
Comparing Two Architectural Patterns for
Dynamically Adapting Functionality in Online

Software Products

J. Kabbedijk, T. Salfischberger, S. Jansen
Department of Information and Computing Sciences

Utrecht University, The Netherlands
J.Kabbedijk@uu.nl, Tomas@salfischberger.nl, Slinger.Jansen@uu.nl

Abstract—Business software is increasingly moving towards
the cloud. Because of this, variability of software in order to
fit requirements of specific customers becomes more complex.
This can no longer be done by directly modifying the application
for each client, because of the fact that a single application
serves multiple customers in the Software-as-a-Service paradigm.
A new set of software patterns and approaches are required to
design software that supports runtime variability. This paper
presents two patterns that solve the problem of dynamically
adapting functionality of an online software product; the Com-
ponent Interceptor Pattern and the Event Distribution Pattern.
The patterns originate from case studies of current software
systems and are reviewed by domain experts. An evaluation
of the patterns is performed in terms of security, performance,
scalability, maintainability and implementation effort, leading to
the conclusion that the Component Interceptor Pattern is best
suited for small projects, making the Event Distribution Pattern
best for large projects.

Keywords—architectural patterns. quality attributes. software
architecture. variability.

I. INTRODUCTION

Software as a Service (SaaS) is a rapidly growing deploy-
ment model with a clear set of advantages to software vendors
and their customers. SaaS allows vendors to deploy changes to
applications more rapidly, which increases product innovations
while reducing support-costs as only a single version is to be
supported concurrently [1]. In the SaaS deployment model a
single application serves a large number of customers. These
customers are called tenants, which can be a single user or an
organisation with hundreds of users. Because all tenants use
the same application, the cost of development and setup of the
application can be amortized over all contracts.

The multi-tenant deployment model requires the appli-
cation to be aware of different tenants and their users, for
example in separating the data visible to different groups of
users. We define multi-tenancy as: “the property of a system
where multiple varying customers and their end-users share
the system’s services, applications, databases, or hardware
resources, with the aim of lowering costs”. Database designs
for multi-tenant aware software require specialized architec-
ture principles to accommodate multiple tenants [2]. One of
the challenges in multi-tenant application architectures is the
implementation of tenant-specific requirements [3]. Variability
of software to fit requirements of specific customers can no
longer be done by directly modifying the application for each

client, because a single application serves multiple customers.
A new set of software patterns and approaches are required to
design software that supports runtime variability. The patterns
vary in impact on the technical properties of the software like
performance and maintainability, impact on the cost-drivers of
the SaaS business model, and the requirements they can fulfil.

The concepts of variability and quality attributes are ex-
plained in Section II, after which the expert evaluation used is
explained in Section III. The architectural problem related to
variability, faced by software architects, is explained in Sec-
tion IV. The COMPONENT INTERCEPTOR PATTERN and the
EVENT DISTRIBUTION PATTERN, two patterns both solving
the problem of dynamically adapting functionality of online
business software, are presented in Section V. The patters
are compared in terms of security, performance, scalability,
maintainability and implementation effort, of which the results
in be found in a summarizing table in Section VII.

Please note; in the text, we set pattern names in SMALL
CAPS according to the convention by Alexander et al. [4].

II. RELATED WORK

Variability - The field of software variability has been the
subject of research from both the modeling perspective as well
as the technical perspective. Software variability modeling is
common in software product lines as described by Jaring and
Bosch [5]. The application of variability modeling as used in
product line variability [6] to software as a service environ-
ments has been described by Mietzner, Metzger, Leymann,
and Pohl [7]. Variability modeling as dicussed in the afore-
mentioned works contributes to the understanding of where the
application architecture needs to be able to accomodate change
or extension. Patterns play an important role in modeling and
solving variability in software products [8].

