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Abstract— Nowadays, models often stand as first class objects 

in the field of software development. That’s why clarity and 

understandability are important markers of high quality 

models. Therefore, several patterns exists that can help to 

improve model quality. However, developing a domain specific 

language is affected by understanding the domain of interest 

which often evolves during the development of the software 

system. This evolution again causes the language to change 

either. As a consequence of that, meta-modeling patterns are 

oftentimes inserted in an existing meta-model which results in 

various adaptions to migrate the system into a valid state. 

Since the current research has not discovered any techniques 

to cope with a remodeling to such a pattern these adaptions 

have to be done manually. Focusing on this challenge, we 

present in this article an evolution operator that creates a 

powertype within an existing model and furthermore adapts 

the other related models simultaneously.  

Keywords-powertype, extended powertype, remodeling to 

patterns, meta-model evolution, meta-model, deep instantiation 

I. MOTIVATION 

Today, developers often tend to define a separate 
modeling language for special parts of the domain of interest. 
That is especially the case if standard modeling languages do 
not cope with special application settings. This trend is 
referred to as domain specific modeling (DSM) and the 
resulting language is hence called domain specific language 
(DSL).  

A modeling language in general consists of three parts: a 
definition of an abstract syntax, a definition of a concrete 
syntax, and a rule set (constraints) [1]. Thereby, meta-models 
are oftentimes used to express both the abstract and the 
concrete syntax. Hence, the quality of the resulting language 
is highly-coupled to the quality of the meta-models 
describing it. Consequently, these meta-model have to be 
concise and human-readable. 

Therefore, current research has discovered several 
patterns (in the following called language patterns to 
distinguish them from design patterns) that enrich meta-
models in different aspects, e.g., helping persons of different 
perspectives in the software development process (e.g., the 
software developer or the method engineer)  to understand 
the meta-model easier [2] or improving their conciseness [3].   

One of these language patterns with the above mentioned 
benefits is the powertype pattern [4], [5]. However, 
introducing a powertype pattern into an existing meta-model 
often results in several manual adaptions in other meta-levels 

for migrating models to the new meta-model. Hence, such a 
remodeling to powertype patterns can be a time-consuming 
and error-prone task [6]. Focusing on this problem, we 
present below an operator that introduces a powertype 
pattern into an existing meta-model. Simultaneously, the 
operator adapts corresponding models into a valid state. 

Therefore, in the following section we are going to show 
the state of the art. Subsequently, we explain the powertype 
(pattern). After that, we will present an extension for this 
pattern: the extended powertype. In section V we present the 
Create-Powertype-For operator which introduces an 
(extended) powertype pattern into a meta-model. In the 
subsequent section we provide an example model on which 
we apply the operator. Finally, we give a conclusion and an 
outlook to our future work. 

II. RELATED WORK 

The presented work belongs to the research field of meta-
model evolution. The Create-Powertype-For operator 
changes the (meta-) meta-model and migrates other (meta-) 
models to become valid to the new meta-model.  

In the current research such an approach is called coupled 
evolution [7]. Since most of the work in this field considers 
merely two meta-levels the coupled evolution definition is 
limited to a model and a meta-model. As we do support more 
than two meta-levels in our modeling environment we 
extend this definition to arbitrary levels. 

 Meta-model evolution, in general, faces two main 
challenges. First, adaptations and changes performed on a 
meta-model need to be captured [8]. Second, evolving a 
meta-model might render models as instances of a meta-
model invalid, e.g., when attributes are removed or a type 
within a meta-model is defined to be abstract within an 
evolution step. Hence, these invalid models have to be 
migrated which is called co-evolution [9]. 

According to the work of Herrmannsdorfer et al. [8], 
approaches for capturing meta model evolution can be 
categorized into three kinds: state based, change based and 
operation based approaches. State based approaches store 
two versions of a model and derive differences between 
those two versions after changes were actually performed 
(which is an implementation of the Model Management 
operator DIFF [10]). Contrariwise, change based approaches 
record differences at the moment they occur. Operation 
based approaches are a subclass of the change based 
approaches since changes on meta models are defined by 
means of transformation operators before they are actually 
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performed. In today’s systems often state based recording is 
chosen although it is not as powerful as the operation based 
approach [8]. Our presented approach belongs to the 
operation based approaches. 

