  

This brings the issue of parallel processing of clustering 
algorithms. Several ways to partition and distribute the 
clustering task have been considered [19][39][42][50]-[52]. 
One possible way is to assign a set of samples or a slice of 
data to each processor and eventually merge the cluster 
centers obtained from each processor into one set of centers. 
We plan to address this problem as a future research subject. 

III. FUZZY C-MEANS CLUSTERING VARIANTS 

In this section, we present several variants of FCM 
clustering. 

A. The Classical Fuzzy C-Means Clustering Algorithm 

The FCM algorithm is a generalization of the crisp K-
means clustering. Actually, the generalization is quite 
intuitive. In the K-means algorithm, set membership is 
crisp. Hence, each pattern belongs to exactly one cluster. In 
the FCM, set membership is fuzzy and each pattern belongs 
to each cluster with some degree of membership. The 
following formalizes this notation.  

 Let               , where      , be a set of  , 
 -dimensional vectors representing the data to be clustered 
into  clusters                with cluster centers                
              . Under the FCM, each element    

belongs to every cluster   with some degree of 

membership    . Hence, the matrix   [   ], referred to as 

the partition matrix, represents the fuzzy cluster assignment 
of each vector    to each cluster   . The goal of FCM is to 

identify a partition matrix  , such that   optimizes a given 
objective function. A commonly used FCM objective 
function is defined to be: 

                      ∑∑   
   

 

 

 

 

 ‖     ‖ (1) 

where     is the weighting exponent. In this research,   is 
set to the most commonly used and proposed value of 2 
[28]. 

The most common measures for FCM clustering quality 
are: 1) the value of the objective function, 2) the partition 
coefficients, 3) the classification entropy, 4) measures of 
deviation of the partition matrix from a matrix obtained with 
uniformly distributed data, and 5) measures of induced 
fuzziness [24][28][44]. It should be noted that some of the 
quality criteria are derived from distortion measures. Hence, 
in this case, the goal is to minimize distortion, and high 
quality means low distortion. In other words, the quality can 
be considered as the inverse of distortion. Measures 1 
through 5 assume that the end result of the clustering is soft. 
Nevertheless, in many cases, it is desirable to obtain “hard 
clustering” assignment to be used for VQ, image 
segmentation, or other classification applications. In these 
cases, two additional quality criteria can be considered: 6) 
the rate distortion function, and 7) the dispersion matrix 
[2][44]. Of all these measures, 1, 6, and 7 are most 
commonly used. Specifically, for metric 1, the functional 
   can be interpreted as a generalized distortion measure, 

which is the weighted sum of the squared distances from all 
the points in the cluster domain to their assigned cluster 
center. The weights are the fuzzy membership values 
[28][29]. Hence, this metric is proportional to the inverse of 
the quality of FCM. Lower distortion denotes higher quality. 
Metrics 6 and 7 are further elaborated in the next section.  

In general, the rate distortion function is used when the 
FCM is utilized for quantization. In this case, after 

convergence, the matrix   [   ]  is defuzzified; e.g., by 
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using a nearest neighbor assignment. The compression rate 
of FCM is fixed by the selection of   . Hence, the rate 
distortion quality-measure boils down to the MMSE, given 
by:  

                        
 

 
∑ ∑ ‖     ‖

     

 

   

 (2) 

Again, lower distortion denotes higher quality. When the 
clustering is used for classification, a quality criteria that 
measure the density of cluster as well as the relative 
distance between clusters can be used to estimate the 
recognition accuracy. In this case, a dispersion measure can 
be used. To elaborate, let 

 
                be the set of 

clusters obtained through “hard clustering,” and let   
             be the set of the corresponding cluster 
centers, then   , the within dispersion matrix of the cluster 
  , is defined to be the covariance matrix of the set of 
elements that belong to    . The within dispersion matrix 
of  ,   ) is a given function of the entire set of the within 
dispersion matrices of the individual clusters. For example, 
the elements of   can be the averages of the compatible 
elements of    for       . The between dispersion 
matrix of  ,    , is the covariance matrix of  . The quality 
of the clustering can be expressed as a function of the within 
dispersion matrix   and the between dispersion matrix  . 
A commonly used dispersion function is [44]: 

                  
 

(3) 

where       is the trace of the matrix  .  