Svahnberg, van Gurp, and Bosch [9] propose feature di-
agrams as a modeling technique to describe the different
variants of feature in a software product. Svahnberg et al [9]
use their feature diagrams as the basis for a method to
identify variability in a product, constrain this variability, pick
a method of implementation for the variability and further
manage this variability point in the application lifecycle. The
main difference from the objectives of our research is that
Svahnberg et al. [9] describe implementation techniques for
variability per installation instance of the software, whereas
we focus on runtime variability in a multi-tenant context.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Quality Attributes - Benlian and Hess [10] identify se-
curity as one of the most important risk-factors perceived,
followed by performance risks. To assess security risks, SaaS
vendors need to include security as a quality attribute in their
design of the architecture. This leads to security as the first
desired quality attribute for business SaaS. Performance as an
important factor to SaaS users is closely related to the most
important factor as found by Benlian and Hess [10]; cost.
When performance is insufficient, clients are lost, when the
system uses too many resources to gain an acceptable level of
performance, cost is increased. A SaaS vendor must thus assess
the possible performance impact of changes to the software.
To control cost in business SaaS, the SaaS vendor needs to
utilize its opportunities for scalability to decrease the cost of
hardware or hosting fees (e.g. using scalable software to make
optimal use of cloud-hosting).

Another cost driver in SaaS is the cost of development
and maintenance of the software product. Maintenance cost is
generally decreased by having to maintain only a single version
instead of multiple previous releases. On the other hand this
maintainability cost-saving must not be lost while implement-
ing runtime variability. Thus scalability and maintainability
are also desired quality attributes for business SaaS. Another
way the implementation of runtime variability will influence
product cost is through implementation-cost. Development is a
cost-driver for SaaS, thus if one or more specialized developers
are required to implement a certain pattern this will influence
the final product cost.

The identified quality attributes are the following: Security
- The ability to isolate tenants from each other and the possible
impact of security breaches in custom components on other
parts of the system.
Performance - The utilization of computing, storage and
network resources by the application at a certain level of usage
by clients.
Scalability - The relative increase in capacity achieved by the
addition of computing, storage and network resources to the
system as well as the flexibility with which these resources
could be added to the system.
Maintainability - The ease with which the system can be
extended and potential problems can be solved.
Implementation Effort - The effort required to implement and
deploy a specific system.

III. RESEARCH APPROACH

In order to gather the patterns in this research, a design
science approach [11] was used in which the initial solutions
are observed in case studies in which one of the authors took
part as a consultant. The solutions are implemented in current
commercial software products. Solutions that are observed in
multiple at least three products are presented as patterns and
are evaluated by two domain experts as feedback mechanism.
The evaluation of the cases by experts enhances the validity
of the cases, as described by Runeson and Höst [12].

During each evaluation session, a pattern is discussed with
an expert, in a semi-structured way. Standard questions related
to the quality attributes are asked, after which issues are freely
discussed per quality attribute. The first expert selected is a
senior software architect in an international software consult-
ing firm specialized in large scale development of Enterprise

Java applications. His role is to investigate technologies and
methodologies to help design better architectures resulting in
faster development and more extensible software. A recent
project includes a multi-tenant administrative application stor-
ing security sensitive data for multiple organizations.

The second expert is a technology director and lead archi-
tect for an application used in distributed statistics processing
of marketing data, previously working in software performance
consulting for web-scale systems. His experience lies in the
field of high-performance distributed computing. The applica-
tion his company works on focuses of low-latency coordinated
processing of large volumes of data to calculate metrics used
for marketing. Performance and scalability are important areas
of expertise for their product.

IV. ARCHITECTURAL PROBLEM DEFINITION

Software product vendors not only need to offer a data
model that fits an organisation’s requirements, software func-
tionality also has to meet an organisation’s processes [13].
When tailor-made software is developed, it is possible to set
the requirements to exactly match the processes of a specific
organisation. For standard online software products this is not
possible and differences between requirements of organisation
have to be addressed at runtime.

A requirement for the ERP system of a manufacturing
company could be to send a notification to the department
responsible for transportation if tomorrow’s batch will be larger
than a certain size. If this requirement is not met by the
software product selected, the company could either decide
to select another software product or develop a tailor-made
application that does meet their requirements.

To allow for the addition of extra functionality in the
application a solution is needed that allow to configure this
functionality. This functional situation is modeled in Figure 1,
the envisioned functional situation. The StandardComponent is
a normal component of the software with default functionality,
this component has a set of ExtensionPoints. An Extension-
Point is a location within the normal workflow where there is
a possibility to add or change functionality. This functionality
is specified in an ExtensionComponent, which contains the
actual functionality that is to be executed at the specified
ExtensionPoint.