Practical application scenarios of the varied approaches 
can be found in the work of Gruschko et. al. [11] (state 
based), Aboulsamh et. al. [12] (change based) and 
Herrmannsdorfer et. al. [8], [13] (operation based).  

Similar to the above presented work, Wachsmuth [14] 
and Herrmannsdorfer et. al. [13] provide an operation set that 
is used to evolve the meta-model explicitly, i.e., by means of 
well-defined transformations the user evolves the meta-
model stepwise. In consequence, co-evolution can be 
performed without the need to handle ambiguity which is a 
challenge for state-based approaches [15]. 

Up to our knowledge, the current research in meta-model 
evolution mostly considers common meta-modeling concepts 
like classes, attributes and relations. Only some approaches 
(e.g., [13], [14], [16]) also analyze inheritance hierarchies for 
evolution and explain solution for handling co-evolution. 
However, there is no approach that considers other language 
pattern like the powertype pattern, deep instantiation or 
materialization [17].  

Besides handling the evolution itself, handling co-
evolution is another important topic in this field of research. 
To face this challenge, various approaches can be observed: 
matching of two meta models (see model management [18]), 
operation based co-evolution and manually specification of 
migration [15]. An Example for an operation based co-
evolution can be found at the work of Wachsmuth [14], 
within the COPE System [19] and also within this paper. 

III. THE POWERTYPE PATTERN 

The powertype pattern is a language pattern used to 
describe that a concept A extends another concept Part (this 
is called the partitioned type) and at the same time this 
concept A is an instance of concept Pow (which is then 
called powertype). 

A. Example 

Below, there is an example of the powertype pattern that 
shows a simple meta-model (named M2) with two concepts: 
Tree and TreeKind. The concept Tree stands of course for a 
tree and TreeKind is a representation for a kind of a tree. 
Furthermore, a model (M1) is shown with only one concept 
Maple which stands for a correspondent real world object. 

If one wants to model trees there are at least two different 
views of seeing a maple. On the one hand, this maple is a 
specialization of the class tree. On the other hand, maple 
partitions the set of trees because it is a kind of a tree. Hence, 
maple can be seen as a specialization of tree. To combine 
these two views, one can introduce the powertype pattern 
(Figure 1). Then, Tree is partitioned with TreeKind (the 
powertype) and Maple is an instance of TreeKind and 
together with that a specialization of Tree.  

As a consequence, Maple has two different facets. The 
first one is the type facet that extends Tree and the second 
one is the instance facet, an instance of TreeKind. 

Maple

TreeTreeKind

partitions

M2

M1

 

Figure 1. Example of a powertype pattern 

Such a mixture of a class and an object is called clabject 
[20] or concept [21]. The specialization relationship is often 
not visualized within meta-model diagrams. 

IV. THE EXTENDED POWERTYPE PATTERN 

One rule of practice in modeling is that all attributes 
being common in all subclasses are added to the superclass 
[22]. Other attributes that do not belong to each of the 
subclasses are not declared in the superclass, in general. 
Instead, often new subclasses are created that stand between 
the super- and the subclasses in the inheritance hierarchy. As 
a consequence, a deep inheritance hierarchy could result 
which is often seen as bad design [23]. Furthermore, this 
approach leads to multiple inheritance which sometimes 
causes problems [24], [25] like the diamond of death. 

To avoid this complex inheritance hierarchy, one can use 
the extended powertype pattern [26], [27]. This pattern 
enhances the powertype pattern with so called feature 
attributes.  

These boolean attributes are declared at the powertype 
with a link to an attribute of the partitioned type (the enabled 
attribute). Afterwards, one can decide for each instance of 
the powertype if an attribute of the partitioned type is 
inherited or not. If a feature attribute at an instance of the 
powertype is set to true the corresponding enabled attribute 
of the partitioned type is inherited. Needless to say that if a 
feature attribute has the value false no attribute is inherited. 

Hence, all attributes of the sub-concepts can be collected 
in the partitioned type and for each sub-concept one can 
decide the set of attributes that are inherited. 

A. Example 

In Figure 2 a simple graph-based process modeling 
language with an extended powertype pattern is shown. 