B. The Fuzzy C-Means Algorithm 

The FCM consists of two main phases: setting/updating 
the membership of vectors in clusters and setting/updating 
cluster centers. Some variants of FCM start with a set of 
centers which induces a partition matrix [28][29]. In this 
case, seeding the algorithm relates to the initial selection of 
centers. Other variants initialize a partition matrix which 
induces initial centers [24]. Hence, seeding these FCM 
variants amounts to initializing the partition matrix. The two 
approaches are virtually equivalent that choosing one over 
the other is just a matter of convenience related to the 
format of data and the form of the application. We are using 
the second approach, where the seeding relates to selecting 
the initial partition matrix. Hence, in the seeding step, the 
membership matrix is initialized. In the next iterations, the 
cluster centers are calculated and the partition matrix is 
updated. Finally, the value of the objective function for the 
current classification is calculated. The algorithm terminates 
when a limit on the number of iterations is reached or a 
“short circuit condition” is met. A commonly used 
termination condition halts the algorithm when the 
derivative of the distortion function is small. Because the c-
means algorithm is sensitive to the seeding method, a 
variety of procedures have been proposed for selecting seed 
points [26][52]. The following paragraphs include a formal 
definition of the algorithm and presents a pseudo-code.    

Given a set of vectors                 , where 

      and an initial partition matrix     , the FCM is an 
iterative algorithm for partitioning a set of vectors into   

clusters                , with cluster centers              
               . In iteration   the algorithm uses the 

cluster centers         
   

   
   

     
   

  induced by the 

partition matrix      to re-partition the data set and obtain a 

new partition matrix       . Cluster centers at iteration   are 
computed according to: 

       
   

 (∑(   
   

)
   

 

   

   ) (∑(   
   

)
   

 

   

) (4) 

The matrix        [   
     

] is calculated according to: 

         [   
     

]  ∑(
‖     

   
‖

‖     
   

‖
)

 
 

    

   

 (5) 

The process of center induction, data partition, and 
matrix update continues until a given termination condition, 
which relates to an optimization criteria or limit on the 
number of iterations, is met. The following is a commonly 
used criterion [16]:  

             |
  
      

   
    

  
      

|    (6) 

 
Fig. 1 is a pseudo code of the algorithm. 
 

1. Parameters: 

a.               , 

(       - a set of 

vectors 

b.   - the number of 

vectors 

c.    - the number of 

partitions 

d.    - a weighting 

exponent (     

e.      [   
   

] - the 

partition matrix at 

iteration   

f.      

   
   

   
   

     
   

  

- the set of clustering 

centers at iteration   

g.   - the maximum 

number of iterations 

h.   
   

 - the objective-

function’s value at 

iteration    

2. Set    , choose an 

initial partition matrix 

     

3. In iteration     let  

     

   
   

   
   

     
   

  

be the induced 

clustering centers 

computed by equation 

4. 

a. Set        [   
     

] 

according to equation 

5. 

b. Compute        

according to equation 

1. 

c. Set      . 

4. Stop if     ; or 

if    , and equation 

6 holds for a small    

such as       .  

Otherwise, go to (2). 

Figure 1. Algorithm for baseline FCM 

The idea behind the multistage methods reported in the 
next section is that an estimate of the partition matrix and 
the location of the cluster centers can be obtained by 
clustering a sample of the data. There is a trade-off that 
relates to the sample size. A small sample is expected to 
produce a fast yet less reliable estimation of the cluster 
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centers. This leads to a multistage approach, which involves 
several stages of sampling (with replacement) of the data 
and estimating the membership matrix for the next stage. 
The size of the first sample should be as small as possible. 
On the other hand, it should be statistically significant [44]. 
Each of the stages includes more objects from the data and 
sets the initial partition matrix of stage    according to the 
final partition matrix of stage    . 

C. The LBG Termination Criterion 

The main difference between the LBG variant of the 
FCM algorithm and the classical FCM algorithm is the 
termination condition. The LBG algorithm stops when an 
approximation for the derivative of the MSE given by 

)1(

)()1(



 

m

mm

D

DD
 is smaller than a threshold,

)(
)1(

)()1(








m

mm

D

DD
.  