Fig. 1: Functional Model for adapting functionality

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 2: Component Interceptor Pattern: System Model

V. DYNAMICAL FUNCTIONALITY ADAPTATION PATTERNS

This section presents two different patterns, both offering
a solution to dynamically adding functionality to a software
product.

Component Interceptor Pattern - The COMPONENT IN-
TERCEPTOR PATTERN as depicted in Figure 2 consists of only
a single application server. Interceptors are tightly integrated
with the application, because they run in-line with normal
application code. Before the StandardComponent is called the
interceptors are allowed to inspect and possibly modify the set
of arguments and data passed to the standard component. To
do this the interceptor has to be able to access all arguments,
modify them or pass them along in the original form. Running
interceptors outside of the application requires marshalling of
the arguments and data to a format suitable for transport,
then unmarshalling by the interceptor component and again
marshalling the possibly modified arguments to be passed on
to the standard component that was being intercepted. This is
impractical and involves a performance penalty [14].

Running the extension components inside the application-
server while supporting runtime variability requires support
for adding and changing interceptors at runtime. The system
model depicts this requirement in the form of a reloadable
container. In some implementations this could be as simple
as changing a source file, because the programming platform
used will interpret source code on the fly. Other platforms
require special provisions for reloading code, such as OSGi
for the Java platform or Managed Extensibility Framework for
the .NET platform.

Figure 3 depicts the interaction with interceptors involved.
Interaction with standard components that can be extended
goes through the interceptor registry. This registry is needed
to keep track of all interceptors that are interested in each
interaction. Without the registry the calling code would have
to be aware of all possible interceptors. As depicted, multiple
interceptors can be active per component. It is up to the
interceptor registry to determine the order in which interceptors
will be called. An example strategy would be to call the first
registered interceptor first or to register an explicit order when
registering the interceptors.

Each interceptor has the ability to change the data that is
passed to the standard component, modify the result returned
by the standard component, execute actions before or after

passing on the call or even skip the invocation of the next
step all together and immediately return. Immediately returning
would for example be used when the interceptor implements
certain extra validation steps and refuses the request based on
the outcome of the validation. As a result of these possibilities
the interceptors must be invoked in-line with the standard com-
ponent, the application cannot continue until all interceptors
have finished executing.

In the event distribution pattern the application generates
events at extension points, which are distributed by a broker. At
each extension point the standard component is programmed to
send an event indicating the point and appropriate contextual
data (e.g. which record is being edited) to a broker. For
example in a CRM system the standard component for editing
client-records sends a ClientUpdated event with the ID of
the client that was edited. Extension components listen for
these events and take appropriate actions based on the events
received. In the example of a ClientUpdated event an extension
component could be developed that sends a notification to an
external system to update the client details there.

Event Distribution Pattern - The system model in Fig-
ure 4 depicts the distributed nature of the EVENT DISTRIBU-
TION PATTERN. Standard components run in the application
server, sending events to a central broker, which can be run
outside of the application. Extension components are isolated
and can be on a separate physical server or run as separate
processes on the same server depending on capacity and scale
of the application. Components are loosely coupled, sharing
only the predefined set of events.

The standard components are unaware of which extension
components listen for their events, execution of extension com-
ponents is decoupled from the standard components. Executing
the extension components separately allows for independent
scalability of these components. Depending on system load
and the volume of events each component listens for, it is
possible to allocate the appropriate amount of resources to each
component. Because there is no interaction between listeners,
it is possible to execute all listeners in parallel if appropriate
for the execution environment.

Standard components publish events to the broker as de-
picted in the sequence diagram in Figure 5. The activation
of the standard component not necessarily overlaps with its
listeners. After publishing the event, a standard component is
free to continue execution. Depending on the fault tolerance
and nature of the events it is up to the standard component

Fig. 3: Component Interceptor Pattern: Sequence Diagram

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Fig. 4: Event Distribution Pattern: System Model

to make a trade-off between guaranteed delivery at a higher
latency by waiting on the broker system to acknowledge
reception of the event or continue without waiting for such
an acknowledgement. If, for example, an event is only meant
to prime a cache for extra performance the loss of such a
message would not impact critical functionality of the system
while waiting for the message might mitigate any performance
gains. If on the other hand an event is used for updating an
external system for which no other synchronization method
is available the system needs guaranteed delivery to function
correctly. At design time this decision can be made on an event
by event basis depending on the capabilities of the messaging
system used.