 To visualize the complete meta-model stack we use a 
tree editor with syntax similar to object-oriented 
programming languages. The root of the tree is the whole 
meta-model stack. The children of that are the different 
meta-levels. The next higher meta-level which is instantiated 
by the current level is shown after the colon. Each level 
again contains at least one or more packages structuring the 
level. In a package lie concepts (clabjects) and these 
concepts can have attributes and/or assignments. Again, after 
the colon all instantiated concepts are listed. Other relations 
like extends or partitions are also shown together with the 
corresponding other concept. 
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Figure 2. Morning Process Example 

Furthermore, the deep instantiation counter (also called 
deep instantiation potency) is displayed, if the value is 
greater than 1 (see section VI.A). Attributes have a 
cardinality (0..1, 0..*, 1..*) and an attribute type. 
Assignments consist of a corresponding attribute and a value 
for it.  

 In the meta-meta-model (M2), Nodes are connected with 
each other using outgoing control flows. This is done with 
the corresponding outgoingCF attribute at Node. Besides, an 
extended powertype (NodeKind) is modeled due to the fact 
that NodeKind has a partitions relation to Node. NodeKind 
again has a boolean feature attribute supportsOutCF enabling 
or disabling the outgoingCF attribute of Node. 

At level M1, Process and Stop are instances of the 

powertype. Since a stop interface does not have any outgoing 
control flows the supportOutCF attribute is set to false 
whereas the Process attribute is set to true. 

Level M0 contains a little model that describes a (spare) 
morning process. After waking up, the concerning person 
brushes his/her teeth and then stops the morning process. 
Since the feature attribute of Stop was set to false setting the 
value of outgoingCF in StopMorning would cause a 
validation error. 

V. THE CREATE-POWERTYPE-FOR OPERATOR 

In the following, we present an Evolution operator that 
introduces a powertype into an existing (meta-) model and 
simultaneously adapts the meta-model hierarchy to be valid 
again.   

A. Operator Process 

In Figure 3 the process of the Create-Powertype-For 
operator is shown. Therein all steps that need an input from 
the user are highlighted with black boxes. “The Move 
concept to upper level” and “the Add instantiation to 
powertype” steps are also highlighted as they are other 
complex evolution operators that will be presented below.  

Initially, the operator is invoked with a source concept 
(e.g., chosen by the user). In the following, this concept is 
called Part as it will be the partitioned typed after the 
operator has finished. In the next step the operator collects 
all concepts that specialize Part. This set of concepts (in the 
following called SCs) is important because all members 
could potentially be an instance of the newly created 
powertype. 

After that, the user decides which member of SCs will 
become an instance of the powertype and hence creates a 
subset of SCs (SubSCs). Then, for each member of SubSCs 
the specialization relation to concept Part is deleted. 
Afterwards, each concept of SubSCs is checked whether it is 
instantiated or not. If one concept is instantiated, concept 

Start
Collect 

specializations 
of  concept

Choose future 
instances of the 

powertype

source 
concept 

set of 
concepts

Has one of 
these concepts 

instances?

Move concept 
to upper level

yes

Stop

no
set of 

concepts

Create 
powertype

Delete 
specialization

Extended 
Powertype?

no

Collect 
attributes of 

concept
yes

set of 
attributes

Create Feature 
attributes

Add 
instantiation to 

powerype

Figure 3. Create-Powertype-For operator process 
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Part and all related concepts (see section V.B) have to be 
moved to the upper level. Otherwise, it would not be 
possible to instantiate the instances of the powertype again. 
Of course, in case a modeling environment does not support 
several levels this step cannot be done and hence the 
instantiation has to be deleted. 

Then, a new concept (the powertype) is created by the 
operator. The user specifies the properties of the concept like 
the name, whether the concept is abstract or final, its 
visibility, its instantiated concepts (optional), its extended 
concepts (optional) and its concretely used concepts (for 
instance specialization see [21]), also optional). The user also 
must specify whether the concept is an extended powertype 
or not. The concept Part will then be added to the set of 
partitioned concepts whereby the partitions relation of the 
powertype is created.  