D. The Sequential Fuzzy C-Means Algorithm 

FCM can be executed in one of two basic modes; batch 
mode and online mode. The batch mode updates the 
partition matrix after considering the entire set of data. The 
online mode is also referred to as the sequential mode. In an 
epoch l of a sequential mode, for each pattern, the partition 

matrix      and cluster centers      are found. The cluster 

centers      are used to find the distortion value and 

weighted distortion value. The partition matrix      are used 
in the next epoch of the sequential mode. 

E. The Block Sequential Fuzzy C-Means Algorithm 

The block sequential mode is a compromise between the 
stringent computational requirements of the sequential FCM 
and the need to operate on data online. In this case, the 
clustering occurs on accumulated blocks of data. Each block 
is going through   epochs of FCM where the final centers of 
block   are used as the initial centers for block    . In 
many cases    . In this sense, the algorithm resembles 
other multistage clustering such as the pyramid FCM. The 
block sequential algorithm might be utilized in an iterative 
fashion, where each of the iterations performs   epochs of 
FCM on a single block of data elements at a time. 

Note that all the clustering algorithms described so far 
assume that (at some point) the entire data set is available. 
Moreover, generally, due to the iterative fashion of 
execution, these algorithms access the same elements more 
than once (in different iterations). When the data is very 
large and cannot fit the memory of the processor, a different 
approach, referred to as single-pass, has to be adapted. 
Under the single-pass (incremental) approach, each 
block/data-element is accessed only one time and then 
removed from internal memory to provide space for new 
elements. This is described next. 

F. The Incremental Fuzzy C-Means Algorithm 

The incremental FCM algorithm presented in this paper 
is similar to the block sequential algorithm with the 
exception that each block is accessed only one time. Each 

block is going through a set of   epochs of FCM where the 
final centers of block   are used as the initial centers for 
block    . 
The fact that each block is “touched” just one time might 

raise a question about the validity of the results. The results 
might be valid if the data elements of blocks share similar 
features. For example, the data elements are drawn from the 
same probability distribution function or the same fuzzy 
membership function. Alternatively, validity might be 
attained if the features of data elements vary “slowly” 
between blocks. We use two methods to improve the 
validity of results. First, we use a two-phase incremental 
algorithm. In the first phase, a very large set of clusters is 
used. Practically, we are trying to fit as many elements in a 
block and as many clusters per block as possible in the 
memory. In the next phase, after processing all the blocks, a 
process of clustering the centers obtained from the last block 
is applied. The second measure for increasing validity is 
using a relatively large number of clusters and at the same 
time allowing the number of clusters to change dynamically. 
This is described in the next section. 

G. The Dynamic Incremental Fuzzy C-Means Algorithm 

The dynamic incremental FCM algorithm presented in 
this paper is similar to the incremental FCM algorithm. The 
difference is that the number of clusters is allowed to 
change.  

Several operations can change the number of clusters. 
First, following the ISODATA algorithm principles, clusters 
with too few elements might be eliminated, clusters that are 
too close to each other might be merged, and clusters with 
large dispersion might be split [13][25][27]. The criteria for 
merge and split might be related to the within and between 
dispersion of the clusters [1]-[3][43]. Other methods for 
changing the number of clusters might include 
incrementing/decrementing the number of clusters (without 
split/merge) based on a criterion such as a threshold on the 
distortion. We have implemented the threshold approach. 

Each block is going through a set of   epochs of FCM 
where the final centers of block   are used as the initial 
centers for block    . Following the application of FCM 
on a block, a decision concerning the effective number of 
clusters is made and the number might be incremented or 
decremented based on a predetermined quality criteria 
threshold. We place an upper bound and a lower bound on 
the number of clusters, where the lower bound ensures that 
we still have enough clusters to maintain validity and enable 
the two-phase approach described above. Again, we are 
trying to fit as many elements in a block and a large number 
of clusters per block in the memory and apply a two-phase 
approach where the centers from the last iteration are 
clustered and provide the final set of clusters. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