Because of the one-way nature of events and decoupled
execution of extension components it is not possible for
an ExtensionComponent to stop standard functionality from
happening. In the observed system this was solved by allowing
ExtensionComponents to execute a compensating action in
their listener. The compensating action is sent from the listener
component back to the system independently of the original
action that caused the event. An example of such a compen-
sating action is an extension component that monitors changes
to certain records and reverts the change in case special
conditions are met. This approach has the added benefit that
any changes made by extension components are clearly visible
in audit logs, which simplifies tracing possibly unexpected
system behaviour back to an ExtensionComponent.

Fig. 5: Event Distribution Pattern: Sequence Diagram

VI. PATTERN COMPARISON

This section presents an analysis of both patterns on the
five presented quality attributes.

A. Security

When adapting functionality of an application, there is
always the possibility of introducing new security vulnera-
bilities. This is an inherent risk of extending an application.
The variability patterns do however influence how much larger
the attack surface becomes and how well a breach in one
of the components is isolated from other components. In the
COMPONENT INTERCEPTOR PATTERN the code handling the
new functionality becomes part of the application and will have
the ability to execute arbitrary code within the context of the
main application as depicted in Figure 2. It will also have
full access to any parameters passed to intercepted functions
as well as any returned values. A security breach in the
extension components (interceptors) is not isolated to only
those components unless extra security measures are imple-
mented to separate the components from the main application.
This isolation would however have an impact on performance
because of the nature of the integration.

The EVENT DISTRIBUTION PATTERN isolates the extension
components from the application by executing them in a
separate context based on incoming events as depicted in
Figure 3. This execution in a separate context allows for
more isolation between extension components and the main
application components. The components also have far more
limited access to standard functionality, because any change
the component wants to make has to go through explicitly
exported APIs or messages. Combined with event-sourcing,
any change to data as a result of custom functionality is fully
traceable including the original values [15].

B. Performance

The COMPONENT INTERCEPTOR PATTERN executes in-
terceptors within the context of the application. This results
in little overhead when executing the extension components,
because data does not need to be marshalled, unmarshalled
and transferred between applications. For security reasons it
could however be necessary to separate the interceptors from
the main application as described in the previous section. This
removes one of the performance advantages of the component

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

interceptor pattern because data must be transferred between
the different contexts.

Applications implementing the EVENT DISTRIBUTION PAT-
TERN require the setup of a message broker that handles
all events coming from the application and going into the
extension components. This requires extra processing and
network resources and in the case of durable message delivery
mechanisms also storage resources reading and writing the
messages. To transfer the events from the application via a
message broker to the extension components the events must
be marshalled into a format suitable for transferring over a
network and unmarshalled upon reception by the extension
component, these steps add non-trivial cost to the operations.

C. Scalability

Applications using the COMPONENT INTERCEPTOR PAT-
TERN will execute interceptors within the context of the
application. This has performance advantages described in the
previous section, however the interceptors cannot be scaled
independently of the application. When a high number of in-
terceptors exists requiring significant resources the application
as a whole needs more application servers to execute. The
interceptors must be available to all application servers in that
case.

The EVENT DISTRIBUTION PATTERN on the other hand
decouples the execution of the event handlers from the applica-
tion by running them on a logically separate application server.
Because events are handled outside the execution flow of the
standard components they can also be distributed to multiple
systems. Adding extra application servers subscribing to the
same events in the message broker the processing capacity of
events could increase linearly. For the EVENT DISTRIBUTION
PATTERN this requires a message broker system that is able
to handle the increasing numbers of messages. Those systems
are available off the shelf from open source projects like Fuse
Message Broker, JBoss Messaging, RabbitMQ and commercial
offerings like Microsoft BizTalk, Oracle Message Broker,
Cloverleaf and others.