If the created powertype is an extended one the operator 
collects the attributes of the initially given concept Part. 
Then, the user chooses the attributes that will get a 
corresponding feature attribute which will be created in the 
powertype. Finally, each of the previously chosen concepts 
(SubSCs) will become an instance of the new powertype 
using the corresponding operator (see section V.C). 

B. THE MOVE-CONCEPT-TO-UPPER-LEVEL Operator 

The Move-Concept-To-Upper-Level operator moves, as 
the name indicates, a concept from a given level upon the 
next upper level. The process of the operator is shown in 
Figure 4. 

1) Operator Process 
The operator gets as input a concept that will be moved 

one meta-level up. 
In the first step the operator tries to get the upper level 

and checks whether the level exists or not. If not a new level 
is created and the name of it has to be set. Then the operator 
changes the level of the given concept to the upper level. 

Afterwards, the operator increments the deep 
instantiation counter of the given concept if the concept is 
instantiated.  

Start concept 

Does the 
upper level 

exist?

Create meta 
level

no

yes

Is the Concept 
instantiated?

Increment Deep 
Instantiation 

Potency
yes

Collect related 
concepts

no

Set of 
concepts

Move concept 
to upper level

Stop

Change Level of 
concept

Get upper level

 

Figure 4. Move-Concept-To-Upper-Level operator process 

Changing the value of the deep instantiation counter [28] 
causes that instances of the concept can instantiate the 
concept again although they are more than one (exactly two) 
meta-level lower. If deep instantiation is not supported other 
techniques like nested meta levels [29] may be used at this 
point.  

For correct migration of the meta-model the operator has 
to invoke itself recursively on all related concepts. Thus, 
these concepts are collected in the next step. Related 
concepts are those concepts that stand in a relationship with 
the given concept (includes relationships like extends (for 
specialization), partitions (for powertype relation) or 
concreteUseOf (for instance specialization) [21]. Thereby, 
the operator has to detect cycles to avoid an endless loop. 

C. The Add-Instantiation-To-Powertype operator 

This operator adds an instanceOf relation from a given 
concept to a given powertype.  In Figure 5 the process of the 
operator is presented. 

1) Operator Process 
Initially, the operator is invoked with a concept (the 

future instance) and a powertype. If the powertype is not an 
extended one merely the instanceOf relation between the 
concept and the powertype is created. Thereby, a constraint 
has to be considered. In case the instance of the powertype is 
already an instance of another concept this would end in 
multiple instantiation which breaks, e.g., strict meta 
modeling [30]. Thus, for such environments the operator has 
to delete one instantiation.  

If the powertype is an extended powertype the operator 
has to provide a possibility to move the attributes from the 
given concept to the partitioned type. Therefore, the user has 
to choose all attributes of the concept that should be moved. 

For each reference attributes (the attribute type is a 
concept) the operator has to check whether the attribute type 
is a specialization of the partitioned type. 
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Figure 5. Add-Instantiation-To-Powertype operator process 
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If so, the attribute type has to be changed to the 

partitioned type. Otherwise, the referenced concept has to be 
put one level up because relationships cannot cross levels. 
Hence the Move-Concept-To-Upper-Level operator is called. 

Now the operator can move all selected attributes to the 
partitioned type. 

 Afterwards, the operator creates corresponding feature 
attributes in the powertype for the moved attributes. Then, 
the operator collects all instances of the powertype and the 
user chooses those ones which should inherit the moved 
attributes.  

Finally, the operator sets according to the user selection 
before the feature attribute values of all powertype instances. 
Of course, the value of the feature attributes for the given 
concept is set to true (since this concept declared the 
attributes before).  

VI. EXAMPLE 

In this section we give an example for the application of 
the Create-Powertype-For operator. The example shows a 
simple feature model of a car product line inspired by [3]. 
This simple feature model gives the opportunity to model 
Features and link them with the help of Associations 
together. 

 Figure 6 shows the complete meta-model stack. 
Therein M1 is the meta-model for M0. On M1 there are two 
concepts: Feature and Association. Each Association element 
connects one Feature element as source and zero or more 
Feature elements as target. On the other side, Features can 
refer to zero or one Association. Thus, this relationship is 
bidirectional. 