In order to compare and contrast the performance and 
validity of the FCM variants presented, we have 
implemented these algorithms numerous times on different 
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data sets, using different parameters. Three sets of data of 
data are used for the experiments performed. The first set 
(1) consists of the red, green, and blue (RGB) components 
of relatively small (        pixels) color images. These 
images e.g., Lena and Baboon are used by many other 
researchers and the results of algorithms that use these 
images are published in numerous papers and books [2][6]. 
The images of the first set are subject to color quantization. 
The second set (2) is composed of the RGB components of 
relatively large aerial photography images (      pixels 
or 81 million pixels) color this set is used for more 
aggressive color quantization. The third set (3) includes 20 
million elements of six-dimensional synthetic data points 
with known centers and known distribution.  Hence, data 
sets (2) and (3) are relatively large. It should be noted that 
the       pixel images are the largest images that fit the 
memory of our current hardware/software configuration. 
This is important since we use the entire image for running 
non-incremental clustering in order to assess the results of 
the incremental clustering and this is the maximal size that 
can be used for non-incremental clustering. Three types of 
output data/results are collected: 1) records of convergences 
(distortion per iteration), 2) execution time, and 3) 
clustering quality (inverse of distortion at the final iteration). 

The experiments are divided into two classes; multi-pass 
and single-pass. In the multi-pass experiments, we 
compared the performance of classical FCM, LBG based 
FCM, sequential FCM, and block sequential FCM. Given 
the constraints of these algorithms, they have been applied 
to a manageable data set (i.e., a data set with a medium 
number of elements). In the single-pass experiments, we 
tested the incremental and the dynamic incremental 
approaches with the same data used for the multi-pass 
algorithms and with a “huge” set of synthetic data that is not 
suitable for multi-pass processing. Nevertheless, to verify 
the results with the large data set, we ran the LBG variant of 
the FCM algorithm on that data using a “powerful” 
multicore computer. The computer worked on the data for 
several hours. For the dynamic incremental algorithm, we 
used an approach where the number of clusters is 
incremented/decremented by 3 based on a threshold on 
distortion and the number of clusters during the current 
epoch.  

1) Color Quantization 
The problem of color quantization can be stated in the 

following way: given an image with N different colors, 
choose     colors such that the resulting K-color image 
is the least distorted version of the original image [1]. Color 
quantization can be implemented by applying the FCM 
clustering procedure to the image-pixels where each pixel 
represents a vector in some color representation system. For 
example, the clustering can be performed on the three-
dimensional vectors formed by the RGB color components 
of each pixel in the image [1]. After clustering, each three-
dimensional vector (pixel) is represented by the cluster-
number to which the vector belongs and the cluster centers 
are stored in a color-map. The K-value image, along with 
the color-map, is a compressed representation of the N-
colors original image. The compressed image can be used to 

reconstruct the original three-dimensional data set by 
replacing each cluster-number by the centroid associated 
with the cluster. In the case of 8-bit per color component 
and     , the original 24-bit per pixel image is 
represented by a 4-bit per pixel image, along with a small 
color map. Hence, about six-fold compression is achieved. 
In this set of experiments, a block processed by the single-
pass algorithm consists of an image row. The sequential 
algorithm is applied to every pixel of a scaled down version 
of the images, while the rest of the multi-pass algorithms 
operate on the entire set of the pixels of the original images. 
The experimental results are scaled to represent the 
distortion for the entire image. The static incremental 
algorithm starts with 192 clusters per block. Following the 
processing of the last block, the 192 centers are clustered 
into 16 centers and the distortion for the entire image with 
these centers is measured. The dynamic incremental 
algorithm starts with 192 clusters per block and allows 
fluctuations in this number. Following the processing of the 
last block, the centers are clustered into 16 centers and the 
distortion for the entire image with these centers is 
measured. 

2) Synthetic Data 
A set of    random cluster centers with a total of 

           six-dimensional vectors is generated. The 
vectors within a cluster are distributed according to a 2-D 
normal distribution with standard deviation of 0.05 around 
the center. For the single-pass experiments, the data is 
divided into 500 blocks of 40,000 elements per block. Other 
parameters are identical to the ones used for the color map 
quantization experiments. 

B. Experimental Results 

Fig. 2 shows the distortion per iteration of the multi-pass 
algorithms executed on the image Lena, which is a     
    RGB image. Fig. 2a shows the distortion results of the 
LBG variant the final distortion is 23.6 db. The block 
sequential algorithm distortion per iteration is presented in 
Fig. 2b. The distortion results converge to the value of 23.8 
db. This is equivalent to the results of running the other 
single pass algorithms for several iterations. Visually, all the 
versions of clustering executed in this research produced 
about the same reconstructed image. 