D. Maintainability

When adapting the functionality of an application, main-
tainability is also affected by the necessity to make sure future
extensions and modifications are compatible with any custom
functionality implemented for tenants. This is a trade-off
between the flexibility and depth with which ExtensionCompo-
nents can affect the application and the impact that changes to
the application will have on the ExtensionComponents. As an
example of the aforementioned trade-off a simple system with
only a single ExtensionPoint will have a much lower impact
on maintainability than a complex system with a very high
number of ExtensionPoints. This however affects both patterns
equally.

The way the patterns decouple ExtensionComponents from
StandardComponents is however a differentiating factor. In the
COMPONENT INTERCEPTOR PATTERN the ExtensionCompo-
nent is more tightly integrated with the StandardComponent
because calls to a StandardComponent at an ExtensionPoint
go through the interceptor providing all parameters and re-
turn values of the call. When changing calls by adding or

removing parameters this will directly affect the input of
each ExtensionComponent registered from that ExtensionPoint.
When applying the event distribution pattern the integration
is more decoupled because calls to StandardComponents are
not directly affected by the ExtensionComponents. Instead the
ExtensionComponent receives a standardized event-message
and uses a provided API to send any changes or other
actions back to the application. This allows for changes to
the StandardComponent without changing the event-messages
going to the ExtensionComponent. At the same time the API
used by ExtensionComponents to influence the application
can be kept stable for small changes or versioned to support
future compatibility using methods like the one described by
Weinreich, Ziebermayr, and Draheim [16].

E. Implementation effort

When implementing a pattern for adding functionality to
an application we distinguish two factors determining the
implementation effort. The first factor is the direct effort
required to implement the pattern in the system, e.g. adding
ExtensionPoints to the StandardComponents of the applica-
tion. The second factor is the effort necessary to implement
ExtensionComponents. Later changes to the components might
also require development effort, this is however excluded from
implementation effort because it is covered under maintainabil-
ity. Both patterns require the definition and implementation of
ExtensionPoints, the way these points are implemented differs
per pattern. When implementing the COMPONENT INTERCEP-
TOR PATTERN it is necessary to setup an Interceptor Registry
and modify calls to StandardComponents to go through the
Interceptor Registry.

In the EVENT DISTRIBUTION PATTERN, a message broker
system must be setup to handle the event-messages flowing
from StandardComponents to ExtensionComponents. The ap-
plication still has to be modified at the ExtensionPoints to
send the event-messages belonging to that ExtensionPoint. A
larger difference between the two patterns emerges in the
way they influence the system. Using component interceptor
pattern each interceptor has full access to the application
because it executes within the same context. Communication
with StandardComponents from within ExtensionComponents
could use normal function-calls just like any other part of the
system. This differs from the event distribution pattern where
the ExtensionComponents execute in a separate environment
outside the context of the StandardComponents. Any interac-
tion between ExtensionComponents and StandardComponents
needs to go through an external interface. Depending on
the type of system and the requirements for interaction this
requires the development of some sort of (webservice-)API
for the ExtensionComponents to use.

The second factor of implementation effort, the effort
required to implement ExtensionComponents, affects both
patterns. In the COMPONENT INTERCEPTOR PATTERN the
implementation requires the development of an interceptor,
which executes the correct behaviour when certain conditions
are met. The EVENT DISTRIBUTION PATTERN requires the
development of ExtensionComponents, which listen for the
right messages and execute the correct functionality when
certain conditions are met.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

VII. CONCLUSION

Within this paper the COMPONENT INTERCEPTOR PAT-
TERN and the EVENT DISTRIBUTION PATTERN are compared
in terms of security, performance, scalability, maintainability
and implementation effort. Both patterns offer a solution
for dynamically adapting functionality of an online software
product, both do so in different ways.

The COMPONENT INTERCEPTOR PATTERN performs less
in terms of scalability, because the interceptors can not scale
independently of the application. When scaling up in terms
of number of servers, the interceptors need to be available
to all servers. Related to this issue, the maintainability of
the COMPONENT INTERCEPTOR PATTERN is also less than
that of the EVENT DISTRIBUTION PATTERN. This is caused
by the fact the interceptors can not be decoupled from the
rest of the system, creating a software product which will
be difficult to maintain. The EVENT DISTRIBUTION PATTERN
offers more isolation in terms of security than the other
pattern, but requires more processing and network resources
in terms of performance. Related to implementation effort, the
COMPONENT INTERCEPTOR PATTERN is easier to implement,
because no message broker or related services are required.
Please see Table I for an overview of the evaluation of both
patterns. Plus and minus signs are used to indicate whether a
characteristic is positive or negative. Keep in mind all scores
are relative scores compared to the other pattern.