 

Figure 6. Car product line model 

Furthermore, the concept Association is specialized in 
form of the concepts Or, Xor, Mandatory and Optional. Xor 

 and Or can be used to express that at least one of several 
target features have to be selected. Instances of Optional can 
set a target whereas instances of Mandatory have to select a 
target. 

Based on M1, there is a model M0 that declares four 
features (Car, Body, Transmission and Engine) and one 
association (CarMandatory). These features are linked 
together with the association so that following constraint is 
expressed: A car must have a body, an engine and a 
transmission. 

A. Application of the operator 

Now, we apply the Create-Powertype-For operator to the 
above introduced model. The result is shown in Figure 7.  

First, we select the concept Association and invoke the 
operator on it. The operator uses the given concept and 
collects all its specializations since these concepts are 
candidates for instances of the future powertype. The 
outcome of this step is a set of four concepts: Or, Xor, 
Mandatory and Optional. 

Afterwards, we have to review this set and tell the 
operator which concepts will become instances of the future 
powertype. In our example, we choose all of them. Then, the 
operator checks all selected concepts if they were 
instantiated before. This is true for Mandatory. Thus, the 
operator has to move the future powertype to the upper level 
and invokes the corresponding operator.  

Hence, the concept Association is delivered to the Move-
Concept-To-Upper-Level operator. 

 

Figure 7. The resulting car product line model after application of 

the operator 
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Figure 8. Result of the operator with extended powertype 

After that, the operator checks if an upper level exists 
which is false. That’s why it creates a new level that we 
name M2. Then the operator changes the level of 
Association to M2. After that, the specialization relation of 
Or, Xor, Mandatory and Optional is deleted. As Association 
is not instantiated, no deep instantiation counter has to be 
changed. 

In the next step all related concepts are collected by the 
operator, which is only Feature (relationship to and from 
Association). Thus, the operator Move-Concept-To-Upper-
Level is again called for Feature. 

Because M2 already exists no meta-level has to be 
created. Subsequently, the meta-level of Feature is changed 
to M2 and the deep instantiation counter is incremented as it 
is instantiated in form of Car, Body, Transmission and 
Engine. Hence, the deep instantiation counter of Feature is 
now 2 (shown after the keyword deferred by in Figure 7). 
Since Feature has no related concepts because Association is 
already visited, the Move-Concept-To-Upper-Level operator 
terminates. 

Afterwards, the Create-Concept-For-Powertype operator 
starts again with creating a new concept that we name 
AssociationKind and setting the partitions relation to 
Association. 

If we decide to create a “simple” powertype Or, Xor, 
Mandatory and Optional just become instances of 
AssociationKind.  

Otherwise, the operator collects for each concept (Or, 
Xor, Mandatory and Optional) all declared attributes. Since 
none of the concepts have attributes no user selection is 
needed and no reference attribute is part of the selection.  

The operator continues with the creation of the feature 
attributes for targets and source (supportSource, 
supportTargets). Since Or, Xor, Mandatory and Optional 
were specializations of Association the feature attribute 
values for all concepts are set to true. 

The result of creating an extended powertype is shown in 
Figure 8. 

VII. CONCLUSION 

Nowadays, meta-modeling is an often used approach for 
developing a domain specific language. Since these 
languages evolve during modeling of the domain of interest 
it is important to support this evolution to avoid manual 
migration of models. 

Current research has discovered several patterns helping 
to improve the quality of (meta-) models [3]. Unfortunately, 
a remodeling of a meta-model to such a pattern is not 
supported today. 

Facing this challenge, we presented in this article an 
operator that allows introducing a powertype pattern into an 
existing meta-model hierarchy considering migration of 
invalid models.  

Currently, we have developed an Eclipse-based editor 
that supports several basic evolution operators like creating 
levels, packages, concepts and attributes. Furthermore some 
complex operators like the presented Create-Powertype-For, 
the Move-Concept-To-Upper-Level and the Add-
Instantiation-To-Powertype operator are implemented as 
well. 

In future work we will present complex evolution 
operators that support other language patterns like deep 
instantiation [28], materialization [17] or instance 
specialization [21]. Furthermore, we envision providing a 
preview of evolution operators similar to refactoring 
previews in modern IDEs. With the help of these previews, 
users can compare possible evolution steps. 
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