Fig. 3a and Fig. 3b show the results of running the 
single-pass incremental version on the image Lena with 
single row per block. Both the static and dynamic 
incremental algorithms converge to a distortion value of 
about 25 db. This is slightly higher than the multi pass 
algorithms. But, it is expected as the single pass algorithm 
“visits” every block only one time. The dynamic 
incremental algorithm has slightly lower distortion than the 
incremental algorithm. We have repeated these experiments 
numerous times, with different seed values using nine 
different images and obtained similar results.  

Fig. 4a and Fig. 4b show the results of running the 
single-pass incremental version on the image 
“Neighborhood” with single row per block. Both the static 
This is a much larger image, and it is subject to more 
aggressive quantization which ends up in a monochromatic 
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image. In this case, the distortion obtained through the LBG 
variant on the entire image is  20.4 db. The incremental 
algorithm and the dynamic incremental algorithms produce 
a result of 23.2 db. and 24 db. Respectively. The 
degradation is justified by the fact that the       image 
is the largest image that fits our software/hardware 
configuration. Hence, a larger image cannot undergo a multi 
pass procedure. 

Fig. 5 shows the original and reconstructed versions of 
“Neighborhood.” Figs. 6 and 7 show the same experiments 
with the image “Park.” The results are similar with a 
distortion of 17.5 db., 19.5 db., and 20 db., for the LBG, 
incremental and dynamic incremental variants respectively.    

Fig. 8a and Fig. 8b show the results of incremental 
clustering and dynamic incremental clustering with a large 
amount of synthetic data points (20,000,000 points) in a six-
dimensional space).  Fig. 8a shows the results of running the 
static incremental FCM on the synthetic data. Due to the 
fact that the data is drawn from a fixed distribution, the 
results of distortion per block are quite stable and the 
execution ends up at a distortion value of 0.38. The 
execution of the dynamic version of incremental FCM is 
depicted in Fig. 8b. The distortion per block is better than 
results obtained for the static case and stabilizes at 0.11.  

V. RESULT EVALUATION 

The results of the experiments reported and additional 
experiments performed show the utility of using a two-
phase single-pass incremental FCM algorithm, where the 

first phase uses a large number of centers and the second 
phase clusters the centers obtained in the first phase into a 
desired size of clusters. Moreover, the dynamic clustering 
approach allows the number of centers in the first phase to 
vary and, in the case of very large data sets, outperforms the 
static incremental approach. 

VI. CONCLUSION AND FUTURE WORK 

This paper has reviewed static and dynamic single-pass 
and multi-pass variants of the FCM. A novel two-phase 
static single-pass algorithm as well as a dynamic two-phase 
single-pass algorithm have been presented and are showing 
high utility. Future research will concentrate on additional 
methods for dynamic change in the number of clusters in 
both steps of dynamic incremental FCM. In addition, we 
plan to initiate research on equivalent approaches in the 
KNN. We also plan to investigate parallel incremental 
algorithms. Finally, we have recently received access to an 
aerial photography data set where the resolution of each 
image is          pixels (1 tera pixels) and we plan to 
explore the algorithms with this data set. Additionally, we 
have access to a vector data set related to the aerial 
photography. This set contains 170 million records of 
varying size with an average size of  40 entries per record. 
Moreover, this set contains a mixture of categorical and 
numerical data. We plan to use this set as well for further 
exploration of our algorithms. 

 

 

 

Figure 2. Distortion per iteration for the multi-pass algorithms with the Image Lena 

 
Figure 3. Incremental and Dynamic Incremental Clustering of the Image Lena 
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Figure 4. Incremental and Dynamic Incremental Clustering of the Image “Neighborhood” 

 

 

 

 

 

 

 

 

 

                                                                  Figure 5. Original and Reconstructed Versions of the Image “Neighborhood” 

 

Figure 6. Incremental and Dynamic Incremental Clustering of the Image “Park” 
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Figure 7. Original and Reconstructed Versions of the Image “Park” 

 

Figure 8. Incremental and Dynamic Incremental Clustering of Synthetic Data 
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