In general, the COMPONENT INTERCEPTOR PATTERN
serves best for adapting functionality of small projects,
where the EVENT DISTRIBUTION PATTERN is better for large
projects, considering the quality attributes described in this
paper. For future work we are currently setting up larger
evaluation sessions in which different patterns will be evalu-
ated using experts. The evaluation of patterns is particularly
difficult, because you shoud evaluate an abstract solution
instead of a specific implementation. We are working on a
structured method for comparing sets of patterns and making
use of the implicit knowledge of experts. By doing this, we aim
at evaluation the solution, instead of just an implementation.

ACKNOWLEDGMENT

The authors would like to thank Allard Buijze and Koen
Bos for helping in reviewing the results of the research.

REFERENCES

[1] A. Dubey and D. Wagle, “Delivering software as a service,” The
McKinsey Quarterly, vol. 6, 2007.

[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-
tenant databases for software as a service: schema-mapping techniques,”
in Proceedings of the ACM SIGMOD international conference on
Management of Data. ACM, 2008, pp. 1195–1206.

[3] S. Jansen, G. Houben, and S. Brinkkemper, “Customization realization
in multi-tenant web applications: case studies from the library sector,”
Lecture Notes in Computer Science, pp. 445–459, 2010.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
towns, buildings, construction. Oxford University Press, USA, 1977,
vol. 2.

[5] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” Software Product Lines, pp. 219–245, 2002.

[6] J. Bayer, S. Gérard, O. Haugen, J. Mansell, B. Moller-Pedersen,
J. Oldevik, P. Tessier, J. Thibault, and T. Widen, “Consolidated product
line variability modeling,” 2006.

[7] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability
modeling to support customization and deployment of multi-tenant-
aware software as a service applications,” in Proceedings of the ICSE
Workshop on Principles of Engineering Service Oriented Systems.
IEEE Computer Society, 2009, pp. 18–25.

[8] J. Kabbedijk and S. Jansen, “The role of variability patterns in multi-
tenant business software,” in Proceedings of the Joint 10th Working
IEEE/IFIP Conference on Software Architecture and 6th European
Conference on Software Architecture Companion. ACM, 2012, pp.
143–146.

[9] M. Svahnberg, J. Van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[10] A. Benlian and T. Hess, “Opportunities and risks of software-as-a-
service: Findings from a survey of it executives,” Decision Support
Systems, vol. 52, no. 1, pp. 232–246, 2011.

[11] A. Hevner and S. Chatterjee, “Design science research in information
systems,” Design Research in Information Systems, pp. 9–22, 2010.

[12] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[13] W. Van der Aalst, A. ter Hofstede, and M. Weske, “Business process
management: A survey,” Business Process Management, pp. 1–12,
2003.

[14] B. Carpenter, G. Fox, S. Ko, and S. Lim, “Object serialization for
marshalling data in a java interface to mpi,” in Proceedings of the ACM
Conference on Java Grande. ACM, 1999, pp. 66–71.

[15] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Professional, 2003.

[16] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model
for enterprise services,” in 21st International Conference on Advanced
Information Networking and Applications Workshops, vol. 2. IEEE,
2007, pp. 570–575.

TABLE I: Overview of both Dynamical Functionality Adaptation Patterns

Component Interceptor Pattern Event Distribution Pattern

Security - Extension components execute within application scope. + Isolation of extension components and full traceability of actions by
extension components.

Performance + Direct execution of extension components. - Network overhead for calling extension components.
- The broker system requires extra resources.

Scalability - No independent scaling of extension components. + Independent scaling of extension components.
- Does not scale to high number of extension components. + Extension components cannot delay standard components.

- Requires scalable message-broker system.

Maintainability - Tight coupling of extension components. + Loose coupling of extension components.

Implementation Effort + Direct communication with standard components. - Requires the setup of a message broker system.
+ Access to all data by design. - Requires a separate mechanism to communicate with the application.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

